
5. GEOMETRY & ANALYSIS MEET TOPOL-
OGY
In this chapter we will meet some startling results which connect the topology of a surface with
global aspects of geometry and analysis. For example, the global Gauss-Bonnet theorem says
that for a closed geometric surface X,

ZZ

X

K dA = 2πχ(X).

What is striking about this result is that the term on the RHS is manifestly topological in
nature whilst the total curvature on the LHS is ostensibly geometric. It is possible to distort a
surface locally to change its Gaussian curvature without changing its topology, but the above
theorem shows there will be knock-on e¤ects elsewhere on the surface as the total curvature
must remain constant. There are other corollaries to this result such as (a) the sphere is the
only orientable closed surface which can have positive curvature everywhere and (b) the torus
is the only orientable closed surface which can be everywhere ‡at (Example 3.26).

5.1 The Gauss-Bonnet theorems
We begin …rst with a proof of the local Gauss-Bonnet theorem. The statement of this theorem
is on the syllabus but its proof is not ; I include the proof here for completeness’ sake.

Theorem 5.1 (Local Gauss-Bonnet Theorem – …rst version) (Proof o¤ syllabus) Let γ be
a smooth, simple, closed curve on a patch of surface X, enclosing a region R. Then

Z

γ

kg ds+

ZZ

R

K dA = 2π.

Proof. We will assume that X = r(U) where r is an orthogonal parameterization, so that
F = 0. (The existence of such …elds was mentioned in Remark 3.16.) We then set

e1 =
rup
E
, e2 =

rvp
G
,

to be smooth, orthonormal, tangent, vector …elds e1, e2 : V ! R3. Let θ(s) denote the angle
between the unit vector _γ(s) and e1 at the point γ(s), so that

_γ = e1 cos θ + e2 sin θ

giving
Äγ = _θ (¡e1 sin θ + e2 cos θ) + ( _e1 cos θ + _e2 sin θ) .

With n = e1 ^ e2 then
n ^ _γ = ¡e1 sin θ + e2 cos θ,
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as n ^ e1 = e2 and n ^ e2 = ¡e1, so that

Äγ = _θ (n ^ _γ) + ( _e1 cos θ + _e2 sin θ) .

Thus

kg = Äγ ¢ (n ^ _γ)

= _θ + (_e1 cos θ + _e2 sin θ) ¢ (¡e1 sin θ + e2 cos θ)

= _θ ¡ e1 ¢ _e2

because _e1 ¢ e1 = 0 = _e2 ¢ e2 and _e1 ¢ e2 = ¡e1 ¢ _e2 from di¤erentiating e1 ¢ e2 = 0 and
e1 ¢ e1 = 1 = e2 ¢ e2 = 0; thus we have

2π ¡

Z

γ

kg ds = ¢θ ¡

Z

γ

kg ds =

Z

γ

³
_θ ¡ kg

´
ds =

Z

γ

e1 ¢ _e2 ds.

We will then apply Green’s theorem to this last integral. Recall Green’s theorem states: for
a smooth, simple, closed curve β in an open set V µ R2, bounding a region S, with P,Q being
two smooth functions de…ned on V

Z

β

(P du+Q dv) =

ZZ

S

µ
∂Q

∂u
¡

∂P

∂v

¶

du dv.

Let β = r¡1 (γ). We have

_e2 =
∂e2
∂u

du

ds
+

∂e2
∂v

dv

ds
,

so that P = e1 ¢ ∂e2/∂u and Q = e1 ¢ ∂e2/∂v. Then

∂Q

∂u
¡

∂P

∂v
=

∂e1
∂u

¢
∂e2
∂v

¡
∂e1
∂v

¢
∂e2
∂u

.

Di¤erentiating e1 = ru/
p
E and e2 = rv/

p
G we …nd

∂e1
∂u

=
1

p
E
ruu ¡

Eu

2E3/2
ru,

∂e2
∂v

=
1

p
G
rvv ¡

Gv

2G3/2
rv.

Noting that ru, rv and n are mutually orthogonal, we …nd

∂e1
∂u

¢
∂e2
∂v

=
ruu ¢ rvvp

EG
¡

Euru ¢ rvv

2E3/2
p
G

¡
Gvruu ¢ rv

2G3/2
p
E

=
¡111¡

1
22E + ¡

2
11¡

2
22G+ LN

p
EG

¡
Eu¡

1
22

2
p
EG

¡
Gv¡

2
11

2
p
EG

.

From Corollary 3.51, when F = 0, we have

¡1
11 = Eu/2E, ¡1

12 = Ev/2E, ¡
1
22 = ¡Gu/2E,

¡2
11 = ¡Ev/2G, ¡

2
12 = Gu/2G, ¡

2
22 = Gv/2G.
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and so the above simpli…es to
∂e1
∂u

¢
∂e2
∂v

=
LN

p
EG

Similarly

∂e1
∂v

¢
∂e2
∂u

=
¡112¡

1
21E + ¡

2
12¡

2
21G ¡M2

p
EG

¡
Ev¡

1
21

2
p
EG

¡
Gu¡

2
12

2
p
EG

=
¡M2

p
EG

.

Hence

I =

ZZ

S

LN ¡ M2

p
EG

du dv =

ZZ

S

K
p
EGdudv =

ZZ

S

K dA.

Theorem 5.2 (Local Gauss-Bonnet Theorem – second version.) (Proof o¤ syllabus)
Let γ be a piecewise-smooth simple, closed curve on a patch of surface X, enclosing a region

R. Then Z

γ

kg ds+

ZZ

R

K dA+
nX

i=1

αi = 2π

where α1, . . . , αn are the external angles at the points where γ is not smooth.

Proof. The proof is almost identical to the proof of the …rst version save that at those points
where γ is not smooth there is a jump discontinuity in θ(s) of αi where αi is the external angle.
The only amendment needed to the proof is that

Z

γ

_θ ds = ¢θ = 2π ¡
nX

i=1

αi.

Example 5.3 Note that when we use internal angles βi = π ¡ αi, and when the curvilinear
polygon R is bounded by geodesics, then we obtain

ZZ

R

K dA =
nX

i=1

βi ¡ (n ¡ 2)π.

Thus the internal angle sum exceeds (n¡ 2)π by the total curvature. Focusing on triangles: in
the plane, where K = 0, we have

β1 + β2 + β3 = π,

whilst in the hyperbolic plane (where K = ¡1) we have Lambert’s Theorem

A = π ¡ β1 ¡ β2 ¡ β3,

and on the sphere or elliptic plane (where K = 1) then we have Girard’s Theorem

A = β1 + β2 + β3 ¡ π.
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Theorem 5.4 (Global Gauss-Bonnet Theorem) Let X be a smooth, closed, orientable
surface. Then ZZ

R

K dA = 2πχ(X).

Proof. Say that X is subdivided by smooth curves into curvilinear polygons. We apply the
local GBT to each of these polygons and sum each of the resulting equations.

The contributions
R
γ
kg ds cancel out as each edge bounds two polygons but with di¤erent

orientations. For one orientation kg is negative what it equals on the reverse orientation. The
sum of the total curvature from each polygon equals the total curvature on the surface. And,
using internal angles, we also need to sum the expressions

nX

i=1

βi ¡ nπ + 2π.

The sum of the internal angles equals 2πV where V is the number of vertices. This is because
at each vertex the internal angles add up to 2π. Now we have F faces so that

X

faces

2π = 2πF,

and each edge bounds two faces so that

X

faces

nfaceπ =
X

edges

2π = 2πE,

…nally yielding

X

faces

Ã
nX

i=1

βi ¡ nfaceπ + 2π

!

= 2πV ¡ 2πE + 2πF = 2πχ(X).

Remark 5.5 (a) We have assumed, without proof, that every compact, smooth surface has a
subdivision. This is true – in fact this is more generally true for any separable smooth surface.

(b) The above proof is for closed orientable surfaces. It relies on orientability when we refer
to the opposite orientations of two curves. However the theorem also holds for non-orientable
closed surfaces.

(c) In the next chapter we will discuss closed surfaces of constant curvature. The global
Gauss-Bonnet theorem makes plain that only certain surfaces might be endowed with …rst fun-
damental forms with constant Gaussian curvature. A closed geometric surface with constant
positive/zero/negative Gaussian curvature is necessarily a sphere/torus/torus with more than
one hole. That is because their Euler characteristics are 2/0/ 6 ¡2. The theorem only gives
necessity. As a sphere has constant positive curvature and as the ‡at torus has constant zero
curvature, such surfaces are clearly possible. When we study quotients of the hyperbolic plane
we will construct surfaces of constant curvature ¡1 of each positive genus.

Example 5.6 Show that the catenoid x2 + y2 = cosh2 z has a single, simple, closed geodesic.

THE GAUSS-BONNET THEOREMS 67



Solution. The ‘waist’ z = 0 is a simple, closed geodesic by Example 4.6(b) – it is a latitude
where the radius function is at a minimum.

The catenoid can be parameterized by

r(u, v) = (cosh v cosu, cosh v sinu, v) , 0 < u < 2π, v 2 R.

The Gaussian curvature at the point r(u, v) equals K(u, v) = ¡ cosh¡4 v < 0. Note that there
cannot be a simple, closed geodesic that does not wrap once around the catenoid. By the local
Gauss-Bonnet theorem we would then have

0 >

ZZ

R

K dA = 2π,

which is a contradiction. Suppose now that there were two simple, closed geodesics wrapping
once around the catenoid. If these geodesics do not intersect and enclose a region R between
them then we would have

0 >

ZZ

R

K dA = 2πχ(R) = 0,

as the Euler characteristic of R (which is a cylinder) equals 0. Again we have a contradiction.
Finally suppose that the two geodesics do intersect and let R be the region bounded by

them. Should they intersect once we would have

ZZ

R

K dA+ (π ¡ β1) + (π ¡ β2) = 2π,

where β1 and β2 are the two internal angles at the point of intersection. The LHS is less than
2π and so again we have a contradiction. Should the geodesics intersect more than once then
we can focus on the geodesics between two points of intersection to get the same contradiction.

5.2 The Poincaré-Hopf theorem
Suppose that we are given a tangent vector v(x) at each point x of a smooth, closed surface X
in R3. We can think of v(x) as the velocity at x of some ‡uid ‡ow v on the surface. A point
where v(x) = 0 is called a stationary (or singular) point of the ‡ow. It is a well known fact
– the hairy ball theorem – that a ‡ow on a sphere must have at least one stationary point. This
is a consequence of the sphere’s topology and we will more generally prove the Poincaré-Hopf
theorem for surfaces which states that

χ(X) =
X

stationary
points x

index(v(x))

where the index (or multiplicity) is an integer associated with each stationary point, and as-
suming there to be …nitely many stationary points.

If x 2 X is an isolated stationary point of v then we can …nd a small neighbourhood U of
x such that v is non-zero on Unfxg. Now let e be another smooth, nowhere zero, vector …eld
de…ned on U ; we will use e as a reference direction with which to compare the behaviour of
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v(x). Let γ(t) be a simple, closed, anticlockwise smooth curve in U which encircles x. Then
v and e are both non-zero on γ and we de…ned the index as the winding number of v with
respect to e as γ is traversed once. That is:

index =
¢ψ

2π
=
1

2π

Z

γ

dψ

dt
dt

where ψ is the angle between v and e. Whilst ψ is only de…ned up to multiples of 2π this does
not a¤ect the total change ¢ψ in ψ.

Remark 5.7 It is not immediately clear that the index of a stationary point is well-de…ned. It
may depend on the choice of vector …eld e or on the curve γ. In Do Carmo, p.280, it is shown
that

¢ψ =

ZZ

R

K dA,

where R is the region bounded by γ. This then is independent of the choice of e.
Say now that γ0 and γ1 are two simple, closed, positively oriented curves around x. These

curves are then homotopic and it is possible to create a family of simple, closed, positively
oriented curves γt, where 0 6 t 6 1, which continuously deform from γ0 to γ1. Let I(t) be the
index as calculated using γt. Then I(t) is a continuous, integer-valued function on [0, 1] , so
by connectedness I(t) is constant and in particular I(0) = I(1). This shows that the index is
independent of the choice of γ.

Example 5.8 Find the index of each of the following stationary points at the origin:
(a) source: v(x, y) = (x, y).
(b) sink: v(x, y) = (¡x,¡y).
(c) vortex: v(x, y) = (¡y, x).
(d) bifurcation: v(x, y) = (x,¡y).
(e) dipole: v(x, y) = (x2 ¡ y2, 2xy).

Figure. 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5
source sink vortex bifurcation dipole

Solution. In each case, we will take γ to be the curve γ(t) = (cos t, sin t) and e = (1, 0) .
(a) v(cos t, sin t) = (cos t, sin t) and so we may take ψ = t. Thus the index is 1.
(b) v(cos t, sin t) = (¡ cos t,¡ sin t) = (cos(t+ π), sin (t+ π)) and so we may take ψ = t+π.

Again the index is 1.
(c) v(cos t, sin t) = (¡ sin t, cos t) = (cos(t+ π/2), sin (t+ π/2)) and so we may take ψ =

t+ π/2. Once more the index is 1.
(d) v(cos t, sin t) = (cos t,¡ sin t) = (cos(¡t), sin (¡t)) and so we may take ψ = ¡t. Thus

the index is ¡1.
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(e) v(cos t, sin t) = (cos2 t¡sin2 t, 2 sin t cos t) = (cos(2t), sin (2t)) and so we may take ψ = 2t.
Thus the index is 2.

Theorem 5.9 (Poincaré 1881, Hopf 1926) Let v be a smooth vector …eld on a smooth closed
orientable surface X with …nitely many stationary points. Then

χ(X) =
X

stationary
points x

index(v(x)).

Remark 5.10 Henri Poincaré proved the above theorem for surfaces in 1881. Heinz Hopf
generalized the result to higher-dimenstional manifolds in 1926. Any continuous map of the
unit circle can be assigned its degree – an integer describing how many times the circle wraps
onto itself in an anticlockwise fashion and the index of a stationary point can be seen in this light.
The degree of a map from a higher-dimensional sphere to itself can similarly be de…ned (Brouwer
1911) and the index of stationary points in higher dimensions can be simiarly understood.

Proof. Let x1, . . . , xn be the stationary points of the vector …eld v. Choose a smooth, simple,
closed curve γi around each xi enclosing a region Ri. Let

Y = X

-
n[

i=1

Ri.

At each point y 2 Y we may choose an orthonormal basis fe1(y), e2(y)g for the tangent space
at y and such that e1(y) is in the direction of the non-zero v(y). Applying the argument of the
local Gauss-Bonnet theorem to the region Y we obtain

ZZ

Y

K dA = ¡
nX

i=1

Z

γi

e1 ¢ _e2 ds.

The negative sign is because the γi are oriented clockwise as part of the boundary of Y .
Choosing a similar orthonormal basis ff1, f2g for the points in Ri we …nd that

ZZ

Ri

K dA =

Z

γi

f1 ¢ _f2 ds.

Adding each of these equations (i = 1, . . . , n) to the previous equation and applying the global
Gauss-Bonnet theorem we obtain

2πχ(X) =

ZZ

X

K dA =
nX

i=1

Z

γi

³
f1 ¢ _f2 ¡ e1 ¢ _e2

´
ds.

From the proof of the local Gauss-Bonnet theorem we know that

e1 ¢ _e2 = _θ ¡ kg, f1 ¢ _f2 = _ϕ ¡ kg

where θ and ϕ are the angles between _γ and e1 and f1 respectively. Setting ψ = ϕ ¡ θ to be
the angle between f1 and e1 we obtain

χ(X) =
nX

i=1

1

2π

Z

γi

_ψ ds =
nX

i=1

index(v(xi))

as required.
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Corollary 5.11 (Hairy ball theorem) A smooth vector …eld on a sphere must have at least
one stationary point.

Proof. The follows from the fact that the Euler characteristic of a sphere is two.

5.3 Analysis on a closed surface
We now apply the Poincaré-Hopf theorem to demonstrate a …rst result in Morse theory. Morse
theory, named after Marston Morse, includes a wide selection of results relating a surface’s
topology to the behaviour of smooth real functions on the surface.

Proposition 5.12 (Gradient vector …eld) Let X be a smooth surface in R3, p 2 X and
f : X ! R be smooth. Then there is a unique tangent vector, denoted (gradX f)(p) or (rXf)(p),
such that

(gradX f)(p) ¢ v = dfp (v) (5.21)

for any tangent vector v 2 TpX.

Proof. Parameterize X locally as r (u, v) . It follows that

(gradX f)(p) ¢ ru = dfp (ru) = fu(p), (gradX f)(p) ¢ rv = dfp (rv) = fv(p).

As ru and rv form a basis for TpX then this speci…es (gradX f)(p) uniquely. As the scalar
product and dfp are both linear, then (5.21) holds on the entire tangent space.

Exercise 5.13 In terms of the local co-ordinates u, v, show that

gradX f =

µ
fuG ¡ fvF

EG ¡ F 2

¶

ru +

µ
fvE ¡ fuF

EG ¡ F 2

¶

rv.

It then follows that gradX f = 0 if and only if fu = fv = 0. This is left to Sheet 3, Part A,
Exercise 1.

Note that when X = R2, parameterized with Cartesian co-ordinates x, y, then

gradX f = fxi+ fyj

concurs with the usual de…nition of rf.

De…nition 5.14 Given a smooth surface X in R3 and a smooth function f : X ! R, we say
that p 2 X is a critical point of f if (gradX f) (p) = 0. Equivalently, if r(u, v) is a local
parameterization around p, then p is a critical point if and only if

∂f

∂u
(p) = 0 =

∂f

∂v
(p) .

Example 5.15 Let f(x, y) = cosπx+ cosπy on R2. Then

∂f

∂x
= ¡π sinπx,

∂f

∂y
= ¡π sin πy

are zero when x and y are integers.

ANALYSIS ON A CLOSED SURFACE 71



De…nition 5.16 A critical point p is said to be non-degenerate if the Hessian matrix
Ã

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

!

is nonsingular. If, further, the Hessian matrix is:

² positive-de…nite then p is a local minimum;

² negative-de…nite then p is a local maximum;

² inde…nite then p is a saddle point.

A smooth real-valued function with only non-degerate critical points is called a Morse func-
tion.

It will become apparent in the proof of the next proposition that these de…nitions do indeed
correspond to standard notions of a minima, maxima and saddle points.

Example 5.17 With the above f(x, y),the Hessian equals

¡π2
µ
cosπx 0
0 cosπy

¶

At (0, 0) , (1, 0), and (1, 1) this respectively equals

¡π2
µ
1 0
0 1

¶

, ¡π2
µ

¡1 0
0 1

¶

, π2
µ
1 0
0 1

¶

.

These are respectively negative de…nite, inde…nite and positive de…nite and so the points are
respectively a maximum, a saddle point and a minimum.

Proposition 5.18 Let f be a Morse function on a smooth patch X which has a critical point
at p. Then gradx f has:

(a) index 1 at p if f has a minimum or a maximum at p.
(b) index ¡1 at p if f has a saddle point at p.

Proof. Take a conformal, local parameterization near p = r(0, 0) and without loss of generality
assume that f(p) = 0. In terms of these local co-ordinates Taylor’s theorem states that

f(r(u, v)) =
1

2

¡
fuu(p)u

2 + 2fuv(p)uv + fvv(p)v
2
¢
+ higher order terms.

Further, by the spectral theorem, we can may rotate the uv-plane so that

f(r(u, v)) = λu2 + µv2 + higher order terms,

By assuming u and v to be suitably small we note that f has the same type of critical point as

g(r(u, v)) = λu2 + µv2.
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This is (a) a minimum if λ, µ > 0, (b) a maximum if λ, µ < 0, (c) a saddle point if λµ < 0.
Now

(gradX g)(p) ¢ ru =
d

dt
g(r(t, 0)) = 2λt = 2λu;

(gradX g)(p) ¢ rv =
d

dt
g(r(0, t)) = 2µt = 2µv.

Taking ru as the reference …eld and recalling that the parameterization is conformal, this means
that the angle ψ between ru and gradX g satis…es

(cosψ, sinψ) =
(λu, µv)

p
λ2u2 + µ2v2

.

A suitably small closed curve λ2u2+µ2v2 = r2 around the point p = r(0, 0) can be parameterized
by

u =
r

jλj
cos t, v =

r

jµj
sin t,

giving

cosψ =
λ

jλj
cos t, sinψ =

µ

jµj
sin t.

² Minimum: λ, µ > 0 so that ψ = t and the index is 1

² Maximum: λ, µ < 0 so that ψ = π + t and the index is 1.

² Saddle: λ < 0 < µ so that ψ = π ¡ t and the index is ¡1.

² Saddle: λ > 0 > µ so that ψ = 2π ¡ t and the index is ¡1.

Theorem 5.19 Given a Morse function f on a smooth, orientable surface X then

χ(X) = # (maxima)¡#(saddles) + # (minima) .

Proof. Apply the Poincaré-Hopf theorem to the vector …eld gradX(f), taking note of the
previous proposition.

Example 5.20 The function f(x, y) = cosπx + cosπy has period 2 in both the x and y vari-
ables. f(x, y) descends to a well-de…ned smooth function ~f(x, y) on R2/(2Z)2 which is di¤eo-
morphic to the torus T. ~f(x, y) has a maximum at (0, 0) , saddle points at (1, 0) and (0, 1) and
a minimum at (1, 1) . Hence

χ(T) = 1¡ 2 + 1 = 0.
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Figure 5.6 – height function on a torus

Example 5.21 Consider the height function z on the torus T as depicted in Figure 5.6. There
is a maximum at the top of the torus (point A), a minimum at the bottom of the torus (point
D) and two saddle points at points B and C. Hence

χ(T) = 1¡ 2 + 1 = 0.

Remark 5.22 Theorem 5.19 is part of a broader subject called Morse theory, a subject within
di¤erential topology which relates di¤erentiable functions on a surface to the surface’s topology.
It is named after Marston Morse (1892-1977) who …rst wrote on the subject in 1925.

Revisiting the example of the height function on a torus, consider the sets

Xh = f(x, y, z) 2 T j z 6 hg .

Note that the topology of these sets only changes as h achieves the value of one of the critical
points’ heights. In fact Morse showed that two such sets Xh and Xk would have the same
‘homotopy type’ if no critical height lay between h and k. This notion of homotopy equivalence
is a type of topological equivalence, though weaker than that of being homeomorphic. Further
Morse showed how the topology of Xh changes as h passes through a critical height. When h
passes through a maximum (at A) or a minimum (at D) a 2-cell (a disc) is attached to the set,
but when h passes through a saddle point (at B and C) a 0-cell (a point) is adjoined to the set.
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