
Patrick E. Farrell
University of Oxford

2023–2024
January 29, 2024

Computational Mathematics
Student Handbook

A mathematical simulation of the merger of two black holes. Credit: SXS project.

Contents

1 Preface 7

2 Introduction 9
2.1 What is computational mathematics? 9
2.2 Why should we study computational mathematics? 13
2.3 How should we study computational mathematics? 13

3 Getting started 15
3.1 Installing things 15
3.2 Other resources 27
3.3 Thinking like a programmer 28

4 Arithmetic, conditionals, and iteration 31
4.1 Arithmetic 31
4.2 Variables 36
4.3 Accessing documentation 38
4.4 Comparisons and conditionals 38
4.5 Iteration 41

5 Intermezzo: submitting problem sheets 49

6 Problem sheet 1 53

4 patrick e. farrell

7 Data structures and plotting 57
7.1 Lists 57
7.2 What assignment means in Python 63
7.3 Tuples 64
7.4 Dictionaries 67
7.5 Sets 70
7.6 Functions 72
7.7 Plotting 78

8 Intermezzo: the Lander–Parkin counterexample 83

9 Problem sheet 2 89

10 Introduction to symbolic computing 93
10.1 What is symbolic computing? 93
10.2 Symbols and expressions 94
10.3 Assumptions and evaluation 96
10.4 Solving algebraic equations 98
10.5 Differentiation and integration 100
10.6 Limits, sequences, and series 104
10.7 Solving differential equations 105
10.8 Coda: rendering sympy objects in published documents 107

11 Problem sheet 3 111

12 Introduction to numerical computing 115
12.1 Vectors 116
12.2 Matrices 120
12.3 Numerical linear algebra 123
12.4 Approximating integrals 126
12.5 Least squares and curve-fitting 128
12.6 Solving differential equation initial value problems 133

computational mathematics 5

13 Coda: simulating the solar system 139

14 Problem sheet 4 149

A Primality testing 157
A.1 Trial division 158
A.2 The Fermat test 159
A.3 Miller–Rabin primality test 160
A.4 Concluding remarks 163

B The Kepler problem 165
B.1 Equations of motion and invariants 166
B.2 Euler’s method 167
B.3 Explicit midpoint method 169
B.4 Newton–Störmer–Verlet method 171
B.5 Concluding remarks 172

C Percolation 175
C.1 Representing the state 178
C.2 Calculating percolation 179
C.3 Monte Carlo simulation 180
C.4 Concluding remarks 181

Bibliography 183

1 Preface

This course is in two parts: Part I in Michaelmas Term Weeks 3–8 and
Hilary Term Weeks 1–2, and Part II in Hilary Term Weeks 3–9. For
Part I, you will attend scheduled practical sessions every fortnight
starting in Week 3 Michaelmas Term. The practical sessions are held
in the Mathematical Institute, Radcliffe Observatory Quarter, and are
organised by college.

Each practical session will be run by a demonstrator and may in-
clude a short lecture. You will need to bring your laptop to these
sessions. Please follow the instructions in Chapter 3 to install the
necessary software before the first session.

There are four problem sheets for Part I. You will start problem
sheet n during demonstration session n, and return your completed
work during demonstration session n ` 1 for marking during the
session. Each problem sheet is associated with one main chapter of
this handbook. This is summarised in the following table.

Weeks Chapters to read Problem sheet to start

1–2 MT 1–3 -
3–4 MT 4–5 1 (chapter 6)
5–6 MT 7–8 2 (chapter 9)
7–8 MT 10 3 (chapter 11)
1–2 HT 12–13 4 (chapter 14)

During Part I of the course, you may work collaboratively with
others and—as always— you are encouraged to discuss mathematics
and your studies with your peers. None of the work in Part I will be
formally assessed. Instead, the material acts as a foundation enabling
you to work individually during Part II. This individual work will
be assessed and will count towards your Preliminary Examination
as described in Examination Decrees & Regulations and the current
Course Handbook. (See your college tutors if you have any questions
about this aspect of the course.)

The course director is Prof. Patrick Farrell. The demonstrators
will be able to answer most questions, but please feel free to contact

https://pefarrell.org

8 computational mathematics

Prof. Farrell at patrick.farrell@maths.ox.ac.uk, especially with feed-
back on the course and edits to the course materials.

This manual and any additional course material can be found on
the course website:
https://courses.maths.ox.ac.uk/course/view.php?id=4931

mailto:patrick.farrell@maths.ox.ac.uk
https://courses.maths.ox.ac.uk/course/view.php?id=4931

2 Introduction

2.1 What is computational mathematics?

Computational mathematics is the subject that studies the use of com-
putation to solve mathematical problems. These mathematical prob-
lems may be solved for purposes within mathematics (for example,
proving theorems, or finding counterexamples to conjectures), or be-
yond mathematics, in applications. Computational mathematics is
therefore a very broad subject that cuts across the traditional divisions
of pure and applied mathematics.

Leonhard Euler, 1707–1783

This is best seen with examples. In 1769, Leonhard Euler observed
that it was possible to find natural solutions to

a2
1 ` a2

2 “ b2, e.g. 32 ` 42 “ 52,

and to
a3

1 ` a3
2 ` a3

3 “ b3, e.g. 33 ` 43 ` 53 “ 63,

but that he could not find solutions to

a3
1 ` a3

2 “ b3 (Fermat’s last theorem)

or to
a4

1 ` a4
2 ` a4

3 “ b4.

He thus conjectured that you need at least three cubes to sum to a
cube, four quartics to sum to a quartic, etc. Mathematically, Euler’s
Conjecture on the sums of powers is that

D k ą 1, n ą 1, a1, . . . , an, b P N` : ak
1 ` ak

2 ` ¨ ¨ ¨ ak
n “ bk ùñ k ď n.

Euler’s Conjecture remained open for nearly 200 years. In 1966, Lan-
der and Parkin1 computed a counterexample to Euler’s conjecture:

1 L. J. Lander and T. R. Parkin. Coun-
terexample to Euler’s conjecture on
sums of like powers. Bulletin of the Amer-
ican Mathematical Society, 72(6):1079,
1966

275 ` 845 ` 1105 ` 1335 “ 1445.

This was found by a direct search on a CDC 6600 mainframe. Leaving
the computer to check for counterexamples overnight might save
months or years of trying to prove a false statement.2,3

2 Euler’s conjecture is currently known
to be true for k “ 3, false for k “ 4 and
k “ 5, and unknown for other values of
k.
3 Many more counterexamples found
by clever computational mathe-
matics can be found at https:
//math.stackexchange.com/
questions/514/conjectures-
that-have-been-disproved-
with-extremely-large-
counterexamples.

https://math.stackexchange.com/questions/514/conjectures-that-have-been-disproved-with-extremely-large-counterexamples
https://math.stackexchange.com/questions/514/conjectures-that-have-been-disproved-with-extremely-large-counterexamples
https://math.stackexchange.com/questions/514/conjectures-that-have-been-disproved-with-extremely-large-counterexamples
https://math.stackexchange.com/questions/514/conjectures-that-have-been-disproved-with-extremely-large-counterexamples
https://math.stackexchange.com/questions/514/conjectures-that-have-been-disproved-with-extremely-large-counterexamples
https://math.stackexchange.com/questions/514/conjectures-that-have-been-disproved-with-extremely-large-counterexamples

10 computational mathematics

Computers are not merely useful for finding counterexamples,
however. In 1852, Francis Guthrie was colouring a map of the counties
of England, and noticed that only four colours were needed to satisfy
the constraint that no two adjacent counties shared the same colour.
Was this true for any map?4 4 For a full history, see the book by Robin

Wilson of Keble College on the subject:
R. Wilson. Four Colors Suffice: How

the Map Problem Was Solved. Princeton
University Press, 2013

In 1879, Alfred Kempe produced a clever proof5. He introduced the

5 A. B. Kempe. On the geographical
problem of the four colours. American
Journal of Mathematics, 2(3):193–200,
1879

concept of what is now called an ‘unavoidable set’, a set of subgraphs
such that every graph must contain at least one of them. If there exists
a graph that cannot be coloured with four colours, then there must
be a minimal such graph. For each subgraph in the unavoidable set,
imagine removing that subgraph from the minimal non-colourable
graph; since the result is smaller, it can be coloured with four colours.
Kempe then reintroduced the removed subgraph and computed that
for each element of the unavoidable set it was then possible to colour
the whole graph with the partial four-colouring in hand. This reason-
ing showed that a minimal counterexample cannot exist, and that all
graphs are four-colourable.

Unfortunately the proof was incorrect, as pointed out by Percy
Heawood in 1890. Kempe’s computations for the final element of his
unavoidable set were wrong. However, the proof strategy was correct.

The first correct proof was given by Appel and Haken in 19766. 6 K. Appel and W. Haken. Every planar
map is four colorable. Bulletin of the
American Mathematical Society, 82(5),
1976

They devised an algorithm to build an unavoidable set such that a
minimal counterexample could be ruled out in each case; computa-
tions were required both to build the unavoidable set, and to check
that each case could be coloured with four colours. Whereas Kempe’s
unavoidable set had 6 elements, Appel & Haken’s had 1834 (which
has since been reduced). The proof was initially greeted with suspi-
cion and dismay, and stimulated a great deal of philosophical debate
on the nature of proof itself. Nevertheless, the proof is correct, and
since then many major results have been first proven using extensive
computer assistance, including the universality of the Feigenbaum
constants, the Kepler conjecture on packing cannonballs, and Keller’s
conjecture on tiling Euclidean space with hypercubes.7 Another im- 7 For a list, see https://en.

wikipedia.org/wiki/Computer-
assisted_proof.

portant example was the computational exploration of the sporadic
groups that arise in the classification of finite simple groups, one of
the triumphs of 20th century algebra.

In fact, there is a substantial ongoing effort to develop automated
proof checkers and automated theorem provers—computer programs
that can automatically generate proofs of technical lemmas, or suggest
relevant results, or identify flaws in published proofs. (These are
more common in the literature than one would like.) In the coming
years these systems will know all undergraduate- and graduate-level
mathematics—will they revolutionise teaching and research over the
course of your mathematical careers? Time will tell.8 8 For more details on the current status

and future potential of these systems,
you might start with Kevin Buzzard’s
talk at the 2022 ICM. Or play the natural
numbers game, if you are prepared to
lose a weekend.

https://en.wikipedia.org/wiki/Computer-assisted_proof
https://en.wikipedia.org/wiki/Computer-assisted_proof
https://en.wikipedia.org/wiki/Computer-assisted_proof
https://www.youtube.com/watch?v=SEID4XYFN7o&t=237s
https://www.youtube.com/watch?v=SEID4XYFN7o&t=237s
https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/
https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/

introduction 11

Figure 2.1: A map of the coun-
ties of Britain; four colours suf-
fice. This image was taken from
Robin Wilson’s presentation on
the history of the four-colour
problem.

https://math.illinois.edu/system/files/inline-files/wilson-slides-11-2-17.pdf
https://math.illinois.edu/system/files/inline-files/wilson-slides-11-2-17.pdf
https://math.illinois.edu/system/files/inline-files/wilson-slides-11-2-17.pdf

12 computational mathematics

Tommy Flowers, 1905–1998.

In applied mathematics, almost every triumph has involved com-
putation. Here are some examples. The first programmable electronic
digital computer, Colossus, was invented in 1943 by Tommy Flowers
to aid with the cryptanalysis of the Lorenz cipher, used to commu-
nicate high-level strategic messages between Hitler and his generals.
Colossus was used to identify the starting positions of two of the
Lorenz system’s wheels, by calculating statistics about the ciphertext
for each of the 1271 possible configurations. Incorrect configurations
gave true and false values appearing with frequencies close to 50%;
possibly correct configurations produced measurable deviations from
this. Promising configurations were then taken forward in further cal-
culations to identify the starting positions of the other wheels. These
computations enabled the Allies to decrypt the German High Com-
mand’s messages within hours; the resulting intelligence made an
incalculable contribution to the war effort, and saved many lives on
both sides by shortening the war.

In the 18th century, astronomers formulated the Titius–Bode Law,
which predicts the spacing between planets in the solar system. (The
Law is now known to be a coincidence.) When Uranus was discovered
by William Herschel in his garden in Bath in 1781, it was found to fit
the Titius–Bode Law. The only undiscovered entry in the sequence
predicted by the Law would correspond to an unknown planet be-
tween Mars and Jupiter. This caused many astronomers to search
intensely for the missing planet.

Carl Friedrich Gauss, 1777–1855.

In January 1801, Giuseppe Piazzi in Palermo discovered the planet
Ceres between Mars and Jupiter, as predicted.9 Unfortunately, he

9 In the modern classification, Ceres is
now considered a dwarf planet, because
its gravity is not strong enough to clear
its orbit.

could only observe Ceres for 41 days before it vanished behind the
sun, sweeping out an orbital angle of just 9˝. The race was then on to
predict where and when Ceres could next be observed. Carl Friedrich
Gauss applied his method of least squares to estimate the orbital
parameters of Ceres from Piazzi’s data; the calculations were very
involved, and required over 100 hours of computation. Ceres was
rediscovered in December 1801, very close to where Gauss had pre-
dicted. This made the 24-year-old Gauss famous in the mathematical
and scientific communities of Europe, and won him the position of the
director of the Göttingen Observatory.10 10 I have drawn this story from https:

//sites.math.rutgers.edu/
~cherlin/History/Papers1999/
weiss.html.

One could write an entire book exploring important successes of
computational mathematics. Sadly, such a book does not yet exist. We
briefly mention: Richardson’s calculation of the stresses in a masonry
dam, pioneering methods which underpin every modern building11; 11 D. R. Emerson, A. J. Sunderland,

M. Ashworth, and K. J. Badcock. High
performance computing and com-
putational aerodynamics in the UK.
Aeronautical Journal, 111(1117):125–131,
2007

the same Richardson’s first attempt to predict the weather and climate
by solving equations, which he did while serving in a Quaker ambu-
lance unit on the Western Front in World War I12; Kantorovich’s in-

12 https://arxiv.org/abs/2210.
01674

https://sites.math.rutgers.edu/~cherlin/History/Papers1999/weiss.html
https://sites.math.rutgers.edu/~cherlin/History/Papers1999/weiss.html
https://sites.math.rutgers.edu/~cherlin/History/Papers1999/weiss.html
https://sites.math.rutgers.edu/~cherlin/History/Papers1999/weiss.html
https://arxiv.org/abs/2210.01674
https://arxiv.org/abs/2210.01674

introduction 13

vention of linear programming, improving agricultural and industrial
production in every sector of human endeavour13; Fermi & Ulam’s 13 For a fascinating fictional account of

Kantorovich’s invention, and its impact
on the 20th century competition between
capitalism and communism, see
F. Spufford. Red Plenty. Faber & Faber,

2010

invention of Monte Carlo to simulate neutron diffusion in fissionable
material, for the development of fusion bombs14; the Kalman filter,

14 https://library.lanl.gov/la-
pubs/00326866.pdf

which enabled the navigation of the Apollo spacecraft to the moon15;

15 https://www.lancaster.ac.
uk/stor-i-student-sites/jack-
trainer/how-nasa-used-the-
kalman-filter-in-the-apollo-
program/

the invention of the Fast Fourier Transform by Cooley & Tukey to
detect underground nuclear tests, and now used ubiquitously in
audio, video, radar, and beyond16; Diffie–Hellman key exchange17,

16 https://youtu.be/nmgFG7PUHfo
17 https://en.wikipedia.org/
wiki/Diffie-Hellman_key_
exchange

which revolutionised cryptography; Hounsfield’s invention of the
CT scanner, which was funded by profits generated by the Beatles18;

18 https://catalinaimaging.com/history-
ct-scan/

Fedorenko’s invention of multigrid, which revolutionised physical
modelling with partial differential equations, and has led to dramatic
improvements in e.g. aircraft performance19; the insight of Page & Brin

19 A. Jameson. Time dependent calcula-
tions using multigrid, with applications
to unsteady flows past airfoils and
wings. In 10th Computational Fluid Dy-
namics Conference. American Institute of
Aeronautics and Astronautics, 1991

that searching the web can be cast as finding the dominant eigenvector
of a matrix, which launched perhaps the most powerful company in
the world20; the detection by LIGO of the gravitational waves induced

20 https://en.wikipedia.org/
wiki/History_of_Google

by the merger of two black holes, which relied centrally on numerical
simulation; and Hassabis et al.’s development of deep learning tech-
niques for protein folding, crucial for understanding the function of
proteins from its amino acid sequence21.

21 A. W. Senior et al. Improved pro-
tein structure prediction using po-
tentials from deep learning. Nature,
577(7792):706–710, 2020

2.2 Why should we study computational mathematics?

Computational mathematics has revolutionised our world, and will
continue to do so for centuries to come. It has minted billionaires,
transformed old industries and created new ones, extended our lifes-
pans; should you be a part of this?

Philosophically, for those who cannot program, computers will only
do what other people have decided they should do; if you can program,
your computer does what you decide.

As a practical matter, a core part of studying computational math-
ematics is learning to program efficiently. A very large fraction of Ox-
ford mathematics undergraduates will pursue careers where knowl-
edge of computer programming is useful, if not essential. This set of
careers includes mathematical and scientific research, quantitative
finance, teaching, data science, and management consulting.

2.3 How should we study computational mathematics?

One must learn computational mathematics by doing it—by iterating
between ideas, algorithms, programming, experiments, and theorems.
You can read an arbitrary number of books about playing the violin,
but unless you practice, you will never be able to play yourself.

In this course, we will focus on the practical side of computational

https://library.lanl.gov/la-pubs/00326866.pdf
https://library.lanl.gov/la-pubs/00326866.pdf
https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program/
https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program/
https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program/
https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program/
https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program/
https://youtu.be/nmgFG7PUHfo
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/History_of_Google
https://en.wikipedia.org/wiki/History_of_Google

14 computational mathematics

mathematics. We will learn to program in the Python programming
language. Python is a very popular choice for a first programming
language to study, for several good reasons.

First, Python is one of the most popular programming languages
in the world. If your future career involves programming, there is
a very good chance it will involve programming in Python. This is
especially so in the kinds of academic sectors and industries where
Oxford graduates go. In particular, Python is the leading language
in scientific data analysis and machine learning. Python’s popularity
also means there are large and well-established libraries for tasks like
numerical computing or machine learning.

Guido van Rossum, 1956–, the
inventor of Python.

Second, Python’s syntax is particularly simple and elegant. Pro-
gramming involves spending as much time reading code as writing it;
reading and understanding a Python program is (usually) much more
straightforward than the corresponding program in a lower-level lan-
guage.

Third, Python is quick and easy to learn. Other programming lan-
guages allow users to do dangerous things like access out-of-bounds
or deallocated memory; in pure Python these are not possible.

Fourth, Python is free/open-source software. You can study its
implementation, scrutinise it for correctness, adapt it to run on any
hardware, run as many instances as you please, all without paying
anyone a penny.

The students coming to this course have a wide variety of backgrounds—
some will be expert programmers, some will have studied Python
programming in school, and some will have never programmed be-
fore. This course is intended to be accessible to everyone familiar with
operating a computer.

Of course, Python is not perfect, and other programming lan-
guages exist for good reasons. In particular, the speed of execution
of a Python program is not as fast as some other compiled languages
like C, C++, or Fortran, or those that build-in just-in-time compilers
like Julia and MATLAB. For many applications, the reduced speed of
execution in Python is more than offset by the much faster speed of
program development—and programmer time is much more expen-
sive than computer time. A common model to overcome this is to first
write the entire program in Python, then identify the core bottlenecks
where most of the computation time is spent, and selectively write
only these parts of the program (perhaps only a few lines) in a com-
piled language. The use of such facilities is beyond the scope of the
course, but interested readers might investigate Numba22. 22 S. Kwan Lam, A. Pitrou, and S. Seib-

ert. Numba: a LLVM-based Python
JIT compiler. In Proceedings of the Sec-
ond Workshop on the LLVM Compiler
Infrastructure in HPC. Association for
Computing Machinery, 2015

Of course, the practical side is just one side of the subject. You
will study a more theoretical view of algorithms, the core idea in
computation, in Prelims Constructive Mathematics in Trinity term.

3 Getting started

This chapter describes how to get started with Python programming.
You should follow the steps in this chapter before attending the demon-
stration sessions for this course.

3.1 Installing things

There are two pieces of software you need to install on your computer.
Both are available for no cost for all common operating systems.

3.1.1 Installing Python

The first is Python itself. Go to https://www.python.org/downloads/
and download the latest stable version for your operating system1. 1 Some operating systems, especially

Linux-based operating systems, will
come with Python already installed.
If you plan to use the system-installed
Python, please check which version is
installed with python -V; you will
need a Python version greater than or
equal to 3.6.

Run the downloaded executable to install Python on your machine.
We now walk through the process of installing Python 3.11.15 on Win-
dows 11 with screenshots.

Figure 3.1: The Python down-
load page, https://www.
python.org/downloads/.
The box you need to click on is
highlighted in red.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

16 computational mathematics

Figure 3.2: Execute the down-
loaded installer. Give it any
permissions required by your
operating system. Check the
‘Add python.exe to PATH’ but-
ton (or similar). Click ‘Install
Now’.

Figure 3.3: The installer should
complete successfully.

getting started 17

We can now check if the Python installation has succeeded. We will
open a terminal—this is a program on your computer where you can
type commands for your computer to execute. On Windows, open
the run dialog (with Windows key + R) and type ‘cmd’. Select the
‘Command Prompt’ app, as shown in fig. 3.4. On a Mac, the easiest

Figure 3.4: Opening a terminal
on Windows: open the Run
dialog (Windows key + R) and
type ‘cmd’. Select the ‘Com-
mand Prompt’ app.

way to open the Terminal is to open Spotlight Search (with Command
+ Space) and type ‘terminal’, as shown in fig. 3.5.

Figure 3.5: Opening a terminal
on OSX: open Spotlight Search
(Command + Space) and type
‘terminal’. Select the ‘Terminal’
app.

We can now start the Python interpreter. At the terminal, type

(terminal) python

and hit enter2. The Python interpreter should start, as in fig. 3.6. (If it 2 All commands to be typed at the termi-
nal will be denoted with (terminal); you
do not type (terminal).

18 computational mathematics

doesn’t, try running

(terminal) python3

or

(terminal) py

since, annoyingly, some operating systems call the Python interpreter
something different.) Once you have the Python interpreter open,

Figure 3.6: At the terminal,
type python and hit enter.
The Python interpreter should
start. (If it doesn’t, your oper-
ating system might have called
it python3 or py.) Typing
print("Hello, world!")
should cause Python to output
this string to the terminal, as
shown.

type

(python) print("Hello, world!")

and hit enter3. Type this exactly as written; one must be absolutely 3 All commands to be typed into the
Python interpreter will be denoted with
(python); you do not type (python).

precise when programming, as programming languages do not un-
derstand ambiguity. It should cause the Python interpreter to print
‘‘Hello, world!’’ to the terminal. With this completed, type

(python) exit()

to close the Python interpreter.
You have now installed Python! Typing Python code into the

Python interpreter is an excellent way to interactively explore fea-
tures of the language and access documentation. It is not the main
way we will run our code, however; we will describe that below.

While we are at the terminal, let us install one package, using the
Python package manager pip. At the terminal, type

(terminal) pip install ipython

This will install an improved Python interpreter, IPython, that has

getting started 19

code highlighting and tab completion, among other features. IPython
has many dependencies on other Python packages; pip figures out
these dependencies and installs them all for you. (Almost all Python
packages are conveniently installable with pip, even large complex
ones like the tensorflow or pytorchmachine learning packages.)
The output of the installation is shown in fig. 3.7.

Figure 3.7: At the terminal, type
‘pip install ipython’ and hit
enter.

We can now quickly test the IPython interpreter. At the terminal,
type

(terminal) ipython

or possibly

(terminal) ipython3

The IPython interpreter should start. You can then type the same
Python code

(python) print("Hello, world!")

and it should be printed to the terminal as before, as shown in fig. 3.8.
The most visible difference between the standard Python interpreter
and the IPython interpreter is that the latter uses colours to help us
quickly read the code. You can then type

(python) exit()

to close the IPython interpreter, as before.

20 computational mathematics

Figure 3.8: At the termi-
nal, start IPython and type
print("Hello, world!").

3.1.2 Installing Visual Studio Code

The main way we will execute our code is by saving it to a file and
executing the Python interpreter on it at the terminal. For example, if
we save our Python code to a file hello.py4, we can execute it with 4 Files containing Python code should

always end with the ‘.py’ suffix, to let
your operating system know what it
contains.

(terminal) python hello.py

Now, you are free to write Python code in whatever program you
like, so long as it can save plaintext files to disk. Basic choices might be
Notepad on Windows or TextEdit on Macs. However, most program-
mers use specialist programs to edit their code, as they can offer many
convenient features for programming—code highlighting, in-built ac-
cess to documentation, integration with source code control, graphical
interfaces to debugger programs, and more besides. Some popular
choices for these code editors include Atom, Vim5, Emacs, Spyder, and 5 Prof. Farrell uses Vim.

Sublime Text. If you wish to use one of these (or any other code edi-
tor) for this course, you are free to do so. However, if you are a novice
programmer, it is recommended that you use Visual Studio Code.

Visual Studio Code is the most popular code editor in the world (by
some reasonable measures). We will show screenshots of the installa-
tion process on Windows 11; installing on OSX should be analogous.
To start, go to https://code.visualstudio.com/download
and download the version for your operating system (fig. 3.9). Start
the downloaded installer (fig. 3.10). When it has finished, launch Vi-
sual Studio Code (fig. 3.11). On the first execution of the program,
Visual Studio Code opens a screen letting you set some options (like
colours) and shows you some features (fig. 3.12). Feel free to browse
around; when finished, click ’Mark Done’. The standard welcome
page should now be visible (fig. 3.13). Click ’Open Folder’. Choose a

https://code.visualstudio.com/download

getting started 21

folder to store your Computational Mathematics coursework in; I created
a new directory called ‘Computational Mathematics’ on my Desktop
(fig. 3.14–fig. 3.15). Visual Studio Code will ask if you trust the au-
thors of code in this folder; click ‘Yes, I trust the authors’ (fig. 3.16).
You can now create a file in your directory with the icon indicated on
fig. 3.17. Call the resulting file ‘hello.py’. The file will now be opened
in a new tab (fig. 3.18). Visual Studio Code notices you are coding
in Python and asks if you wish to install the relevant extensions for
the Python language. Click ‘Install’ in the bottom right. Visual Studio
Code should now install the Python extension (fig. 3.19). Close the
tab when it has installed.

Figure 3.9: Open https:
//code.visualstudio.
com/download. Download the
version appropriate for your
operating system.

Figure 3.10: Start the down-
loaded installer. Agree to the
license terms and click Next.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

22 computational mathematics

Figure 3.11: When the installer
has finished, launch Visual
Studio Code.

Figure 3.12: Visual Studio Code
shows a tour on first execution.
Browse around; when finished,
click ‘Mark Done’.

Figure 3.13: The standard wel-
come page. Click ’Open Folder’.

getting started 23

Figure 3.14: Choose a folder to
store your code; I created a new
folder on my Desktop called
‘Computational Mathematics’.

Figure 3.15: Select your chosen
folder.

Figure 3.16: Choose ‘Yes, I trust
the authors’ when asked.

24 computational mathematics

Figure 3.17: Click the indicated
button to create a new file. Call
the file ‘hello.py’.

Figure 3.18: Your new file is
opened in a new tab. Visual Stu-
dio Code notices you are coding
in Python and asks if you wish
to install the relevant extensions
for the Python language. Click
‘Install’ in the bottom right.

Figure 3.19: Visual Studio Code
now installs the Python exten-
sion. Close the tab when it has
installed.

getting started 25

We can now proceed to writing our first script. In ‘hello.py’, type
the code6

6 Programs intended to be saved to a
script and executed are typeset as in
code block 3.1.

Code block 3.1. Our first code: printing a string.

print("Hello, world!")

When you type print, Visual Studio Code should bring up the
Python documentation for the function (fig. 3.20). Once you have
typed your code, save the file (fig. 3.21). Then open a terminal by
going to ‘Terminal’ > ‘New Terminal’ (fig. 3.22). At the terminal, type

(terminal) python hello.py

which should print to the screen as before (fig. 3.23).

Figure 3.20: Visual Studio Code
offers inline documentation
relevant to the code you are
writing.

Congratulations! You are now ready to begin.
If you have any problems installing Python or Visual Studio Code,

first google it; these are popular programs and there will be a great
deal of help online. If that is not satisfactory, your demonstrator will
assist you in the first demonstration session.

26 computational mathematics

Figure 3.21: Once you have
typed your code, save the file.

Figure 3.22: Open a terminal to
execute your program.

Figure 3.23: The program
should execute, printing the
message to screen.

getting started 27

3.2 Other resources

Python is a very popular programming language, and there are many
resources online and in print to help you learn it. We mention some
here.

The primary textbook recommended for this course is Hill (2020)7. 7 C. Hill. Learning scientific programming
with Python. Cambridge University
Press, second edition, 2020

This book goes at just the right pace, is comprehensive, and is aimed
at a mathematically and scientifically literate audience.

We now mention some resources available at no cost. Microsoft
have prepared a series of short video lectures introducing Python.
These videos also use Visual Studio Code. They are available on
YouTube at

https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6

Jake VanderPlas of Google has written two open-source books
about Python8. They are available at no cost at 8 J. VanderPlas. A Whirlwind Tour of

Python. O’Reilly Media, Inc., 2016;
and J. VanderPlas. Python Data Science
Handbook. O’Reilly Media, Inc., 2016https://jakevdp.github.io/WhirlwindTourOfPython/ and

https://jakevdp.github.io/PythonDataScienceHandbook/

The first is a brief introduction to the Python programming language
for those with some programming background, while the latter fo-
cuses on the use of Python for data science.

For an introduction to Python suitable for scientists and mathe-
maticians with no programming experience, see the excellent book by
Hans Petter Langtangen9. It is available at no cost at

9 H. P. Langtangen. A Primer on Scientific
Programming with Python. Springer
Berlin Heidelberg, 2016

https://hplgit.github.io/primer.html/doc/pub/half/book.pdf

This book uses Python version 2 (rather than version 3 of Python that
we will study), so the syntax is very slightly different10, but there is 10 The main difference that matters to us

is that in Python 2 they used to say

(python) print "Hello!"

instead of

(python) print("Hello!")

The other difference that matters to
us is that integer division was denoted
differently.

great value in the gentle pace and mathematical examples.
A good resource for a second course on programming is that by

David Ham11, which is available at no cost at

11 D. A. Ham. Object-oriented Program-
ming in Python for Mathematicians. 2023.
Independently published

https://object-oriented-python.github.io/

Chapter 10 of this handbook considers symbolic computing us-
ing the SymPy library. A short course of video lectures on SymPy is
available at no cost at

https://www.youtube.com/playlist?list=PLSE7WKf_qqo1T5VV1nqXTj2iNiSpFk72T

https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
https://jakevdp.github.io/WhirlwindTourOfPython/
https://jakevdp.github.io/PythonDataScienceHandbook/
https://hplgit.github.io/primer.html/doc/pub/half/book.pdf
https://object-oriented-python.github.io/
https://www.youtube.com/playlist?list=PLSE7WKf_qqo1T5VV1nqXTj2iNiSpFk72T

28 computational mathematics

3.3 Thinking like a programmer

Before diving in to the nuts and bolts of how one programs in Python,
a few words about how programmers think are in order. The major
obstacle to learning how to program is not mastering the syntax or
standard library of your chosen programming language; it is learning
a new mode of thinking, of how to think like a programmer. This manner
of thinking shares quite a few properties with mathematical thinking.
We outline some attributes of this manner below.

Programming requires an extreme degree of precision. The differ-
ence between "Hello, world!" and "Hello, world!' would
likely not be noticed by most readers in a large block of text. But to
a computer these are completely different; the first is a syntactically-
valued string, whereas the second is not. Printing the first will pro-
duce the desired output, while attempting to print the second will
cause the Python interpreter to complain that a string has been opened
with " but not closed. Another example might be the difference be-
tween

(python) 3*5 + 8 - 3 + 2**3

where **means exponentiation (i.e. 2**3 “ 23), and

(python) 3*5 + 8 - 3 + 2^3

where ^ is a totally different operator (logical exclusive or12). The 12 This operation takes two Boolean
values, true or false, and returns true
if exactly one of them is true. Applied
to an integer, it does this bitwise on its
representation in base two. We will not
use it on our course.

first evaluates to 28, the second to 21 (and is likely a subtle mistake
that will be very hard to debug). Similarly, a program that loops

(python) while sum(values) < 100:

may be incorrect in edge cases if what was desired was actually

(python) while sum(values) <= 100:

In mathematics, one missing or misplaced subscript, or one logical
quantifier in the wrong place, can completely change the meaning
(and validity) of a statement. Programming demands the same kind
of pedantry and meticulousness.

Programming also requires specifying an answer to a problem to
the last detail. In writing proofs of theorems, we can sometimes elide
mechanical details, usually with some exclamation of how simple the
omitted details are: ‘‘By induction, it is straightforward to show that
…’’, or ‘‘It is simple to generalise Lemma 4.3 to the case that …’’. (The
omitted steps are often far from simple.) By contrast, the computer
will not let us elide any details of any kind. We must express every de-
tail of the solution of the problem we are facing in terms of operations

getting started 29

that the machine already knows (either coded by us or by others). No
vagueness is permitted. Thinking like a programmer requires exhaus-
tiveness and persistence.

Programming requires patience. It can be frustrating when the
computer does not do what you want it to. Debugging programs
requires thinking like a detective—forming hypotheses, gathering
evidence, ruling out possibilities, until finally the culprit is identified.

Programming requires being literal and specific. Computers lack
any common sense whatsoever13. Keep in mind that computers will

13 This is also true for artificial in-
telligence, at least for now. Con-
sider the DARPA robot that was
trained to identify humans ap-
proaching it. It was fooled by hu-
mans creeping up to it under a card-
board box, giggling as they went. See
https://www.extremetech.com/
defense/342413-us-marines-
defeat-darpa-robot-by-hiding-
under-a-cardboard-box.

do exactly what you program them to, not what you wanted them
to do—and expressing the latter can be surprisingly difficult14. A

14 Indeed, machine learning first revolu-
tionised computational tasks precisely
where it is difficult to specify mathe-
matically what you really want—image
classification, language translation,
speech recognition, and the like.

famous example of this was the failure of the maiden launch of the Ar-
iane 5 rocket in 1996. The rocket was readied on the launchpad at the
Centre Spatial Guyanais in French Guiana. It launched on a different
trajectory with much greater acceleration than its predecessor, the Ar-
iane 4. The flight computers and software responsible for monitoring
speed and orientation aboard the Ariane 5 were reused from the Ari-
ane 4, but the greater speed of the new rocket caused the computers to
experience a so-called ‘‘hardware exception’’ when converting a 64-bit
floating point number to a 16-bit integer. This caused the numbers
stored in the computer to immediately flip sign from 32,768 to -32,768,
confusing the control system and initiating a sudden turn downward
that resulted in a catastrophic breakup and aerial explosion. Both the
rocket and its payload were destroyed15. The onboard flight computer 15 See https://en.wikipedia.

org/wiki/Ariane_flight_V88 and
https://www-users.cse.umn.
edu/~arnold/disasters/ariane.
html

did exactly what the progammers designed it to do, but that was not
what was desired at all!

As New College’s Richard Dawkins wrote16,
16 R. Dawkins. The Blind Watchmaker.
WW Norton & Company, 1996If you don‘t know anything about computers, just remember that they

are machines that do exactly what you tell them but often surprise you
in the result.

https://www.extremetech.com/defense/342413-us-marines-defeat-darpa-robot-by-hiding-under-a-cardboard-box
https://www.extremetech.com/defense/342413-us-marines-defeat-darpa-robot-by-hiding-under-a-cardboard-box
https://www.extremetech.com/defense/342413-us-marines-defeat-darpa-robot-by-hiding-under-a-cardboard-box
https://www.extremetech.com/defense/342413-us-marines-defeat-darpa-robot-by-hiding-under-a-cardboard-box
https://en.wikipedia.org/wiki/Ariane_flight_V88
https://en.wikipedia.org/wiki/Ariane_flight_V88
https://www-users.cse.umn.edu/~arnold/disasters/ariane.html
https://www-users.cse.umn.edu/~arnold/disasters/ariane.html
https://www-users.cse.umn.edu/~arnold/disasters/ariane.html

4 Arithmetic, conditionals, and iteration

4.1 Arithmetic

Let us begin our study of Python with arithmetic. In mathematics, we
study different kinds of numbers: Z, R, C, and we consider these in
turn. Integers are represented in Python in the obvious way. Open up
an IPython interpreter in the terminal and try the following1: 1 The output is coloured in grey.

(python) 5 + 3
8

(python) 9 / 2
4.5

Here we see that the integers in Python are not closed under division,
as in mathematics2; the division of two integers has returned a floating 2 Confusingly, this is not true in many

programming languages, including C
and the old version 2 of Python.

point number (a representation of real numbers used by almost all
computers). In many programming languages, the data structure
used for integers can only represent a maximum value3, but Python’s 3 For example, an int in the C pro-

gramming language can usually hold
numbers no bigger than 2147483647.

integer data type can represent integers of any size so long as your
computer has enough memory:

(python) import math

(python) math.factorial(10)
3628800

(python) math.factorial(100)
93326215443944152681699238856266700490715
96826438162146859296389521759999322991560
89414639761565182862536979208272237582511
85210916864000000000000000000000000

Here we have imported our first module, the mathmodule. The math
module is built-in (it always comes with Python) and implements
many of the standard functions you would expect a computer to
know, like exponentiation, logarithms, trigonometric functions, etc.4. 4 For a list, see https://docs.

python.org/3/library/math.
html. To find this in the IPython shell,
type math. and press TAB on your
keyboard (without pressing enter).
Another way is to type help(math).

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html

32 computational mathematics

math.factorial accesses the factorial function that is defined
in the mathmodule, and (unsurprisingly) calculates n! for given n.
The function is called by passing its arguments in brackets, as in math-
ematical notation.

How much memory does it take to store these integers? Let us ask:

(python) math.factorial(10).bit_length()
22

(python) math.factorial(100).bit_length()
525

(python) math.factorial(1000).bit_length()
8530

(python) type(math.factorial(1000))
int

Everything in Python is an object; each object has a type (in this case,
the type is int). Objects have functions associated with them, called
methods. Here we are calling the bit_lengthmethod on instances of
the int type to determine how many bits (binary digits) are required
to store them5. You can determine the type of any object with the 5 The computer I am typing this on has

1610838310912 bits of memory, so we
could store much larger integers if we
wish.

function type.
The other common arithmetical operations on integers work as you

would expect:

(python) 2 + 5
7

(python) 2 * 5
10

(python) 2**5
32

where **means exponentiation. The symbols for two other useful
operations might be less familiar. The symbol // calculates the integer
part of division, and % takes the remainder on division6: 6 Mathematically, if

a “ qr ` b,

then in code
q = a // b and r = a % b.

(python) 3 // 3
1

(python) 4 // 3
1

(python) 5 // 3
1

(python) 6 // 3
2

(python) 7 // 3
2

(python) 4 % 3

arithmetic, conditionals, and iteration 33

1
(python) 5 % 3

2
(python) 6 % 3

0

With these, and Python’s facility with large integers, we can verify
Lander & Parkin’s counterexample to Euler’s Conjecture:

(python) 27**5 + 84**5 + 110**5 + 133**5 - 144**5
0

Let us take a digression. What happens if we attempt to divide by
zero?

(python) 3 / 0

ZeroDivisionError Traceback (most recent call last)
<ipython-input-3-e1965806ec03> in <module>
----> 1 3 / 0
ZeroDivisionError: division by zero

Python raises an exception. Exceptions are errors generated at run-
time. A mechanism exists for catching them and handling the error
state gracefully without stopping the program’s execution, which
we won’t go in to here. The particular kind of exception seen here is
a ZeroDivisionError, which unsurprisingly is raised when one
attempts to divide by zero7. Notice how the error message attempts 7 Python’s error handling makes it im-

possible to ignore erroneous program
states, and is one of the features that
makes it very suitable for new pro-
grammers. By contrast, in lower-level
languages like C, errors like this can
propagate silently until the entire pro-
gram ends in disaster, and e.g. your
rocket explodes.

to point (with ---->) to the line of code where the exception was
raised (which is line number 1, since IPython feeds lines of code to the
interpreter one at a time).

Another kind of exception you might see is a SyntaxError:

(python) 3 /
File "<ipython-input-1-62321043ab1b>", line 1
3 /
̂

SyntaxError: invalid syntax

which reports that the code we entered does not conform to the gram-
mar of the language: / is a binary operation that must take in two
inputs, but we have only supplied one.

Exercise 4.1. Compute8 (as an int, without casting to a string) the 8 We recommend that you write your
program for this and all other exercises
in a script, rather than at the interactive
Python interpreter. Call it ex41.py.

last ten digits of 5555.

34 computational mathematics

Let us now consider how a computer represents real numbers.
Unlike integers, where an exact representation is possible (so long
as your computer has enough RAM inside), in principle no exact
representation of all reals is possible on a discrete computer, one that
uses ones and zeros to represent information9. No finite amount of 9 This relates to Cantor’s proof of the

uncountability of the real numbers.memory can represent all digits of π, for example. Floating point
numbers represent a given real number to a certain precision, typically
to 15 or 16 decimal places10. For example, the number 4{3 is stored as

10 With the most popular standard for
floating-point arithmetic, in the interval
r1, 2s there are 252 « 1016 floating
point numbers. By contrast, along a
line of 1 metre length in a solid block
of concrete there are approximately 109

particles; computer arithmetic is roughly
a million times finer than the continuum
approximation in physics. See
L. N. Trefethen. Floating point

numbers and physics. Newsletter of the
London Mathematical Society, November,
2021

1.333333333333333259318465024990 ¨ ¨ ¨ ,

which is close but not quite the same. Floating-point arithmetic has
been wildly successful at representing real numbers on computers,
and is the bedrock underpinning essentially every scientific and en-
gineering calculation since the 1980s. Encoding and decoding your
voice, music, photographs and videos on your phone, performing
large-scale climate simulations, finding a location from GPS satellites,
training a neural network, and playing computer games all involve
billions of floating point operations.

William Kahan, 1933–, the pri-
mary architect of floating-point
arithmetic. Kahan was awarded
the Turing Prize for this work.

Let us see how this works:

(python) 5/3
1.6666666666666667

(python) math.pi
3.141592653589793

(python) math.sqrt(2)
1.4142135623730951

(python) math.sin(0)
0.0

(python) math.sin(math.pi)
1.2246467991473532e-16

It’s a little tedious to type math.sin(math.pi), so we can instead
do

(python) from math import *

(python) sin(pi)
1.2246467991473532e-16

which imports everything from the math namespace to our working
namespace.

Python interprets anything with a . as a floating-point number:

(python) type(4)
int

(python) type(4.0)

arithmetic, conditionals, and iteration 35

float

You can also express scientific notation using the notation e or E: 5e3
or 5E3 both mean 5 ˆ 103.

(python) 1e1
10.0

(python) 1E2
100.0

(python) 314.1592653589793e-2
3.141592653589793

You can cast (change the type of a number) by calling the relevant
type on it:

(python) float(4)
4.0

(python) int(4.0)
4

(python) int(4.9)
4

We see that int always rounds down. To round a number, use the
function round11. 11 This implements so-called banker’s

rounding, which breaks ties by round-
ing to the nearest even integer.

To close this section we study the complex numbers. The imaginary
unit is denoted 1j in Python12. Complex numbers can be made by 12 Python adopted this convention

from engineering, as opposed to the
mathematical convention where it is
denoted i.

adding real and imaginary parts, like so:

(python) 4 + 3j
(4+3j)

(python) type(4 + 3j)
complex

(python) (4 + 3j).real
4.0

(python) (4 + 3j).imag
3.0

(python) (4 + 3j).conjugate()
(4-3j)

(python) abs(4 + 3j)
5.0

The object returned by the expression 4 + 3j is of type complex.
Complex numbers in this format always store their real and imaginary
parts as floating point numbers (even when we pass integers). You
can access the real and imaginary parts with the object attributes real
and imag. We can calculate the conjugate of a complex number by
calling the conjugatemethod. conjugate is a function that takes

36 computational mathematics

no arguments, which is we we call it with open and closed brackets13. 13 If you write (4+3j).conjugate,
you are referring to the method itself,
which is an object in its own right.

Lastly, we can calculate the magnitude of a complex number with the
built-in abs function, which also works on ints and floats.

Exercise 4.2. Calculate p5 ´ 8iq2, i´1, i2, i1{2, 1`i
5`2i , and

´

4
3 ` 2i

5

¯4
.

4.2 Variables

When an object is created in a Python program (or in the Python in-
terpreter), Python allocates memory for it. In other languages you
have to manage the computer memory explicitly for yourself, but
Python takes care of all of this for you, making it much more user-
friendly14. If you wanted to find the address in memory where some- 14 For example, Microsoft announced

in 2019 that about 70% of the security
vulnerabilities it fixes in its products
each year are to do with managing
memory; see https://www.zdnet.
com/article/microsoft-70-
percent-of-all-security-bugs-
are-memory-safety-issues/. This
class of bugs simply cannot happen in
pure Python.

thing is stored, you can use the id function:

(python) id(9.81)
139945303740048

where the output will almost surely differ if you run it again. When
we type this, the memory required to store 9.81 is allocated, the
value is assigned, and the value is passed to the id function. Once the
id function has returned, Python notices that nothing refers to this
memory anymore, and so the memory is automatically deallocated for
you.

Variables allow you to store objects and to refer to them. These are
necessary for any program more complex than simple arithmetical
calculation. A variable name can be assigned to an object using the =
symbol:

(python) g = 9.81

(python) g
9.81

Here you should read = as ‘gets’, rather than ‘equals’; it assigns the
right-hand value to the left-hand variable. The memory required to
store this value will persist for as long as the variable g exists. You
can then use this in subsequent calculations, combined with other
variables:

(python) L = 2

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

arithmetic, conditionals, and iteration 37

(python) period = 2 * pi * sqrt(L/g)

(python) period
2.837006706885775

Notice that we do not have to declare variables in advance, or declare
their types; Python is a so-called dynamically-typed language, where
the programming language infers the types of objects for us.

At this point we should describe some rules around variables.
You cannot use as a variable name any reserved keywords, words
that Python uses to define its grammar15. Variable names are case- 15 So far we have met import and

from. Others include for, while,
and if; we will meet them as we con-
tinue our study. For a full list, see
https://docs.python.org/3/
reference/lexical_analysis.
html#keywords. In mathematical
programming, the only clash that some-
times annoys us is lambda, which
Python uses to define anonymous
functions.

sensitive: g and G are different variables. Variable names can include
letters, digits, and underscores, but cannot start with a digit.

There are also some recommendations to be made around vari-
ables. Variable names should be meaningful (vol or volume are bet-
ter than v) but not overly verbose (volume_of_my_cube is cumber-
some). Use lower-case words separated by underscores for variable
names, so prefer avg_score over AvgScore16.

16 This is formalised in PEP8, the official
style guide for Python. Many large
Python projects use automated tools to
enforce compliance with PEP8.

One way to make sure that you remember what each variable is for
is to add a comment to your source code. Comments begin with the #
key; anything to the right of the # is ignored by Python. For example,
you might write

(python) g = 9.81 # acceleration due to gravity

Frequent and judicious use of comments is core to good program-
ming: a program has to convey information both to the computer
(what instructions to execute) but also to other programmers, since
code will need to be maintained and updated and improved as time
goes on17. 17 The ‘other programmer’ may well

be you in six months’ time, when you
have forgotten what on earth you were
thinking of when you wrote the code in
front of you.Exercise 4.3. [Taken from Hill (2020)18, exercise P2.2.4]
18 C. Hill. Learning scientific programming
with Python. Cambridge University
Press, second edition, 2020

The World Geodetic System is a set of international standards for
describing the shape of the Earth. In the latest WGS-84 revision, the
Earth’s geoid is approximated by a reference ellipsoid that takes the
form of an oblate spheroid with semi-major and semi-minor axes

a “ 6378137.0 m and c “ 6356752.314245 m.

Use the formula for the surface area of an oblate spheroid,

S “ 2πa2
ˆ

1 `
1 ´ e2

e
atanhpeq

˙

, where e2 “ 1 ´
c2

a2

to calculate the surface area of this reference ellipsoid. Compare it to

https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://peps.python.org/pep-0008/

38 computational mathematics

the surface area of a spherical model of the Earth, with radius 6371
km.

4.3 Accessing documentation

It is very easy to access documentation about a given Python object. In
the IPython interpreter, try

(python) help(math)

(you will need to have imported the math module first) or

(python) help(float)

You will not understand everything the documentation says at first,
but you will understand more as you learn more Python.

You can also access documentation in Visual Studio Code. For
example, in the code editor, if you have import math in your code
and then type math., it will list all functions in the mathmodule. If
you choose one (say math.sin) and then type ((i.e. open brackets to
call the function), Visual Studio Code shows you the documentation
for that function.

Google is also an excellent source of help; for example, if you get
an error message you don’t understand, or want to know how to do
something, googling for it will likely get you a long way19. 19 Some people say that googling well

is the most important skill in program-
ming. This is an exaggeration, but it is
important.

The problem sheets have been designed so that you have almost all
information required to solve the problems, but may have to google
to see how a key method is used, or to consult the documentation for
a package. This is like real life—you rarely have at the outset all the
information you need to solve a problem.

4.4 Comparisons and conditionals

In our programs we will want to do different things depending on
the values of variables. For example, when numerically solving an
equation, we will want to terminate once our approximation is good
enough.

Let us first consider comparison operators. We can use the == oper-
ator (two equal signs) to test for equality20: 20 Contrast this with the single =, which

assigns values.
(python) 7 == 8

False
(python) 8 == 8

True

arithmetic, conditionals, and iteration 39

This operator returns a Boolean value (either True or False), of type
bool. So do the other comparison operators:

(python) 7 < 8
True

(python) 7 <= 8
True

(python) 7 > 8
False

(python) 7 != 8
True

Here !=means not equal to.

George Boole, 1815–1864. Boole
wrote his seminal work, The
Laws of Thought, while professor
of mathematics in Cork, Ireland.
His book laid the foundation for
the information age.

We can also combine conditionals using and and or. Logical and
takes in two Boolean values and only returns True if and only if both
inputs are True. Logical or takes in two Boolean values and returns
True if and only if any inputs are True. Here are some examples:

(python) 7 < 8 and False
False

(python) 7 < 8 and 9 < 10
True

(python) 7 < 8 or 9 < 10
True

(python) 7 < 8 or False
True

We can also check two-sided inequalities with a natural syntax in
Python:

(python) 1 <= 5 <= 10
True

(python) 1 <= 20 <= 10
False

There is a logical not operator that returns the other Boolean value:

(python) not True
False

(python) not False
True

We can use these comparisons to do different things in our code
depending on the values of variables using the if …elif …else
construction, as in code block 4.1.

The if statement is followed by an expression that evaluates to
True or False, followed by a colon (:). The code that should be ex-

40 computational mathematics

Code block 4.1. Example of basic conditional.

g = -9.81

if g < 0:
 print("Acceleration due to gravity is downwards")
 # some more calculations for this case ...
elif g == 0:
 print("No acceleration due to gravity. Are you in space?")
else:
 print("Acceleration due to gravity is upwards.")

ecuted if the conditional is True follows on the next lines. These lines
must be indented (have spaces at the start); in Python, whitespace
is syntactically significant. If you do not type the spaces on the lines,
an IndentationError exception will be raised21. If you forget the 21 The PEP8 style guide recommends

that code blocks be indented with
exactly 4 spaces—not 2 spaces, not tabs.
However, you can break this if you wish,
so long as you are consistent.

colon, a SyntaxErrorwill be raised.
After the code block following if, in this example we have an

elif statement. This is short for ‘‘else if’’. If the if evaluated to True,
this code is skipped over; otherwise, the expression for the elif is
evaluated and if it is True its code block is executed22. You can follow 22 This code block must again be in-

dented with whitespace.an if statement with as many elif statements as you like, for as
many cases as you need to consider (including no elif statements).

Finally, in this example we have an else statement. The code in
this block gets executed if no other blocks were executed (i.e. the
conditions for the if and any elif statements evaluated to False).
As with the elif statements, the else statement is optional, but you
can only have at most one of them.

Here is an example from Hill (2020)23 (Example E2.21). In the 23 C. Hill. Learning scientific programming
with Python. Cambridge University
Press, second edition, 2020

Gregorian calendar a year is a leap year if it is divisible by 4 with the
exceptions that years divisible by 100 are not leap years unless they are
also divisible by 400. One might implement this logic as in code block
4.2.

In code block 4.2 you should read if year % 400 == 0 as if year
is divisible by 400, and so on. This example also demonstrates the use
of f-strings, a convenient Python feature for formatting strings. Notice
the f before the string in the print statement—this flags to Python
that it is to scan the string for expressions in curly braces { and }, and
to replace them with the evaluations of the expressions. In this case,
{year} is replaced with the value of the variable inside the string
before it is printed.

arithmetic, conditionals, and iteration 41

Code block 4.2. Gregorian leap year logic.

year = 1900

if year % 400 == 0:
 is_leap_year = True
elif year % 100 == 0:
 is_leap_year = False
elif year % 4 == 0:
 is_leap_year = True
else:
 is_leap_year = False

if is_leap_year:
 print(f"{year} is a leap year")
else:
 print(f"{year} is not a leap year")

Exercise 4.4. The Encyclopaedia Brittanica mentions a possible refine-
ment of the Gregorian calendar24: that a year not be considered a leap

24 Pope Gregory XIII established this
calendar in 1582, primarily because
the Spring equinox was off from its
intended target date of March 21 by 14
days, due to the mismatch between the
365.2422-day long solar year and the
365.25-day long year of the previous
(Julian) calendar. With the Gregorian
calendar, the year became 365.2425
days long. The Spring equinox was
important because the date of Easter
was a function of the Spring Equinox.
Our word ‘computation’ comes from the
Latin computus, which originally meant
the calculation of the date of Easter.

year if it is divisible by 4,00025. Change the code above to implement

25 The jury is still out on whether this is
a good idea, but we have just under two
millennia to decide.

this revised scheme.

4.5 Iteration

It is frequently necessary in programming to have the computer repeat
some operation for each item in some collection. In Python this is
expressed with a for loop. The basic syntax is

for item in iterable_object:

Here is an example.

Code block 4.3. Example of basic iteration.

colours = ["red", "green", "blue"]
for colour in colours:
 print(colour)

Here we have an iterable object26 colours, which is a list of strings. 26 An iterable object is one whose
elements can be taken one at a time.
Examples of built-in iterable objects
include lists, tuples, dictionaries, and
strings, which we will study in more
depth in the next chapter.

When the for loop is executed, the variable colour takes on each
entry in the list in turn, and the body of the loop is executed for that
value. As with conditionals, what code is in the body of the loop and

42 computational mathematics

what code is not is indicated by the indentation. Loops can be nested:

Code block 4.4. Example of nested iteration.

colours = ["red", "green", "blue"]
clothes = ["skirt", "jumper"]
for colour in colours:
 for article in clothes:
 print(f"I have a {colour} {article}")

In mathematics we often want to loop over integers. We can do this in
Python with the range command. The code

Code block 4.5. Example of using range.

for i in range(5):
 print(i)

prints the integers 0, 1, 2, 3, and 427. More generally, to express the se- 27 The argument to range is the first
integer not returned in the iteration.quence starting at a0 and taking steps of size d (the stride), i.e. integers

of the form

an “ a0 ` nd, n “ 0, 1, . . . until an ě end,

one can use the command range(a_0, end, d). For example, the
code

Code block 4.6. More using range.

for i in range(-10, 20, 5):
 print(i)

prints -10, -5, 0, 5, 10, 15.
The range command does not return a list—such a list would

allocate memory for all entries and store them all at once. Rather,
range returns a Python iterable, which is merely an object that knows
how to compute the next entry to be returned. This is much more
memory-efficient (imagine a list with a billion entries). This is why
Python returns something somewhat opaque if you try to print a
range:

(python) range(5)
range(0, 5)

In order to see at once what entries it contains, cast it to a list:

arithmetic, conditionals, and iteration 43

(python) list(range(5))
[0, 1, 2, 3, 4]

Let us now see an example. We will use a for loop to compute
some entries of the Fibonacci sequence28, defined by 28 This naming is inaccurate, since the

Fibonacci sequence was studied by
Indian mathematicians such as Pingala
some 1400 years before Fibonacci.

Fn`1 “ Fn ` Fn´1, F0 “ 1, F1 “ 1.

Code block 4.7. Calculating the first Fibonacci numbers.

a = 1
b = 1
print(a, b, end="") # end="" means: do not print a newline
n = 200 # the number of entries to print
for i in range(2, n+1): # we have already calculated 2, want to go up to n
 c = a + b # calculate next Fibonacci number
 print("", c, end="")

 # Now we update the variables for the next iteration
 a = b
 b = c

Exercise 4.5. [Project Euler29, problem 1] If we list all the natural 29 Project Euler is a series of math-
ematical problems that computer
programming skills to solve. Later ones
also require substantial mathematical
insight; playing the game is great fun.
See https://projecteuler.net.

numbers below 10 are multiples of 3 or 5, we get 3, 5, 6, and 9. The
sum of these multiples is 23.

Find the sum of all multiples of 3 or 5 below 1000.

The other kind of loop in Python is a while loop. Whereas a for
loop iterates over some existing iterable object, a while loop iterates
until some condition is satisfied. Here is the simplest Python program
that runs forever:

Code block 4.8. A program that runs forever.

while True:
 pass

The condition of the while loop will always be True, so the loop will
never end. The pass command does nothing; it signifies an empty
block of code where Python expects one.

Let us see how this works in practice. Euclid’s algorithm for cal-
culating the greatest common divisor of two numbers30 repeatedly 30 You will meet Euclid’s algorithm in

much more depth in Prelims Construc-
tive Mathematics in Trinity term; our
focus here is on what the code looks
like.

https://projecteuler.net

44 computational mathematics

calculates a sequence of remainders upon division, and terminates
when the remainder reaches zero. The greatest common divisor is the
last nonzero remainder in the sequence:

Code block 4.9. Euclid’s algorithm for computing the greatest common divisor.

a = 3942
b = 486

Loop until the remainder on division is zero
while b != 0:
 (a, b) = (b, a % b)

print(a)

Here we do not know how many iterations will be required in ad-
vance, so a while loop is more natural. The syntax

(a, b) = (b, a % b)

expresses two assignments at the same time; the corresponding com-
ponents of the tuples on the left and right are assigned31, with the 31 We will discuss tuples more in the

next chapter.entire expression on the right evaluated before any assignment. In
other words, after the body of the loop, the new b is the remainder on
division of the old a and b; the new a is the old b.

Exercise 4.6. Modify the code for Euclid’s algorithm to count how
many iterations of the while loop are executed. How many iterations
are required to compute the greatest common divisor of
453973694165307953197296969697410619233825 and
280571172992510140037611932413038677189525?

Exercise 4.7. [Project Euler, problem 2] By considering the terms in
the Fibonacci sequence whose values do not exceed four million, find
the sum of the even-valued terms.

It is sometimes useful to terminate a loop early. For example, we
may wish to iterate over a list of integers, find the first entry that is
even, and then stop iterating. We can do this with the break state-
ment:

arithmetic, conditionals, and iteration 45

Code block 4.10. Breaking from a loop.

numbers = [3, 5, 7, 9, 12, 13, 14]
for number in numbers:
 if number % 2 == 0:
 break

print(f"The first even number is {number}.")

At each iteration we test whether the number is even or not, and if it is
we exit the loop. This means that the variable number is assigned to
the first even entry.

As written, the code is not quite correct. Consider the case where
there are no even numbers in the list. The break statement will never
be met; on exiting the loop, numberwill be assigned to the last value
in the list. We can do the right thing here with the for …else con-
struct:

Code block 4.11. The for-else construct.

numbers = [3, 5, 7, 9, 13]
for number in numbers:
 if number % 2 == 0:
 break
else:
 print("There are no even numbers in the list!")

The code in the else block will be executed if no break statement
was met. There is also an analogous while …else construct.

The break statement only exits a single loop. If you want to break
out of nested loops, one way is to create a flag variable. The following
code looks for Pythagorean triples with integer values, and terminates
when it finds one:

46 computational mathematics

Code block 4.12. Finding a Pythagorean triple with integer values.

found_triple = False

for c in range(1, 100):
 for b in range(1, c):
 for a in range(1, b):
 if a**2 + b**2 == c**2:
 found_triple = True
 break

 if found_triple:
 break

 if found_triple:
 break

print(f"{a}**2 + {b}**2 == {c}**2")

Our final Python statement for control flow is the continue state-
ment. Whereas break immediately stops the execution of the entire
loop, continue merely stops the execution of the current iteration of
the loop.

Code block 4.13. Example of using continue.

for i in range(5):
 if i == 3:
 continue
 print(i)

This prints 0, 1, 2, 4.
We close the chapter with a more advanced example of iteration

with a while loop. Suppose we are seeking the root of a continuous
function f : R Ñ R and we have two values a, b P R with function
values of opposite sign, so that f paq f pbq ă 0. By the intermediate
value theorem, there exists a root r P pa, bq such that f prq “ 0. The
following algorithm is called bisection32. The algorithm evaluates 32 You will also meet the bisection

algorithm for rootfinding again in
Prelims Constructive Mathematics in
Trinity term.

the midpoint c of the interval pa, bq, checks which sign f pcq has, and
chooses whichever half of the interval brackets the root (either pa, cq or
pb, cq). We wish to repeat this process an unknown number of times,
until our approximation of the root is such that f pcq « 0 (quantified
by | f pcq| ă 10´10).

In the code, the assert statement evaluates a Boolean expression

arithmetic, conditionals, and iteration 47

Code block 4.14. Finding the root of a real-valued function with bisection.

import math

Set up: choose function and starting values
f = math.sin # we will look for a root of sin
(a, b) = (-2, 1) # starting guess for the root:
 # it is somewhere in (-2, 1)

assert f(a) * f(b) < 0 # check that f(a) and f(b) have opposite sign

Calculate first midpoint
c = (a + b)/2

iteration = 0 # iteration counter
print(f"{iteration}: c = {c}, f(c) = {f(c)}")
while True:
 if f(c) * f(a) < 0:
 # f(c) has the opposite sign to f(a),
 # so c replaces b
 (a, b) = (a, c)
 else:
 # f(c) must have the opposite sign to f(b),
 # so c replaces a
 (a, b) = (c, b)

 # Calculate midpoint for the next round of the loop
 c = (a + b)/2

 # Increment counter
 iteration = iteration + 1
 print(f"{iteration}: c = {c}, f(c) = {f(c)}")

 if abs(f(c)) < 1e-10:
 # Close enough, terminate with success
 break

 if iteration > 100:
 # Too many iterations, terminate with failure
 break

48 computational mathematics

and raises an exception (an AssertionError) if it is False. Adding
assert statements to your code to verify assumptions about your
input is important for good programming.

Exercise 4.8. Adapt the bisection code example to compute an ap-
proximation to ten decimal digits of π.

5 Intermezzo: submitting problem sheets

You are now ready to work on the first problem sheet. Before you
begin, a few words on how computational work should be submitted
to the demonstrators. In order to make it easier for the demonstrator
to give feedback on your work, we ask that you convert your .py file
(which is good for a computer to execute) to a .html file containing
the code and its outputs (which is good for a human to read). To do
this, please follow these steps:

1. On the course webpage

https://courses.maths.ox.ac.uk/course/view.php?id=4931

there is a file, publish.py1. Download this file and place it in the 1 We thank Lawrence Mitchell of
NVIDIA for writing the first version
of publish.py for this course.

same folder as your code for the problem sheets.

2. At the terminal, please type

(terminal) pip install ipykernel nbconvert jupytext

which installs the dependencies of publish.py.

Then, for each problem sheet, include the code

Code block 5.1. Publishing your work to a .html file

from publish import *

at the start, and

Code block 5.2. Publishing your work to a .html file

publish()

at the end. When you run your code with python, this command will
save the code and its outputs in a .html file with the same name2. It 2 The path to the .html file is printed to

the terminal.is this .html file that you should submit to your demonstrator.

https://courses.maths.ox.ac.uk/course/view.php?id=4931

50 computational mathematics

The text in the comments you write will be formatted using mark-
down syntax. Markdown is a simple markup language for formatting
plain text. Markdown is widely used in programming, for writing
documentation3, and for interacting with other programmers via bug

3 For example, Python packages are
often documented with the sphinx
package, which uses markdown.

reports and pull requests4.

4 GitHub, the main platform used
for open-source code development,
formats bug reports and pull requests
with markdown. If you want to know
more about markdown, you can read
GitHub’s introduction to the subject.

To get started, here is a template .py file for you to use to format
your problem sheets.

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax

intermezzo: submitting problem sheets 51

Code block 5.3. Template for your problem sheets.

from publish import *

Computational Mathematics
Problem sheet n
2023-09-19
Firstname Surname (<my.email.address@college.ox.ac.uk>)
Hogwarts College

#

Question 1.
#

pass

#

Question 2.
#

pass

#

Question 3.
#

pass

#

#

publish()

You should of course change the problem sheet number, the date, your
name, email address, and college. You will also need to replace the
pass statements with the code that you write5! Running this code 5 The empty lines and spaces matter in

the formatting here, so please be careful.should make a HTML file that looks something like the image below.

52 computational mathematics

from publish import *

Computational Mathematics

Problem sheet n

2023-09-19

Firstname Surname
(my.email.address@college.ox.ac.uk)

Hogwarts College

Question 1.

pass

Question 2.

pass

Question 3.

pass

6 Problem sheet 1

For your convenience, and for self-containment, we include the text of
the problem sheets here.

1. Plato of Athens (c. 428 BC–348 BC) is a central figure in the history
of philosophy. He founded in Athens the Academy, a school of
philosophy and mathematics. A phrase reputedly above the door to
the Academy, ‘‘μηδες γεωμτρητος εστω’’ (let no one ignorant of
geometry enter), now adorns the entrance to our intellectual home,
the Mathematical Institute.

In the Republic (c. 375 BC), Plato enigmatically refers to an ‘entire
geometrical number’. The text is notoriously opaque, and scholars
debate what exactly Plato means. The most popular opinion is that
Plato’s number is 216, since it is the first cube that is a sum of three
cubes:

216 “ 63 “ 33 ` 43 ` 53.

The Pythagorean triple p3, 4, 5q would of course have held immense
geometrical significance to Plato (and to you, me, and everyone
else).

Plato has now requested your help. He is writing a sequel to the
Republic (working title: The Delian League Strikes Back) and wishes to
identify some more numbers to pontificate about. Write a program
for Plato that identifies the first five cubes that can be written as the
sum of three cubes.

2. Pythagoras (c. 570 BC–495 BC) founded a brotherhood in Crotona,
in the south of Italy. One of the core tenets of the brotherhood was
that ‘‘All is number’’; in other words, that the natural numbers (and
their ratios) underpin all natural phenomena, in music, astronomy,
philosophy and beyond.

Hippasus of Metapontum (c. 530 BC–450 BC), a member of the
brotherhood, has just discovered that

?
2 is in fact irrational; it can-

not be expressed as the ratio of two natural numbers. He realises
that this will be deeply shocking to his fellow Pythagoreans, since
many of their proofs rely on the rationality of the lengths of line

54 computational mathematics

segments. He now fears for his life. (Apocryphally, Hippasus was
drowned at sea for revealing this discovery, although historians
doubt any of this actually happened.)

Hippasus has now requested your help. He wishes to compute ra-
tional approximations of

?
2, to fool the Pythagoreans into thinking

it is in fact rational, while he arranges his escape from Crotona.
Write a program for Hippasus that calculates 10 different rational
approximations of

?
2, using the fractionsmodule of Python.

Calculate the first 10 such approximations, in order of increasing
denominator. You should create a

root2 = fractions.Fraction(2**(0.5))

on the floating-point representation of
?

2, and then use the

root2.limit_denominator(n)

method, which calculates the best rational approximation to the
given number with denominator at most n.

[Hint: It may be useful to consult the documentation for the fractions
module.]

[Hint: you can check whether you have seen a given fraction by creating a
set: history = set(). You can add a fraction you have seen to the set
by history.add(fraction). You can check whether a fraction is in
the set with if fraction in history.]

3. Heron of Alexandria (c. 10 AD–70 AD) is often considered the
greatest experimenter of antiquity. He was a Greek mathematician
and engineer who worked in Egypt under Roman rule. Among
other achievements, he describes the first known steam engine, and
the first wind-powered device on land.

Heron invented the first fast algorithm for calculating the square
root of a number s. Heron starts with an initial guess x0 «

?
s and

then improves it by

xn`1 “
pxn ` s{xnq

2
.

The idea here is that if xn is an underestimate for
?

s, then s{xn is
an overestimate, and vice versa; averaging them yields an improved
approximation.

Heron has now requested your help. He needs to calculate
?

2 to
50 decimal digits, but is too busy building steam engines to do the
calculations himself. Write a program for Heron to calculate

?
2 to

50 decimal digits.

problem sheet 1 55

[Hint: without tricks, standard floating-point arithmetic will not be suffi-
cient for this task, since it only carries 15 or 16 digits of precision. Instead,
use the mpmath module. Install it with pip install mpmath at
the terminal. Once it is imported, set the working precision to use 100
digits with mpmath.mp.dps = 100. Create your initial guess using
x = mpmath.mpf('1.4'). You can then use the same arithmetical
operators as in standard Python, but the calculations will be carried out
with 100 digits of precision. Terminate your iteration once the difference
between two successive approximations is less than 10´50.]

It now turns out that the Emperor has demanded an approximation
of

?
2 to 200 digits. How many more iterations of Heron’s method

are required to calculate
?

2 to 100 digits, and then 200 digits?
Write your answer in comments.

[Hint: you can estimate how many digits you have correct by

-int(mpmath.ceil(mpmath.log10(abs(current_guess - previous_guess))))

This is not foolproof, but is good enough for our purposes here.]

7 Data structures and plotting

7.1 Lists

Python offers powerful data structures that make it possible to imple-
ment complicated algorithms in a handful of lines of code. The first
data structure we will meet is a list.

A list is an ordered array of objects. You can create a list using
square brackets []:

(python) lista = ['one', 2, 3.0]

As you can see, a single list can contain references to different data
types (in this case, strings, integers, and floats). A list can also contain
other lists:

(python) listb = [4j, lista]

(python) listb
[4j, ['one', 2, 3.0]]

An empty list can be created using [].
You can access entries in a list by indexing it. In Python, indices start

counting from zero. So to access the first entry in a list, you index it
with [0]:

(python) lista[0]
'one'

(python) lista[1]
2

(python) lista[2]
3.0

(python) listb[1][0]
'one'

As you can see in the last example, you can index objects without

58 computational mathematics

giving them names. If you attempt to use an index that is not defined,
Python raises an IndexError exception1. 1 This is in sharp contrast to languages

like C and C++, which will happily let
you access the 200th element of an array
of length 100. This is a major cause of
security vulnerabilities.

It is often convenient to index a list backwards. The index [-1]
refers to the last entry in a list, and so on:

(python) lista[-1]
3.0

(python) lista[-2]
2

Lists are mutable. Mutability is a key concept in Python. A mutable
object is one where the object can be changed after the object has been
created. For example, to change an entry in a list, you can do

(python) lista[0] = 'five'

(python) lista
['five', 2, 3.0]

(python) listb
[4j, ['five', 2, 3.0]]

Notice that changing lista has automatically changed what is
printed by listb; lists contain references to objects, not copies. If you
wanted to make a copy of a list, you could use the list function:

(python) a = [1, 2, 3]

(python) b = [4, a] # b refers to a

(python) c = [4, list(a)] # c has a different copy of a

(python) a[0] = 5

(python) b
[4, [5, 2, 3]]

(python) c
[4, [1, 2, 3]]

Here when constructing cwe made a copy of the list a, which is why
modifying a does not subsequently change c.

To test for containment, you can use in:

(python) 1 in [1, 2, 3, 4]
True

(python) 1 in [0, 2, 3, 4]
False

data structures and plotting 59

There is also the convenient not in operator:

(python) 1 not in [0, 2, 3, 4]
True

which is more idiomatic and easier to read than not (1 in [0, 2, 3, 4]).
Lists can be concatenated, put together one after another. This can be

done with the addition + symbol:

(python) [100, 200] + [300, 400]
[100, 200, 300, 400]

You can ask for the length of a list with len:

(python) len([100, 200, 300, 400])
4

You can make multiple copies of a list by multiplying it by an integer:

(python) [0]*3
[0, 0, 0]

Lists can be sliced. Slicing a list lwith l[i:j] produces a sublist
that starts at index i and goes up to (but does not include) index j:

(python) l = [0, 1, 2, 3, 4, 5, 6]

(python) l[1:4]
[1, 2, 3]

(python) l[3:6]
[3, 4, 5]

You can also leave entries of the slice empty, to indicate no bound:

(python) l[3:]
[3, 4, 5, 6]

(python) l[:-2]
[0, 1, 2, 3, 4]

(python) l[:] # returns the entire list
[0, 1, 2, 3, 4, 5, 6]

The reason why the upper bound is not included is to preserve the
identity l[:i] + l[i:] == l.

When slicing, you can also specify an optional stride. This is useful
if you want every second or third element in a list, for example:

(python) l = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

60 computational mathematics

(python) l[0:10:2] # take every second entry
[0, 2, 4, 6, 8]

(python) l[0:10:3] # take every third entry
[0, 3, 6, 9]

(python) l[::3] # take every third entry, without bounds
[0, 3, 6, 9]

You can reverse the sublist by taking a negative stride:

(python) l[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

(python) l[-2::-2]
[8, 6, 4, 2, 0]

Finally, lists have many useful methods. list.append appends an
element to a list:

(python) l = [0, 1, 2]

(python) l.append(3)

(python) l
[0, 1, 2, 3]

list.remove removes the first occurrence of an element in a list:

(python) l.remove(1)

(python) l
[0, 2, 3]

list.index finds the first index at which a given element occurs:

(python) [4, 6, 3, 4, 5, 6].index(4)
0

(python) [4, 6, 3, 4, 5, 6].index(6)
1

list.reverse reverses a list in-place (i.e. it modifies the existing list,
rather than returning a new list). list.sort sorts a list in-place.

7.1.1 List comprehensions

In mathematics, we often iterate over an object to make another one.
For example, the notation 2Z means to construct a set by comprehen-
sion:

2Z “ t2z : z P Zu .

data structures and plotting 61

In other words, we iterate over the set Z and do something to its el-
ements to produce a new set. This sometimes involves a predicate, a
condition to check on the elements of the original set. For example, the
rational numbers are defined by

Q “ tp{q : p, q P Z if q ‰ 0u .

Here the predicate is that q ‰ 0.
Python has a very convenient and powerful notation for this con-

cept, list comprehension:

(python) [2*x for x in [0, 1, 2, 3, 4]]
[0, 2, 4, 6, 8]

(python) [2*x for x in [0, 1, 2, 3, 4] if x % 2 == 0]
[0, 4, 8]

We loop over a given iterable (in this case [0, 1, 2, 3, 4]), ap-
plying an operation to each element (in this case, doubling it). One
can also supply a predicate by adding if in the statement, in this case
checking if the element of the original list is even.

We can use list comprehension to sum the entries of two lists:

(python) a = [100, 200, 300]

(python) b = [1000, 2000, 3000]

(python) [a[i] + b[i] for i in range(len(a))]
[1100, 2200, 3300]

Let us use this in an example. Pascal’s triangle2 arranges the coef- 2 Again, the naming is inaccurate, since
this pattern was known before Pascal to
(among others) Persian mathematicians
Al-Karaji and Omar Khayyám, Chinese
mathematicians Jia Xian and Yang Hui,
and European mathematicians Jordanus
de Nemore, Gersonides, and Niccolò
Fontana Tartaglia.

ficients of the binomial expansion in a triangle. The first row n “ 0
starts with a single entry 1. Each entry k “ 0 . . . n on each subsequent
row n is calculated by adding its two diagonal parents (with implicit
zeros off the triangle).

We can calculate rows of Pascal’s triangle conveniently with lists, as
in code block 7.1.

The key line of this code

row = [([0] + row)[i] + (row + [0])[i] for i in range(n+1)]

can be understood as follows. Let us take the case n “ 2 where cur-
rently row = [1, 1] and we wish to compute [1, 2, 1]. The
expression [0] + row evaluates to [0, 1, 1]. The expression
row + [0] evaluates to [1, 1, 0]. The body of the list compre-
hension then sums these two lists, as before, yielding [1, 2, 1].

62 computational mathematics

Code block 7.1. Pascal’s triangle.

N = 10 # number of rows to compute
row = [1] # starting row
rows = [] # this list will contain all rows computed

for n in range(N):
 # Calculate the next row from the previous one
 row = [([0] + row)[i] + (row + [0])[i] for i in range(n+1)]
 rows.append(row)

Print the output
for row in rows:
 print(row)

data structures and plotting 63

Exercise 7.1. In our code, we have decided to represent polynomials
(i) in the monomial basis (as linear combinations of 1, x, x2, x3, etc.)3 3 The monomial basis is the one you

are familiar with from school, and it
is fine for calculations on paper or in
symbolic algebra packages. But the
monomial basis is usually a very poor
choice for numerical computation;
in a sense one can make precise, the
basis functions all get ‘‘too similar’’
to each other, with the consequence
that small changes in coefficient values
produce enormous changes in the actual
polynomial. Instead, stable families
of basis functions like Chebyshev or
Legendre polynomials underpin most
computations with polynomials.

(ii) using Python lists. For example, the polynomial 1 ` 3x ` 8x3

would be represented as [1, 3, 0, 8].
Given a representation of a polynomial in this manner, write a for

loop to generate the representation of its derivative.

Exercise 7.2. [Hill (2020), Q2.4.4] The Python function sum sums
all elements of an iterable object. Use sum and list comprehension to
write one line of Python that computes π using the first 20 entries of
the Madhava4 series: 4 Madhava of Sangamagrama

(c. 1350–1425) was a mathematician
and astronomer in Kerala, India. He
made many discoveries on infinite
series expansions for trigonometric
functions like sin, and used them to
calculate a table of sines that was accu-
rate to 7 digits. He discovered what is
often referred to as the Leibniz series
for π nearly 300 years before Leibniz,
and hence it is often now referred to
as the Madhava–Leibniz series. His
work also anticipated many of the
foundations of calculus subsequently
developed by Newton and Leibniz.
See https://en.wikipedia.org/
wiki/Madhava_of_Sangamagrama
for more.

π “
?

12
ˆ

1 ´
1

3 ˆ 31 `
1

5 ˆ 32 ´
1

7 ˆ 33 ` ¨ ¨ ¨

˙

.

How many digits of this approximation are correct?

7.2 What assignment means in Python

Now that we have met a mutable object, we can study more deeply
what assignment means in Python. Variable assignment using = really
means assigning labels.

Consider the following code.

(python) lista = [1, 2, 3]

(python) listb = lista

(python) lista.append(4)

(python) listb
[1, 2, 3, 4]

After the second line, both lista and listb are labels for the same
object in memory. Modifying the (mutable) object in place on the
third line via lista also changes the memory accessed via listb,
since they are both labels for the same thing. We might visualise this
as in figure 7.1.

We can test whether two variable names (two labels) both refer to
the same object with is:

(python) lista is listb
True

https://en.wikipedia.org/wiki/Madhava_of_Sangamagrama
https://en.wikipedia.org/wiki/Madhava_of_Sangamagrama

64 computational mathematics

Labels Objects

lista

listb

[1, 2, 3]

Figure 7.1: In Python, assigning
a variable creates a label for an
object.

By contrast, if make the list twice, changing lista does not change
listb:

(python) lista = [1, 2, 3]

(python) listb = [1, 2, 3]

(python) lista == listb
True

(python) lista is listb
False

(python) lista.append(4)

(python) listb
[1, 2, 3]

After the second line, the two objects are equal, but they are not identi-
cal. Two different lists have been constructed that happen to have the
same elements. This situation might be visualised as in figure 7.2.

7.3 Tuples

Let us resume our study of the data structures Python offers. The next
data structure we will meet is a tuple. A tuple is very much like a list,
but immutable; once constructed, it cannot be changed. Whereas lists
are constructed using square brackets [], tuples are constructed using
round brackets, ():

(python) t = ('one', 2, 3.0)

data structures and plotting 65

Labels Objects

lista

listb

[1, 2, 3]

[1, 2, 3]

Figure 7.2: Two objects can be
equal but not identical.

(python) t[0]
'one'

(python) t[0] = 'four'

TypeError Traceback (most recent call last)
<ipython-input-2-b8ea296315bb> in <module>
----> 1 t[0] = 'four'
TypeError: 'tuple' object does not support item assignment

Tuples are often used in Python to assign multiple variables. The
syntax

(python) (a, b, c) = (1, 2, 3)

is preferred5 to 5 Many people say the code is more
Pythonic.

(python) a = 1; b = 2; c = 3

Tuples also arise is in passing arguments to functions, and return-
ing outputs from functions. We will discuss this further in section
7.6.

With our understanding of tuples, we can now discuss two useful
Python functions, enumerate and zip.

Imagine we have a list of names of planets in the solar system, and
wish to print out that that the first planet from the sun is Mercury,
and so on. A naïve way to code this is shown in code block 7.2. This
pattern (of needing to enumerate the elements of an iterable object) is
so common that Python offers the enumerate function. enumerate
takes in an iterable object and returns another iterable object, where
each entry is a tuple (num, obj)where obj is from the input iter-
able. An example should make this clearer:

66 computational mathematics

Code block 7.2. Listing the planets by number.

planets = ['Mercury',
 'Venus',
 'Earth',
 'Mars',
 'Jupiter',
 'Saturn',
 'Uranus',
 'Neptune']

counter = 0
for planet in planets:
 counter = counter + 1
 print(f"Planet {counter} from the Sun is {planet}.")

(python) list(enumerate(planets))

[(0, 'Mercury'),
(1, 'Venus'),
(2, 'Earth'),
(3, 'Mars'),
(4, 'Jupiter'),
(5, 'Saturn'),
(6, 'Uranus'),
(7, 'Neptune')]

With this, we can give a much more Pythonic version of code block
7.2 in code block 7.3.

Now suppose that our CEO decides that the program should print
out ‘The first planet from the Sun is Mercury’ instead. How can we
do this? The Python function zip lets you iterate over two or more
iterables at the same time. It creates an iterable where each entry is a
tuple of the entries of the input iterables:

(python) list(zip([1, 2, 3], ('a', 'b', 'c')))
[(1, 'a'), (2, 'b'), (3, 'c')]

We can use this to satisfy our CEO as in code block 7.4.

data structures and plotting 67

Code block 7.3. A better version of listing the planets by number.

planets = ['Mercury',
 'Venus',
 'Earth',
 'Mars',
 'Jupiter',
 'Saturn',
 'Uranus',
 'Neptune']

for (counter, planet) in enumerate(planets):
 print(f"Planet {counter} from the Sun is {planet}.")

Code block 7.4. Zipping two lists.

planets = ['Mercury',
 'Venus',
 'Earth',
 'Mars',
 'Jupiter',
 'Saturn',
 'Uranus',
 'Neptune']

ordinals = ['first',
 'second',
 'third',
 'fourth',
 'fifth',
 'sixth',
 'seventh',
 'eigth']

for (ordinal, planet) in zip(ordinals, planets):
 print(f"The {ordinal} planet from the Sun is {planet}.")

7.4 Dictionaries

Dictionaries record associations between keys and values6. Dictionaries 6 In other languages, these are some-
times called associative arrays or hash
tables.

are created using curly braces {}, with the key-value pairs separated

68 computational mathematics

by colons :. For example, a phone book might be implemented with a
dictionary:

(python) phonebook = {"Arya": 3245, "Bran": 9282, "Cate": 6251}

(python) phonebook["Arya"]
3245

(python) phonebook["Cate"]
6251

We can look up dictionaries using the indexing notation familiar from
lists and tuples, but now the keys need not be integers. The keys of
a dictionary must be hashable7, but the values may be mutable; the

7 Hashing is the process of computing
a signature of some complicated data
structure, usually as an integer. It is
these integers that a dictionary uses
internally to store and index items.
While being hashable and mutable
are distinct concepts (an object can be
any combination of the two or their
negations), for the data structures
built in to Python, hashability and
immutability are the same. In practice,
this means e.g. you can use tuples as
keys of a dictionary, but not lists.

dictionary overall is a mutable object. Key-value pairs can be added,
modified, and removed after creation:

(python) phonebook["Dany"] = 1862 # add a new entry

(python) phonebook["Cate"] = 7827 # modify existing entry

(python) del phonebook["Bran"] # delete existing entry

Here del is short for delete.
The key-value pairs do not all need to be the same type. If you

try to access a key that is not defined in the dictionary, a KeyError
exception is raised.

Python tries to keep the interface among its data structures consis-
tent. As with lists, you can check for key containment with in:

(python) "Dany" in phonebook
True

(python) "Eddard" in phonebook
False

Similarly, you can get the number of keys with len:

(python) len(phonebook)
3

Iterating over a dictionary returns the keys, as in code block 7.5.
As with lists, there are lots of useful methods on dictionaries, in-

cluding .items() (which lets you iterate over (key, value) pairs)
and .get(key), which allows you to specify a default value to use
if the key is not found. Another point of similarity is that you can
conveniently construct dictionaries using dictionary comprehension. In

data structures and plotting 69

Code block 7.5. Iterating over a dictionary.

phonebook = {"Arya": 3245, "Bran": 9282, "Cate": 6251}
for name in phonebook:
 print(f"{name} --> {phonebook[name]}")

this code, we use a dictionary as a simple database8, recording the 8 Of course, a real database would
offer much more functionality, like
supporting queries, redundancy and
backups, access control, etc.

area and population of the ten largest islands in the world. From this
dictionary, we derive another dictionary that stores the population
density in code block 7.6. Here the key-value pairs are separated by a

Code block 7.6. Dictionary comprehension.

Data is (area in square kilometres, population)
islands = {'Greenland': (2130800, 56653),
 'New Guinea': (785753, 11.31e6),
 'Borneo': (743330, 21.26e6),
 'Madagascar': (587041, 22.01e6),
 'Baffin': (507041, 10745),
 'Sumatra': (473481, 50.18e6),
 'Honshu': (225800, 104e6),
 'Victoria': (217291, 1875),
 'Britain': (209331, 60.8e6),
 'Ellesmere': (196235, 191)}

Build a dictionary containing population density using comprehension
density = {island: pop/area for (island, (area, pop)) in islands.items()}

colon :, and we use two levels of tuple unpacking to compactly assign
the variables. Printing density yields

{'Greenland': 0.02658766660409236,
'New Guinea': 14.393836230978437,
'Borneo': 28.60102511670456,
'Madagascar': 37.49312228617762,
'Baffin': 0.021191580168073192,
'Sumatra': 105.98102141374206,
'Honshu': 460.58458813108945,
'Victoria': 0.008628981412023508,
'Britain': 290.4490973625502,
'Ellesmere': 0.0009733228017428084}

70 computational mathematics

Exercise 7.3. Write a one-line dictionary comprehension to swap the
keys and values of a given dictionary.

Exercise 7.4. Exercise 7.1 discussed how one might represent the
coefficients of a polynomial in the monomial basis with a list. But
what if the coefficients are sparse (mostly zeros)? For example, to
represent the coefficients of 1 ` x1000 would require storing 999 zeros,
which seems silly.

Let us instead represent polynomials with a dictionary. For exam-
ple, 1 ` 3x ` 8x3 would be represented as {0: 1, 1: 3, 3: 8}.

Given a representation of a polynomial in this manner, build the
representation of its derivative.

Harder, optional: given representations of two polynomials in this
manner, build the representation of their product.

7.5 Sets

In Python, a set is an unordered collection of unique items. As with
dictionaries, their entries must be hashable. We can build a set using
curly braces {}, this time without colons:

(python) s = {1, 1, 2, 2.0, 3, 4j}

(python) s
1, 2, 3, 4j

Here the duplicate entry of 1 is ignored, but why does 2.0 not ap-
pear? The reason is that both 2 and 2.0 hash to 2; when hashes
collide, Python determines uniqueness by equality, and in Python
2 == 2.0:

(python) hash(2)
2

(python) hash(2.0)
2

(python) 2 == 2.0
True

As with dictionaries and lists, you can check for containment with
in:

(python) 1 in s
True

data structures and plotting 71

(python) 4 in s
False

You can get its cardinality with len:

(python) len(s)
4

Python sets model sets in mathematics, and support the same key
operations: taking unions, intersections, testing for subset relations,
etc. Here are some examples:

(python) seta = {1, 2, 3}

(python) setb = {3, 4, 5}

(python) setc = {1, 2}

(python) setc < seta # subset containment
True

(python) setc <= seta # subset containment or equality
True

(python) seta | setb # union
1, 2, 3, 4, 5

(python) seta & setb # intersection
3

(python) seta - setb # set difference
1, 2

(python) seta ^ setb # symmetric difference, elements in either but not both
1, 2, 4, 5

(python) setb.isdisjoint(setc)
True

Sets are mutable; you can add and remove entries after creation:

(python) s = {1, 2, 3}

(python) s.add(4)

(python) 4 in s
True

(python) s.remove(3)

(python) 3 in s
False

As such, you cannot use sets as keys for dictionaries. However, set

72 computational mathematics

has an immutable friend, a frozenset. This is like a set in every
way except that it is immutable, and so they can be used as keys in a
dictionary.

As with lists and dictionaries, you can construct sets using set com-
prehension:

(python) {x**2 for x in range(5)}
0, 1, 4, 9, 16

Exercise 7.5. In 1774, Euler made a remarkable discovery, that the
expression

n2 ` n ` 41, n P r0, 40q X N

produces 40 distinct prime numbers. Use a one-line set comprehen-
sion to compute these primes.

7.6 Functions

It is common in programming to have a set of statements that you
would like to re-use again and again. For example, if we have some
code to calculate whether an integer is prime or not, we might want
to apply that to different inputs, or to use it in other programs. If
someone comes along with a faster primality test, we should be able to
swap out the old one from our code easily.

In Python, we use functions to gather together a specified set of
statements so that we can code, test, and use them repeatedly. Func-
tions enable code reuse—for example, if you find yourself copying and
pasting code from within your program, you should probably make a
function out of it. Functions also make programming more tractable
for our limited human minds; functions allow us to break down a
big problem into a set of smaller problems that we can think about
tackling in isolation, before putting them all together.

In Python, we define a function with the def statement. A function
takes in some inputs, executes some statements, and possibly returns a
value with the return statement. Our first example is code block 7.7.
This defines a new variable, called square, of type function. The
function we have defined takes in a single input9, which inside the 9 As in mathematics, the inputs to a

function are often called its arguments.function is called x10, does some calculations, and returns an output.
10 What variable names are used in the
code that calls this function are irrele-
vant; within the scope of the function,
the input is called x.

In the calling code, we pass the inputs to the function in round brack-
ets (), just as when we call a built-in function in Python. The function
carries with it its documentation: users can access the documentation
with help(square)11. 11 This inline documentation is called the

function’s docstring, in Python parlance.

data structures and plotting 73

Code block 7.7. Defining a function to square its input.

def square(x):
 """
 Return the square of the input.
 """
 x_squared = x*x
 return x_squared

y = 3
y_squared = square(y)
print(f"{y} squared is {y_squared}")

The problem sheets frequently have instructions along the lines of
‘‘write a function that takes as input x and returns y’’. This means that
the function should use the return statement to pass the computed
output y to the calling code.

Functions can take multiple inputs. They always return a single ob-
ject, but that single object may be a tuple containing multiple outputs.
As an example, in code block 7.8 is a function that takes in the coeffi-
cients of a quadratic polynomial in the monomial basis and returns its
roots.

There are several things to note about code block 7.8. First, the
docstring describes the function’s purpose, inputs, outputs, and gives
the big picture of how the function works; your docstrings should do
the same. This is also the first time we see how to raise an exception,
with the raise statement. If user code calls this with a == 0, it is
likely a mistake, and it will be obvious to the programmer. We use an
assertion to check that it is giving sensible answers for the solutions
of x2 ´ 1 “ 012. Lastly, we see on the final line that it is possible to 12 Even better would be to code a test for

this function, verifying automatically
that it gives the correct output on a
wide range of inputs. This would
give us confidence as we develop the
code that all previous functionality
remains correct. py.test is the de facto
standard testing framework for Python,
but its use is outside the scope of this
course.

specify arguments out of order when calling a function, so long as we
tell Python which is which.

It is sometimes useful to specify default values for the inputs of a
function. Consider again the representation of polynomials using a
list of coefficients in the monomial basis of exercise 7.1. when we write
a function to calculate its derivative, it would be convenient for users
to be able to specify how many derivatives to take, defaulting to one.
Such a function might look as in code block 7.9.

Again, there are several things to note in code block 7.9. The first
is that we specify order=1when defining the function. If the user
does not specify order, it defaults to one. The second is that we check
whether the order argument is an integer using the Python func-

74 computational mathematics

Code block 7.8. Defining a function for the roots of a quadratic polynomial

import math

def roots(a, b, c):
 """
 Return the two roots of the quadratic polynomial

 a*x**2 + b*x + c

 using the quadratic formula.

 Raises a ValueError if a == 0.
 """

 if a == 0:
 raise ValueError("Not a quadratic polynomial!")

 det = math.sqrt(b**2 - 4*a*c)
 root1 = (-b - det) / (2*a)
 root2 = (-b + det) / (2*a)

 return (root1, root2)

assert roots(1, 0, -1) == (-1, 1)
assert roots(c=-1, b=0, a=1) == (-1, 1)

data structures and plotting 75

Code block 7.9. Optional arguments and recursion.

def diff_poly(p, order=1):
 """
 Differentiate a polynomial p an arbitrary number of times,
 where the polynomial is expressed as a list of coefficients
 in the monomial basis.

 order is the order of the derivative to calculate.
 """

 if order < 0 or not isinstance(order, int):
 raise ValueError("Only for positive integer derivative orders")

 if order == 0:
 # No derivatives to calculate, just return the polynomial
 return p

 # Check for constants, doesn't matter what order is requested
 if len(p) == 1:
 return [0]

 # Calculate first derivative
 dp = [(i+1)*a for (i, a) in enumerate(p[1:])]

 if order == 1:
 return dp
 else:
 return diff_poly(dp, order=order-1)

print(diff_poly([0, 0, 0, 1])) # order defaults to 1
print(diff_poly([0, 0, 0, 1], order=2))
print(diff_poly([0, 0, 0, 1], order=3))
print(diff_poly([0, 0, 0, 1], order=4))

76 computational mathematics

tion isinstance. Third, we calculate the first derivative in one line
of clear, readable code, using list comprehension, slicing, and the
enumerate function. The fourth is that the function calls itself : if we
want to calculate the second derivative, the function calculates the first
derivative, then calls diff_poly again to calculate the derivative of
that. Such a function is called recursive.

Let us now see the most general pattern for taking arguments in
Python. We have seen that we can pass arguments unlabelled (as with
roots(1, 0, -1), or labelled (as with roots(c=-1, b=0, a=1)).
When defining a function, we can give it an argument *args that
gathers all unlabelled arguments not otherwise assigned in a tuple,
and an argument **kwargs that gathers all labelled arguments not
otherwise assigned in a dictionary. This is best seen with an example,
code block 7.10.

Code block 7.10. The most general pattern of arguments in Python.

def printer(*args, **kwargs):
 """
 Prints any arguments passed to the function, labelled or unlabelled.
 """

 print(f"Unlabelled arguments: {args}")
 print(f"Labelled arguments: {kwargs}")

printer(1, 2.0, 3j, four=4, five=5j)

This code prints

Unlabelled arguments: (1, 2.0, 3j)
Labelled arguments: {'four': 4, 'five': 5j}

Try passing different arguments to this function to fully understand
how this works.

The printer function we have defined lacks a return statement.
What does Python do if we try to assign its output? In Python, every
function returns a value—if the function has no return statement,
then the function implicitly returns a special value None. None indi-
cates no value at all, the absence of data. None is different to every
other built-in constant—it is neither True nor False.

Let us close with a useful example, of testing whether an integer is
prime or not.

data structures and plotting 77

Code block 7.11. First attempt at primality testing.

import math

def isprime(n):
 """
 Check whether an integer n is prime or not.

 Returns True or False.

 Raises ValueError if n is not an integer.
 """

 if not isinstance(n, int):
 raise ValueError("Only integers can be prime")

 if n < 2:
 return False

 for m in range(2, math.isqrt(n)+1):
 if n % m == 0:
 return False

 return True

for i in range(-1, 21):
 print(f"Is {i} prime? {isprime(i)}")

After the preliminaries, this function works by checking all possible
divisors of n, up to

?
n (since any factor greater than

?
n will have

a matching quotient less than
?

n). Here math.isqrt returns the
integer part of the square root of its argument. If any divisor divides
cleanly, the function is not prime; otherwise, the function is prime.

Exercise 7.6. In the code above, we are testing with all potential di-
visors between 2 and

?
n. This is obviously wasteful, since there is no

point testing with 4 if n is not divisible by 2; if n were divisible by 4 it
would also be divisible by 2. Primality testing is a fascinating sub-

ject at the interface of computational
mathematics and number theory. Many
of the fastest algorithms available are
in fact probabilistic, with a provably
small probability of failure. The fastest
deterministic algorithms are based
on deep insights from the theory of
elliptic curves. For more details, see
https://mathworld.wolfram.
com/PrimalityTest.html.

Modify the code to only test with odd divisors, maintaining correct-
ness. How much faster does this make isprime(9999991111111)?

More generally, the optimal set of divisors to try would be all prime

https://mathworld.wolfram.com/PrimalityTest.html
https://mathworld.wolfram.com/PrimalityTest.html

78 computational mathematics

numbers up to
?

n. Calculating this is more work than just testing for
primality13, but we can use this insight to improve the code further. 13 Production codes cache a large num-

ber of primes, say all the ones with up to
a certain number of digits.

By exploiting the fact that all primes greater than 3 are of the form
6n ˘ 1, n P N14, further reduce the number of divisors tested. How 14 If you have not met this fact before,

can you prove it?much faster again does this make isprime(9999991111111)15?
15 Algorithm improvements often re-
sult from, and motivate, mathematical
insight. The best computational math-
ematics motivates theory with compu-
tation, and improves computation with
theory.

7.7 Plotting

Being able to visualise mathematical ideas is invaluable for research
and understanding. Computers aid this process tremendously.

In Python, the main library used for plotting 2D graphics is called
matplotlib16. To install this, at the terminal type 16 J. D. Hunter. Matplotlib: a 2D graphics

environment. Computing in Science &
Engineering, 9(3):90–95, 2007(terminal) pip install numpy matplotlib

This also installs numpy17, a library for array computing in Python 17 C. R. Harris et al. Array pro-
gramming with NumPy. Nature,
585(7825):357–362, 2020

that we will meet more closely in Chapter 12.
Here is a first demonstration. We will plot the function

f pxq “ sin x ` sin x2, x P r0, 15s

in code block 7.12.

Code block 7.12. A first demonstration of plotting.

import matplotlib.pyplot as plt
from numpy import linspace, sin

def f(x):
 return sin(x) + sin(x**2)

Sample the function on an equispaced
grid of 2000 points on [0, 15]
xs = linspace(0, 15, 2001)
ys = f(xs) # vectorised; does all points at once

plt.plot(xs, ys)
plt.show()

Running this code should bring up a window showing a plot like
that in figure 7.3.

In code block 7.12, we first import matplotlib’s pyplot inter-
face. This interface is designed to closely mimic the extremely suc-
cessful plotting interface used in MATLAB18. We import the sin and 18 There is another (object-oriented)

interface for matplotlib, but we will not
use it on this course. You might see it in
demos online, however.

data structures and plotting 79

0 2 4 6 8 10 12 14

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 7.3: The figure displayed
by code block 7.12.

linspace functions from numpy. linspacemakes a numpy array19 19 For our purposes now, we can treat
numpy arrays like lists. We will discuss
the differences in chapter 12.

of equispaced points:

(python) linspace(0, 1, 5)
array([0. , 0.25, 0.5 , 0.75, 1.])

(python) linspace(0, 1, 11)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

We next define the function that we wish to evaluate. Interestingly,
we can apply this function to the entire array of x values with one
line, ys = f(xs). This is because numpy’s sin function is vec-
torised: it can evaluate the same operation on many data simulta-
neously. Exploiting this is much more efficient than the equivalent
ys = [f(x) for x in xs]20. This is why we imported sin 20 For example, the computer on which

this manual is written on has a CPU that
supports AVX-512. These instructions
can evaluate 8 double-precision floating-
point operations simultaneously. Its
GPU can compute 6144 single-precision
floating-point arithmetic operations
simultaneously. In general, when trying
to compute at speed, one of the main
challenges is trying to get the data to the
processors fast enough; vectorisation is
very useful for this.

from numpy and not from math; the built-in math.sin does not vec-
torise.

We next plot the data with plt.plot(xs, ys). This takes in the
x-coordinates of the points to plot in one iterable, the y-coordinates
in another iterable, and by default draws solid blue straight lines
between them. The function plt.show() then renders the figure and
opens an interactive window displaying it.

Of course, we have committed a cardinal sin: we have not labelled
our axes, or given our plot a title! Let us do better in code block 7.13.

80 computational mathematics

Code block 7.13. Labelling axes and title.

import matplotlib.pyplot as plt
from numpy import linspace, sin

def f(x):
 return sin(x) + sin(x**2)

Sample the function on an equispaced
grid of 2000 points on [0, 15]
xs = linspace(0, 15, 2001)
ys = f(xs)

plt.grid()
plt.plot(xs, ys, '--og', linewidth=0.5, markersize=0.5)
plt.xlabel(r"x")
plt.ylabel(r"$f(x)$")
plt.title(r"Plot of $f(x) = \sin{x} + \sin{x^2}$")
plt.show()

There are several new elements in this code. First, we use plt.grid()
to activate a background grid to make the plot easier to read. When
we plot our data, we pass the format string '--og'. The '--'means
to draw dashed lines, instead of solid ones. The 'o'means to plot a
circle at every data point. The 'g'means to colour these in green21. 21 See https://matplotlib.

org/stable/api/_as_gen/
matplotlib.pyplot.plot.html
for the full specification of format
strings.

We control the line width and marker size using optional arguments
to plt.plot. We label the x and y axes using plt.xlabel and
plt.ylabel; to these we pass strings with mathematics typeset in
TeX notation22, with the mathematics between dollar signs $ … $. We 22 TeX notation is a means of typesetting

equations. Its study beyond the scope
of this course; you will learn it for your
Part C dissertations, or probably before.

specify that these strings are ‘raw’ strings using the r in front of the
string r""; this makes the Python interpreter pass the backslashes
through, rather than trying to interpret them as special characters.
This should show a plot like that of figure 7.4.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

data structures and plotting 81

0 2 4 6 8 10 12 14
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)

Plot of f(x) = sin x + sin x2

Figure 7.4: The figure displayed
by code block 7.13.

8 Intermezzo: the Lander–Parkin coun-
terexample

The material in this chapter is not necessary for the problem sheets, or
for the course. It is here strictly for your interest.

Recall the Lander–Parkin counterexample to Euler’s Conjecture1: 1 L. J. Lander and T. R. Parkin. Coun-
terexample to Euler’s conjecture on
sums of like powers. Bulletin of the Amer-
ican Mathematical Society, 72(6):1079,
1966

275 ` 845 ` 1105 ` 1335 “ 1445.

How could we find this, if we did not already know it?
Here is a first attempt in code block 8.1. It searches all combina-

tions of natural numbers pa0, a1, a2, a3, bq P pr1,Nq X Nq5, up to some
specified upper limit N.

Of course, this code does not actually find a counterexample, be-
cause N is too small, but this will come once the code has been im-
proved. Here we import the timemodule (another Python built-
in) to record the start and end times of the loop. We also include a
counter, tests, which records how many times we evaluate the test
for equality. The syntax {end - start:.2f}means to print the
time difference to two digits after the decimal place2. Running this on 2 You can control the formatting of

strings inside curly braces with a colon.
For some examples, see https://
builtin.com/data-science/
python-f-string.

a laptop yields

Total time: 2.67 s
Total number of tests: 3200000

which is not surprising as 205 “ 3200000. If we multiplied N by 10
(so as to actually find the counterexample), the time taken would
multiply by about 105, and the code would take roughly 3 days. We
need to make this go faster.

The first improvement we can make is to not search every combina-
tion pa0, a1, a2, a3, bq P pr1,Nq X Nq5. After all, for any counterexample
to Euler’s Conjecture, it must be the case that b ą ai for all i. The code
above is wasting large amounts of computational effort on combina-
tions that could never work. So let us instead try to improve this in
code block 8.2.

In code block 8.2, the bounds for the inner loops now depend on
the values of the outer variables. Instead of searching every point in

https://builtin.com/data-science/python-f-string
https://builtin.com/data-science/python-f-string
https://builtin.com/data-science/python-f-string

84 computational mathematics

Code block 8.1. First attempt at Euler’s Conjecture; very slow.

def lander_parkin(N):
 tests = 0

 for b in range(1, N):
 for a0 in range(1, N):
 for a1 in range(1, N):
 for a2 in range(1, N):
 for a3 in range(1, N):
 # Count how many times we test for equality
 tests = tests + 1

 if a0**5 + a1**5 + a2**5 + a3**5 == b**5:
 # Spread printout over a few lines
 # to stay inside box
 msg = f"{a0}**5 + {a1}**5 + " + \
 f"{a2}**5 + {a3}**5 " + \
 f"== {b}**5"
 print(msg)
 return tests

 return tests

N = 21 # upper limit
import time

start = time.time() # record the start time of the loop
tests = lander_parkin(N)
end = time.time() # record the end time of the loop

print(f"Total time: {end - start:.2f} s")
print(f"Total number of tests: {tests}")

intermezzo: the lander–parkin counterexample 85

Code block 8.2. Second attempt at Euler’s Conjecture; triangular search.

def lander_parkin(N):
 tests = 0

 for b in range(1, N):
 for a0 in range(1, b): # only loop up to b
 for a1 in range(1, a0+1): # etc
 for a2 in range(1, a1+1):
 for a3 in range(1, a2+1):
 tests = tests + 1

 if a0**5 + a1**5 + a2**5 + a3**5 == b**5:
 msg = f"{a0}**5 + {a1}**5 + " + \
 f"{a2}**5 + {a3}**5 " + \
 f"== {b}**5"
 print(msg)
 return tests

 return tests

N = 21
import time

start = time.time()
tests = lander_parkin(N)
end = time.time()

print(f"Total time: {end - start:.2f} s")
print(f"Total number of tests: {tests}")

86 computational mathematics

a five-dimensional lattice, as we were previously doing, we are now
only searching in a five-dimensional triangular corner of it. How
much does this improve things by? Quite a lot. On the same laptop,
running this code yields

Total time: 0.03 s
Total number of tests: 33649

for a dramatic reduction in the number of points in the lattice we must
check (only about 1% of them for N = 21, even less for larger N).

There are still some points in the lattice that we are checking that
we shouldn’t. For example, if a5

0 ` a5
1 ` a5

2 ` a5
3 ą b5, there is no point in

incrementing a3 and checking that value also, since it can only increase
the left-hand side. Before moving on to other code improvements, let
us make this small refinement in code block 8.3.

Running code block 8.3 yields

Total time: 0.03 s
Total number of tests: 27674

for a small but worthwhile improvement (especially for larger N).
Looking at our code, we now notice some repetition. We evaluate

b**5 hundreds or thousands of times for each value of b; more gen-
erally, we evaluate the fifth power of the same integers over and over
again. We should cache the result of this computation, storing a map
from an integer to its fifth power, trading a modest increase in mem-
ory usage for a large increase in speed3. It is natural to store this as 3 Code optimisations are often of this

flavour, trading one attribute for an-
other.

a list (such that quintics[i] == i**5), and to compute this list
using a list comprehension:

quintics = [x**5 for x in range(N)]

which is done in code block 8.4.
For the same number of tests, code block 8.4 is about 3ˆ faster:

Total time: 0.01 s
Total number of tests: 27674

This code is now fast enough to run in anger—if you set N = 145,
the code in code block 8.4 finds the Lander–Parkin counterexample in
52.71 seconds on the same computer4. Much better than three days! 4 Of course the code can always be made

faster. One obvious step would be to
cache the lookups of the quintics list
inside the loop. But most code doesn’t
need to be the fastest it could possibly
be, it just needs to be fast enough.

intermezzo: the lander–parkin counterexample 87

Code block 8.3. Third attempt at Euler’s Conjecture; exclude more cases that cannot work.

def lander_parkin(N):
 tests = 0

 for b in range(1, N):
 for a0 in range(1, b):
 for a1 in range(1, a0+1):
 for a2 in range(1, a1+1):
 for a3 in range(1, a2+1):
 # Evaluate left-hand side of expression
 lhs = a0**5 + a1**5 + a2**5 + a3**5
 if lhs > b**5:
 break

 tests = tests + 1

 # We've already evaluated lhs, use it again
 if lhs == b**5:
 msg = f"{a0}**5 + {a1}**5 + " + \
 f"{a2}**5 + {a3}**5 " + \
 f"== {b}**5"
 print(msg)
 return tests

 return tests

N = 21
import time

start = time.time()
tests = lander_parkin(N)
end = time.time()

print(f"Total time: {end - start:.2f} s")
print(f"Total number of tests: {tests}")

88 computational mathematics

Code block 8.4. Fourth attempt at Euler’s Conjecture; cache the computation of fifth powers.

def lander_parkin(N):
 tests = 0

 # Cache map from x to x**5
 quintics = [x**5 for x in range(N)]

 for b in range(1, N):
 for a0 in range(1, b):
 for a1 in range(1, a0+1):
 for a2 in range(1, a1+1):
 for a3 in range(1, a2+1):
 lhs = (
 quintics[a0]
 + quintics[a1]
 + quintics[a2]
 + quintics[a3]
)
 if lhs > quintics[b]:
 break

 tests = tests + 1

 if lhs == quintics[b]:
 msg = f"{a0}**5 + {a1}**5 + " + \
 f"{a2}**5 + {a3}**5 " + \
 f"== {b}**5"
 print(msg)
 return tests

 return tests

N = 21
import time

start = time.time()
tests = lander_parkin(N)
end = time.time()

print(f"Total time: {end - start:.2f} s")
print(f"Total number of tests: {tests}")

9 Problem sheet 2

1. Eratosthenes of Cyrene (c. 276 BC–194 BC) was a Greek polymath,
making major contributions in mathematics, geography, poetry,
and astronomy. He was the chief librarian of the Library of Alexan-
dria, the greatest centre of learning in the classical world. He is
remembered foremost for making the first accurate estimate of the
circumference of the Earth. He did this by examining the shadows
cast by rods of known length in Alexandria and Syene; his estimate
was within one or two percent of the true value.

The Sieve of Eratosthenes is an algorithm for enumerating all prime
numbers up to a given value N. The algorithm proceeds as follows.

(a) Associate to each number n “ 2, . . . , N a Boolean flag for primal-
ity, true or false. Set all flags to true.

(b) Fetch the first unprocessed number n whose flag is true. (On the
first iteration, this will be n “ 2.) Terminate if n2 ą N.

(c) Mark all multiples of n as composite by setting their flag to false.

(d) Go to step 2.

On termination, the primes are those numbers with flag true.

Eratosthenes has now requested your help. He wants to count the
number of prime numbers up to N “ 1, 000, 000, but he is too busy
measuring the distance from Syene to Alexandria. Write a program
for Eratosthenes to calculate the number of primes p ď 1, 000, 000.
Your program should define a function primes(N) that returns a
list of primes up to N.

[Hint: it is more convenient to make the prime flag a numpy array with
prime = numpy.array([True for n in range(N+1)]),
rather than with a list. This means you can use convenient slicing and
striding notation for the update of all composite numbers for a given n.]

2. Alphonse de Polignac (1826–1863) was a French prince, military
officer, and mathematician. He was born to an aristocratic family:

90 computational mathematics

his grandmother had been governess to the children of Marie An-
toinette, while his father served as prime minister to Charles X until
the overthrow of the Bourbon dynasty in 1830. de Polignac served
in the Crimean War as an artillery officer, and published on number
theory in his spare time.

In his first year of studies at the École Polytechnique, de Polignac
made a famous conjecture: for every positive even integer k, there
are infinitely many prime gaps of size k. For k “ 2, this is known as
the twin primes conjecture. The conjecture remains open. Oxford’s
James Maynard was awarded a Fields Medal in 2022 in part for his
work on gaps between the primes.

de Polignac has now demanded your help. (He is an aristocrat,
after all.) He wishes to compute all twin primes (pairs pp, p `

2q with both prime) with p ă 2, 000, but the Crimean War has
diverted his attention. Using your primes(N) function, calculate
all twin primes with p ă 2, 000.

[Challenge: given p = primes(N), can you do this in one line?]

[Print the pairs of twin primes, rather than counting them.]

3. Johann Elert Bode (1747–1826) was a Holy Roman Imperial as-
tronomer. After the discovery of Uranus by Herschel, Bode realised
that Uranus had been mistakenly recorded as a star in several pre-
vious almanacs, allowing him to calculate its orbit for the first time.
He also proposed the name Uranus for the planet; since Saturn was
the father of Jupiter, the planet should be named after the father
of Saturn. (Herschel attempted to name it after King George III;
favourably disposed, the King awarded Herschel an annual stipend
of £200.)

In 1772, in a footnote in his book Anleitung zur Kenntniss des gestirn-
ten Himmels, Bode wrote

This latter point seems in particular to follow from the astonishing
relation which the known six planets observe in their distances from
the Sun. Let the distance from the Sun to Saturn be taken as 100,
then Mercury is separated by 4 such parts from the Sun. Venus is
4 ` 3 “ 7. The Earth 4 ` 6 “ 10. Mars 4 ` 12 “ 16. Now comes
a gap in this so orderly progression. After Mars there follows a
space of 4 ` 24 “ 28 parts, in which no planet has yet been seen.
Can one believe that the Founder of the Universe had left this space
empty? Certainly not. From here we come to the distance of Jupiter
by 4 ` 48 “ 52 parts, and finally to that of Saturn by 4 ` 96 “ 100
parts.

problem sheet 2 91

In units of AU (astronomical units, almost but not quite the average
distance from the Earth to the Sun), the Titius–Bode law is that the
average distance of planet n from the Sun is

dpnq “ 0.4 ` 0.3 ˆ 2n, n “ ´8, 0, 1, . . . , 8.

Bode has now requested your help. With the discoveries of Uranus,
Ceres, Neptune, and Pluto, he wishes to visualise whether the
Titius–Bode law is valid or not. Find a table of distances of planets
and dwarf planets to the Sun. Plot the measured distances of all
8 planets, as well as the dwarf planets Ceres and Pluto, ordering
them by distance to the Sun. (Recall that Ceres lies in Bode’s ‘gap’
between Mars and Jupiter.) On the same plot, plot the predictions
of the Titius–Bode law.

[Hint: you can plot multiple functions on the same plot with multiple
calls to plt.plot. For each call to plt.plot, pass an optional ar-
gument label="Label here". Put all matplotlib calls on adja-
cent lines to ensure they render correctly in the published version. Use
plt.legend() to show the labels.]

[Hint: look up the documentation for plt.xticks. Use this func-
tion to label the ticks on the x-axis Mercury, Venus, etc. rather than
´8, 0, 1,]

[Hint: the default resolution of plots saved in publish is rather low. Use

plt.gcf().set_dpi(300) to fix this.]

4. Karl Weierstrass was a Prussian mathematician who founded mod-
ern analysis. As an undergraduate in Bonn, he spent four years
neglecting his studies of law in favour of fencing and drinking,
and left without a degree. He became a teacher of mathematics in
a secondary school; while on sick leave from teaching he wrote a
paper on Abelian functions that won him an honourary doctorate
from Königsberg, and he eventually was appointed a Professor at
the University of Berlin. Among many other mathematical achieve-
ments, he formalised the definition of the continuity of a function
which you will meet in Hilary term.

In 1872 Weierstrass devised a function which is everywhere contin-
uous but nowhere differentiable. At the time many mathematicians
believed that continuous functions might be non-differentiable only
on limited sets, and his counterexample tore up several erroneous

92 computational mathematics

proofs that had implicitly made this assumption. Weierstrass’ func-
tion is given by

f pxq “

8
ÿ

k“0

ak cos
´

bkπx
¯

,

where a P p0, 1q and b is a positive odd integer satisfying ab ą

1 ` 3π{2. Poincaré denounced Weierstrass’ work as ‘‘an outrage
against common sense’’; Hermite described it as a ‘‘lamentable
scourge’’.

Weierstrass has now requested your help. To convince his con-
temporaries to overcome their incorrect intuition, he wishes to
visualise this function, but ill health means he cannot do the nec-
essary calculations. Write a program for Weierstrass that visualises
Weierstrass’ function on r´2, 2s with default values of parameters
a “ 0.3, b “ 23, approximating the infinite sum by default with 100
terms.

10 Introduction to symbolic computing

10.1 What is symbolic computing?

In this chapter we will study symbolic computing, the use of com-
puters to manipulate and solve mathematical expressions. Symbolic
computing is also sometimes known as computer algebra. Symbolic
computing systems aim to mechanise and automate the kind of ma-
nipulations you do with a pen on paper—as we will see, they will
allow us to simplify and factor expressions, differentiate functions, cal-
culate limits and indefinite integrals, and symbolically solve algebraic
and differential equations.

The symbolic computing system we will use in this course is
SymPy1 (henceforth sympy). Many other computer algebra systems 1 A. Meurer et al. SymPy: symbolic

computing in Python. PeerJ Computer
Science, page e103, 2017

exist, including Mathematica, Maple, GAP, Axiom, FriCAS, Magma,
and SageMath2. Familiarity with sympy will be useful for all of these. 2 The first computer algebra system,

Schoonschip, was written by Martinus
Veltman in 1963. Veltman went on to
win the Nobel Prize in Physics for his
work in particle theory.

Martinus Veltman, 1931–2021

To install sympy, at the terminal type

(terminal) pip install sympy

To get a sense of the distinction between symbolic computing and
numerical computing, one might consider taking square roots:

(python) import math

(python) print(f"√2**2: {math.sqrt(2)**2:.30f}")
√2**2: 2.000000000000000444089209850063

When we calculate a square root with math.sqrt, it stores a repre-
sentation of the number to 15 decimal digits. This means that when
we square the output again, the result is not quite 2 (but it is close).
By contrast, if we take the square root with sympy, it returns to us a
symbolic object whose defining feature is that its square is 2:

(python) import sympy as sp

(python) print(f"√2**2: {sp.sqrt(2)**2}")

94 computational mathematics

√2**2: 2

where the output is an integer (sympy’s own type of integer, but an
integer nonetheless)3. The output of sp.sqrt is not a number: it is a 3 Here we have imported sympy as sp

to abbreviate our code. We will always
explicitly access sympy objects via sp.,
to clearly distinguish symbolic objects
from others.

symbol representing a number via its mathematical properties.
Symbolic computing is an extremely powerful assistant in learning

and doing mathematics. When exploring a subject, it takes the burden
of the sometimes tedious calculations involved. When your calcula-
tions on a problem sheet go awry, you can use the computer to find
the step with a mistake. Mastering the basics of it will ease your path
through your undergraduate degree.

Symbolic computing is an old idea, dating back to the very first
conceptions of steam-powered computers. In 1843, in her translator’s
notes accompanying a paper describing Charles Babbage’s Analytical
Engine, Ada Lovelace wrote4 4 L. F. Menabrea of Turin, Officer of

the Military Engineers. Sketch of the
analytical engine invented by Charles
Babbage, Esq. Scientific Memoirs, Selected
from the Transactions of Foreign Academies
of Science and Learned Societies, 3:666–731,
1843. Translated by A. King, Countess of
Lovelace.

Many persons who are not conversant with mathematical studies imag-
ine that because the business of the engine is to give its results in nu-
merical notation, the nature of its processes must consequently be
arithmetical and numerical rather than algebraic and analytical. This is
an error. The engine can arrange and combine its numerical quantities
exactly as if they were letters or any other general symbols; and in fact
it might bring out its results in algebraic notation were provisions made
accordingly5. 5 Lovelace wrote the first ever computer

program, to compute Bernoulli numbers
on the Analytical Engine. The Analytical
Engine was never built; the first pro-
grammable computer was built nearly a
century later, by Konrad Zuse in 1941.

Figure 10.1: Ada King, Countess
of Lovelace, 1815–1852

10.2 Symbols and expressions

Symbolic computing is built on symbols, unsurprisingly. In sympy we
can make a symbol with sp.Symbol. When making a symbol, you
pass a name that sympy will use to render the symbol:

(python) x = sp.Symbol("x")

(python) y = sp.Symbol("y")

Giving a symbol a variable name different to its internal name is a
path to madness; please never do it. With these symbols, we can make
expressions:

(python) 2*x + x + 5
3*x + 5

(python) 2*x/6
x/3

(python) 2*x/x
2

introduction to symbolic computing 95

We see that sympy automatically simplifies expressions using the
same algebraic rules you might on paper. However, it does not do
trigonometric simplifications by default:

(python) sp.sin(x)**2 + sp.cos(x)**2
sin(x)**2 + cos(x)**2

To simplify this expression, we need an explicit call to sp.simplify:

(python) sp.simplify(sp.sin(x)**2 + sp.cos(x)**2)
1

There are other simplifications that sympy does not do by default.
If you give it an expression in factored form, it prefers it, as there is
more information in the factored form:

(python) (x-3)*(x+5)
(x - 3)*(x + 5)

To ask sympy to expand the brackets, use sp.expand:

(python) sp.expand((x-3)*(x+5))
x**2 + 2*x - 15

To do the opposite, use sp.factor:

(python) sp.factor(x**2 + 2*x - 15)
(x - 3)*(x + 5)

This does not always help, however. The algorithm in sp.factor
returns factors that are irreducible over the rationals; factors associated
with irrational roots will not be returned. In addition, there exists no
algorithm that will exactly find the roots of all polynomials of degree 5
and above. Here are examples where sp.factor tells us nothing:

Évariste Galois, 1811–1832

(python) sp.factor(x**2 - 2)
x**2 - 2

(python) sp.factor(x**5 - x - 1)
x**5 - x - 1

This latter polynomial is an example of a non-solvable polynomial,
one that cannot be solved in radicals6. 6 The investigation of such problems

inspired Évariste Galois to lay the
foundations of group theory and Galois
theory, solving a problem that had been
open for 350 years. He died in a duel
at the age of 20. For an example of how
sympy can be used to explore Galois
theory, see
C. S. Covaci. The Unsolvability of the

Quintic: an Insight into Galois Theory.
Master’s thesis, Universidad Politécnica
de Madrid, 2022

You can also factor expressions with multiple variables:

(python) xv = sp.symbols("x0:2")

(python) xv
(x0, x1)

96 computational mathematics

(python) expr = xv[0]**2 * xv[1] + xv[0] * xv[1]

(python) expr
x0**2*x1 + x0*x1

Here we make a tuple of symbols using a similar syntax to range—the
upper limit is not included. We make an expression with a common
factor x0x1. sp.factor can identify this for us:

(python) sp.factor(expr)
x0*x1*(x0 + 1)

Sympy includes various useful mathematical constants, like π

(sp.pi), i (sp.I), and e (sp.E). Unlike their counterparts in the
mathmodule, these are symbols with the right mathematical proper-
ties, not approximations:

(python) sp.I**2
-1

(python) sp.E**(sp.I * sp.pi)
-1

encoding Euler’s identity eiπ “ ´1. Sympy has a constant representing
8, which will be useful later in limits and integrals, given by sp.oo.
Sympy also has symbolic versions of all the mathematical functions
you are familiar with, like sin, atan, exp, log, as well as some you
will meet in your undergraduate studies, like the Gamma function
Γpzq, Bessel functions, Airy functions, spherical harmonics, the Meijer-
G function, and many others7. 7 For a list, see https://docs.sympy.

org/latest/modules/functions/
special.html.

10.3 Assumptions and evaluation

By default, sympy treats all symbols as representing complex num-
bers in C. However, there are many simplifications that only hold if a
variable is real, positive, integer, etc. For example, the relation

log pexp pxqq “ x

only holds for x P R. As a result, sympy does not simplify such an
expression:

(python) z = sp.Symbol("z", complex=True) # default

(python) sp.log(sp.exp(z))
log(exp(z))

but if we tell sympy a variable is real, it will:

https://docs.sympy.org/latest/modules/functions/special.html
https://docs.sympy.org/latest/modules/functions/special.html
https://docs.sympy.org/latest/modules/functions/special.html

introduction to symbolic computing 97

(python) r = sp.Symbol("r", real=True)

(python) sp.log(sp.exp(r))
r

You can also tell sympy that a variable is positive, which enables fur-
ther simplifications:

(python) p = sp.Symbol("p", positive=True)

(python) sp.sqrt(r**2)
Abs(r)

(python) sp.sqrt(p**2)
p

or tell sympy that a variable is an integer:

(python) n = sp.Symbol("n", integer=True)

(python) (-1)**(2*p)
(-1)**(2*p)

(python) (-1)**(2*n)
1

In general, when solving complicated problems with sympy, it is best
practice to give it as many assumptions as possible. As of writing,
the list of attributes you can assume is: positive, nonpositive,
nonnegative, extended_nonzero, real, finite, hermitian,
nonzero, commutative, zero, extended_real, infinite, extended_nonpositive,
imaginary, negative, extended_nonnegative, extended_negative,
extended_positive, complex, integer, irrational, algebraic,
rational, transcendental, noninteger.

To evaluate an expression, we use its .subsmethod:

(python) x = sp.Symbol("x")

(python) expr = x**17 + x**6 - x**3

(python) expr.subs({x: 6})
16926659491176

Here .subs takes in a dictionary mapping the symbols to be substi-
tuted to their values. This does not change the original expression.
You can also substitute expressions in for symbols:

98 computational mathematics

(python) expr.subs({x: x**2})
x**34 + x**12 - x**6

Substituting values does not always yield a number:

(python) expr = sp.sin(x**3 * sp.pi) + sp.exp(sp.cos(x))

(python) expr.subs({x: 1.5})
sin(1.375*pi) + 1.07329912758172

Figure 10.2: Alonzo Church,
1903–1995

To numerically evaluate this, use sp.N:

(python) sp.N(expr.subs({x: 1.5}))
0.149419595070430

By default this returns 15 decimal places. You can change this with the
second argument:

(python) sp.N(expr.subs({x: 1.5}), 40)
0.1494195950704302157183206492089248124188

Note that this returns sympy’s own (arbitrary-precision) floating-
point datatype. This may or may not be understood by other Python
packages; if you run into trouble interoperating with another package,
cast the output of sp.N to Python’s native floating-point datatype
using float.

A neat feature of sympy is that you can use it to make a Python
function that evaluates your expression with sp.lambdify8. This 8 This name refers to λ-calculus, a

formal system of mathematical logic for
expressing computation introduced by
Alonzo Church in 1936. Alongside his
doctoral student Alan Turing, Church
is considered one of the founders of
computer science.

can then be used as normal Python, e.g. for plotting with matpotlib.

(python) f = sp.lambdify(x, expr)

(python) f(1.5)
0.14941959507043046

10.4 Solving algebraic equations

We can use sympy to solve algebraic equations using sp.solveset.
We write all terms of the equation on the left-hand side, to make an
expression whose roots we wish to find9. For example, to find the 9 Alternatively, you can spec-

ify a right-hand side with
sp.solveset(sp.Eq(lhs, rhs), x).

solutions of x2 “ 5, we might do

(python) x = sp.Symbol("x")

(python) sp.solveset(x**2 - 5, x)

introduction to symbolic computing 99

{-sqrt(5), sqrt(5)}

The first argument is the expression to find the roots of; the second
argument is the variable to solve for10. The solution sets may not 10 The variable to solve for is optional if

there is only one free symbol.always be finite. For example, solving cos x “ sin x with

(python) sp.solveset(sp.cos(x) - sp.sin(x), x)

yields a set which in mathematical notation11 is 11 A very useful feature of sympy is that
the sp.print_latex function to any
sympy object makes LaTeX code for
rendering it.

"

2nπ `
5π

4

ˇ

ˇ

ˇ

ˇ

n P Z

*

Y

!

2nπ `
π

4

ˇ

ˇ

ˇ
n P Z

)

.

As with sp.factor, there are fundamental mathematical limita-
tions to equation solvers in any symbolic computing system: Richard-
son’s theorem asserts that finding a complete set of solutions for an
equation is undecidable12. As an example where sympy fails to tell us 12 D. Richardson. Some undecid-

able problems involving elementary
functions of a real variable. Journal of
Symbolic Logic, 33(4):514–520, 1969

anything useful, consider solving cos x “ x:

(python) sp.solveset(sp.cos(x) - x, x)
ConditionSet(x, Eq(-x + cos(x), 0), Complexes)

which in mathematical notation is

tx | x P C ^ ´x ` cos pxq “ 0u ,

or in other words the solution set returned is tautological (^ means
‘and’); it just says that the solution is the set of complex numbers
satisfying the equation. In Prelims Constructive Mathematics you will
learn how to prove that this equation has in fact a unique real solution,
and study algorithms for approximating its solution with lightning
speed (and many other equations that simply cannot be handled
symbolically).

Sympy can also solve systems of linear and nonlinear equations. To
solve a system of linear equations, use sp.linsolve:

(python) (x, y, z) = sp.symbols("x, y, z")

(python) sp.linsolve([3*x + 5*y - 3*z - 1, x + y + z - 3], (x, y, z))
{(7 - 4*z, 3*z - 4, z)}

Here we have supplied two equations in three unknowns, so there is
at least a one-dimensional family of solutions13. To solve a system of 13 This follows from the rank-nullity

theorem, which you will meet in M1:
Linear Algebra.

nonlinear equations, use sp.nonlinsolve:

(python) sp.nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], (x, y))
{(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}

100 computational mathematics

Lastly, we mention the sp.solve function. This has largely been
superceded by sp.solveset, since it does not generally return all
solutions to an equation. Considering the same example as before,

(python) sp.solve(sp.cos(x) - sp.sin(x), x)
[pi/4]

we see that sp.solve yields only partial information. However, it
is worth knowing, since it is better than sp.solveset at algebraic
manipulations14. If you have an expression involving various symbols 14 In particular, sp.solve is better

than sp.solvesetwhen it comes
to algebraic manipulations involving
sympy functions, which we discuss
below in section 10.7.

and want to write one symbol in terms of the others, you should use
sp.solve. For example,

(python) sp.solve(3*x + sp.sin(y)**2 * sp.exp(z), x)
[-exp(z)*sin(y)**2/3]

10.5 Differentiation and integration

Sympy understands calculus, not just algebra. It can therefore be very
useful for solving problems on your problem sheets in other courses,
or verifying your answers. To differentiate an expression, use sp.diff:

(python) x = sp.Symbol("x")

(python) expr = sp.sin(sp.exp(x)) + 3*sp.cos(x**2)

(python) sp.diff(expr, x)
-6*x*sin(x**2) + exp(x)*cos(exp(x))

You can also use the equivalent method expr.diff(x). You can dif-
ferentiate an expression multiple times:

(python) sp.diff(expr, x, 2)
-12*x**2*cos(x**2) - exp(2*x)*sin(exp(x)) + exp(x)*cos(exp(x)) - 6*sin(x**2)

There is a fair chance you would make a mistake if you had to calcu-
late the 20th derivative of this expression, but sympy handles it in a
second: sp.diff(expr, x, 20) yields

3145728*x**20*cos(x**2) +
298844160*x**18*sin(x**2) -
11430789120*x**16*cos(x**2) -
228615782400*x**14*sin(x**2) +
2600504524800*x**12*cos(x**2) +
17163329863680*x**10*sin(x**2) -
64362486988800*x**8*cos(x**2) -

introduction to symbolic computing 101

128724973977600*x**6*sin(x**2) +
120679663104000*x**4*cos(x**2) +
40226554368000*x**2*sin(x**2) +
exp(20*x)*sin(exp(x)) -
190*exp(19*x)*cos(exp(x)) -
15675*exp(18*x)*sin(exp(x)) +
741285*exp(17*x)*cos(exp(x)) +
22350954*exp(16*x)*sin(exp(x)) -
452329200*exp(15*x)*cos(exp(x)) -
6302524580*exp(14*x)*sin(exp(x)) +
61068660380*exp(13*x)*cos(exp(x)) +
411016633391*exp(12*x)*sin(exp(x)) -
1900842429486*exp(11*x)*cos(exp(x)) -
5917584964655*exp(10*x)*sin(exp(x)) +
12011282644725*exp(9*x)*cos(exp(x)) +
15170932662679*exp(8*x)*sin(exp(x)) -
11143554045652*exp(7*x)*cos(exp(x)) -
4306078895384*exp(6*x)*sin(exp(x)) +
749206090500*exp(5*x)*cos(exp(x)) +
45232115901*exp(4*x)*sin(exp(x)) -
580606446*exp(3*x)*cos(exp(x)) -
524287*exp(2*x)*sin(exp(x)) +
exp(x)*cos(exp(x)) -
2011327718400*cos(x**2)

Sympy can also compute partial derivatives of expressions involv-
ing multiple symbols.

(python) y = sp.Symbol("y")

(python) expr = sp.sin(x*16 * sp.exp(y)) + sp.gamma(y**2) * sp.erf(x)

(python) sp.diff(expr, x, 1)
16*exp(y)*cos(16*x*exp(y)) + 2*exp(-x**2)*gamma(y**2)/sqrt(pi)

(python) sp.diff(expr, x, 2, y, 2) # mixed partial derivatives

8*(8192*x**2*exp(4*y)*sin(16*x*exp(y)) -
2*x*y**2*exp(-x**2)*gamma(y**2)*polygamma(0, y**2)**2/sqrt(pi) -
2*x*y**2*exp(-x**2)*gamma(y**2)*polygamma(1, y**2)/sqrt(pi) -
2560*x*exp(3*y)*cos(16*x*exp(y)) -
x*exp(-x**2)*gamma(y**2)*polygamma(0, y**2)/sqrt(pi) -
128*exp(2*y)*sin(16*x*exp(y)))

Sympy can calculate both indefinite and definite integrals, for both
single-variable and multi-variable expressions. Here are some exam-
ples. We first consider integrating the probability density function of

102 computational mathematics

the Gaussian distribition
ż 8

´8

1
?

2π
exp

ˆ

´
1
2

x2
˙

dx

with

(python) sp.integrate(1/sp.sqrt(2*sp.pi) * sp.exp(-x**2/2), (x, -sp.oo, +sp.oo))
1

Here the second argument is a tuple describing the variable to inte-
grate against, the lower limit of the integral, and the upper limit of the
integral (recall that sp.oo represents 8). The limits of our definite
integrals can also be symbols. For example, the error function erf of-
ten arises in statistics; if a random variable Y is normally distributed
with mean 0 and standard deviation 1{

?
2, the probability that Y falls

within r´x, xs is given by erf x. It is defined as

erf x “
2

?
π

ż x

0
exp

´

´t2
¯

dt.

Sympy can identify this:

(python) t = sp.Symbol("t")

(python) sp.integrate(2/sp.sqrt(sp.pi) * sp.exp(-t**2), (t, 0, x))
erf(x)

Indefinite integrals can also be handled, by leaving out the limits of
integration15. This can handle imposing integrals such as

15 Symbolic computing packages gener-
ally use the Risch algorithm for finding
antiderivatives. Describing the algo-
rithm takes over 100 pages. Generations
of calculus students worldwide depend
on it.
R. H. Risch. The problem of inte-

gration in finite terms. Transactions
of the American Mathematical Society,
139(0):167–189, 1969

ż

x2 ` 2x ` 1 ` p3x ` 1q
a

x ` log x
x

a

x ` log xpx `
a

x ` log x
dx

with

(python) top = x**2 + 2*x + 1 + (3*x+1)*sp.sqrt(x + sp.log(x))

(python) bot = x*sp.sqrt(x + sp.log(x)) * (x + sp.sqrt(x + sp.log(x)))

(python) sp.integrate(top / bot, x)
2*sqrt(x + log(x)) + 2*log(x + sqrt(x + log(x)))

Note that the constant of integration is omitted. Sympy’s indefinite
integral algorithm is not perfect, however16. Chebyshev17 calculated

16 Sympy does not implement the
full Risch algorithm. In fact, there
is no known full implementation of
the entire algorithm in any pack-
age. For a discussion, see https:
//mathoverflow.net/questions/
374089/does-there-exist-a-
complete-implementation-of-
the-risch-algorithm.

17 P. L. Chebyshev. Oeuvres de P. L.
Tchébychef, volume 1. Commissionaires
de l’Académie Impériale des Sciences,
1899–1907

the elementary antiderivative of
x

?
x4 ` 10x2 ´ 96x ´ 71

,

but sympy cannot find it:

https://mathoverflow.net/questions/374089/does-there-exist-a-complete-implementation-of-the-risch-algorithm
https://mathoverflow.net/questions/374089/does-there-exist-a-complete-implementation-of-the-risch-algorithm
https://mathoverflow.net/questions/374089/does-there-exist-a-complete-implementation-of-the-risch-algorithm
https://mathoverflow.net/questions/374089/does-there-exist-a-complete-implementation-of-the-risch-algorithm
https://mathoverflow.net/questions/374089/does-there-exist-a-complete-implementation-of-the-risch-algorithm

introduction to symbolic computing 103

(python) sp.integrate(x/sp.sqrt(x**4 + 10*x**2 - 96*x - 71), x)
Integral(x/sqrt(x**4 + 10*x**2 - 96*x - 71), x)

Mathematica, however, can. Intriguingly, if the constant term 71 is
changed to 72, it is not possible to represent its antiderivative in terms
of elementary functions18. 18 G. Zolotareff. Sur la méthode d’inté-

gration de M. Tchébychef. Mathematische
Annalen, 5(4):560–580, 1872

We close with an example of multivariate integration. Consider
a tetrahedron with its apex at the origin and edges of length ` along
the x-, y-, and z-axes. By integrating 1 over the tetrahedron, we can
calculate its volume with

ż `

0

ż `´x

0

ż `´x´y

0
1 dz dy dx,

which evaluates to `3{6. In code this becomes

(python) z = sp.Symbol("z")

(python) l = sp.Symbol("l")

(python) sp.integrate(1, (z, 0, l-x-y), (y, 0, l-x), (x, 0, l))
l**3/6

Exercise 10.1. Consider a curve parameterised by t P r0, 1s, given by

px, y, zq “ p0, t, t2q. (10.5.1)

Calculate the arclength L of this curve with

L “

ż 1

0

b

pdx{dtq2 ` pdy{dtq2 ` pdz{dtq2 dt. (10.5.2)

Exercise 10.2. Evaluate the integral19 19 Doing this by hand might require
applying integration by parts many
times.

f ptq “

ż t

1
x10 exp x dx. (10.5.3)

Exercise 10.3. A falling object o encounters a moving platform p
accelerating upwards. Their heights for a given time t ě 0 are

hoptq “ h0 ´ v0t ´
1
2

gt2, (10.5.4)

hpptq “ vpt `
1
2

qt2, (10.5.5)

104 computational mathematics

where v0, vp ě 0 are the initial velocities, and g, q ą 0 are the (con-
stant) accelerations. Find the initial velocity v0 such that when the
object and platform collide, they are moving at the same speed.

10.6 Limits, sequences, and series

Sympy can evaluate limits like

lim
xÑ8

x sin
ˆ

1
x

˙

“ 1, lim
xÑ8

x exp p´xq “ 0,

with

(python) sp.limit(x*sp.sin(1/x), x, sp.oo)
1

(python) sp.limit(x*sp.exp(-x), x, sp.oo)
0

This uses the Gruntz algorithm20 for calculating the symbolic limits. 20 D. Gruntz. On computing limits in a
symbolic manipulation system. PhD thesis,
ETH Zürich, 1996

By default, this evaluates the limit from the right: to specify whether
you want a right-sided limit or left-sided limit, use '+' or '-' respec-
tively. Here we calculate

lim
xÑ0`

d
dx

|x| “ 1, lim
xÑ0´

d
dx

|x| “ ´1.

(python) r = sp.Symbol("r", real=True)

(python) sp.limit(sp.diff(sp.Abs(r), r), r, 0, '+')
1

(python) sp.limit(sp.diff(sp.Abs(r), r), r, 0, '-')
-1

Sympy can calculate the limits of sequences. Here is sympy calcu-
lating the answers to some of your Analysis I homework:

(python) n = sp.Symbol("n")

(python) sp.limit_seq((n**2 + n + 1) / (n + 1), n) # Sheet 3
oo

(python) sp.limit_seq((1 + 1/n)**n, n)
E

(python) sp.limit_seq(((1 - sp.I)*n) / (n + sp.I), n)
1 - I

(python) sp.limit_seq(n**2 / sp.factorial(n), n) # Sheet 4
0

introduction to symbolic computing 105

Sympy can also evaluate series, although the algorithm is far from
robust21. Here is the one piece of Analysis I homework it can do:

21 If you wanted to get started with
open-source mathematical software
development, this could be a good place
to start contributing to sympy; it appears
sympy lacks strategies that are known
by Prelims students.(python) n = sp.Symbol("k")

(python) sp.Sum((2*k + 1)/((k+1)*(k+2)**2), (k, 0, sp.oo)).doit() # Sheet 5
-4 + pi**2/2

Here the .doit()method is required to evaluate the sum, rather
than to represent it symbolically.

10.7 Solving differential equations

Sympy can solve (some) ordinary differential equations. For example,
let us consider the solution of

x f 2pxq ` f 1pxq “ x3 (10.7.1)

subject to
f p1q “ 0, f 1p2q “ 1. (10.7.2)

To represent an unknown function, we define a sp.Function object:

(python) x = sp.Symbol("x")

(python) f = sp.Function("f")(x)

Here we indicate to sympy that the function depends on x. We can
represent the derivatives, integrals, or evaluations of this unknown
function symbolically:

(python) f.diff(x)
Derivative(f(x), x)

(python) f.integrate(x)
Integral(f(x), x)

(python) f.subs({x: 0})
f(0)

To represent the differential equation (10.7.1), we use a sp.Eq object:

(python) eq = sp.Eq(x*f.diff(x, 2) + f.diff(x), x**3)

(python) eq.lhs
x*Derivative(f(x), (x, 2)) + Derivative(f(x), x)

(python) eq.rhs
x**3

106 computational mathematics

The syntax for constructing the equation is sp.Eq(lhs, rhs),
and we can use the attributes .lhs and .rhs to extract these after-
wards. Let us now pass this to sympy’s differential equation solver,
sp.dsolve:

(python) sp.dsolve(eq, f)
Eq(f(x), C1 + C2*log(x) + x**4/16)

which returns a sp.Eq representing

f pxq “ C1 ` C2 log pxq `
x4

16
, (10.7.3)

the general form of the solution, with two unknown constants of inte-
gration C1 and C2. If we wished to set these by hand, we could do so
as follows:

(python) sol = sp.dsolve(eq, f).rhs

(python) tuple(sol.free_symbols)
(x, C1, C2)

(python) (_, C1, C2) = tuple(sol.free_symbols)

(python) sol.subs({C1: 3, C2: 5})
x**4/16 + 5*log(x) + 3

On the first line, we get the expression for the general solution via
the right-hand side of the returned equation. On the second line,
we inspect its free symbols (calling tuple to convert a set, which
we cannot index, to a tuple, which we can). On the third line, we
use tuple unpacking to assign variables to the unknown constants of
integration C1 and C2; assigning to _ is a convention which denotes a
variable we do not care about. On the fourth line, we substitute C1 “ 3
and C2 “ 5 to get a particular solution of the differential equation.

Of course, as you know from Introductory Calculus, the reason why
these unknown constants of integration arise is because we did not
specify the initial conditions (10.7.2). To do so, we build a dictionary
mapping expressions to values that should be satisfied by the solution:

(python) ics = {f.subs({x: 1}): 0, f.diff(x).subs({x: 2}): 1}

We can now pass these to sp.dsolve as an optional argument:

(python) sp.dsolve(eq, f, ics=ics).rhs
x**4/16 - 2*log(x) - 1/16

introduction to symbolic computing 107

which returns the solution to (10.7.1)–(10.7.2)

f pxq “
x4

16
´ 2 log pxq ´

1
16

. (10.7.4)

Exercise 10.4. Verify with sympy that (10.7.4) satisfies (10.7.1)–(10.7.2).

Exercise 10.5. Plot the solution (10.7.4) using sp.lambdify, linspace
from the numpy library, and matplotlib.

10.8 Coda: rendering sympy objects in published documents

It is possible to render a sympy object in a document published
as described in chapter 5. To do so, call the render function that
publish.py offers. It can be used like so:

Code block 10.1. Demonstrating publish.render.

from publish import *
import sympy as sp

Basic usage of publish.render
The function makes LaTeX output from sympy objects
in published documents.

x = sp.Symbol("x")
Make some expression
expr = sp.E + sp.pi + sp.gamma(x)
render(expr)

Optional name argument
You can also give an optional name argument
to publish.render. If this is supplied, it
will render "name = " the expression supplied.

Make a polynomial
alpha = x**3 + 3*x + 10
render(alpha, name=r"\alpha(x)")

publish()

108 computational mathematics

This should yield a .html file like the image below.

introduction to symbolic computing 109

from publish import *

import sympy as sp

Basic usage of publish.render

The function makes LaTeX output from sympy objects in published documents.

x = sp.Symbol("x")

Make some expression

expr = sp.E + sp.pi + sp.gamma(x)

render(expr)

Optional name argument

You can also give an optional name argument to publish.render. If this is supplied, it will render

"name = " the expression supplied.

Make a polynomial

alpha = x**3 + 3*x + 10

render(alpha, name=r"\alpha(x)")

Γ (x) + e + π

α(x) = x
3 + 3x + 10

11 Problem sheet 3

1. Giuseppe Luigi Lagrangia (1736–1813) was a Piedmontese mathe-
matician, physicist, and astronomer. Born in Turin, he first studied
law before switching to mathematics after reading a paper by Ox-
ford’s Edmund Halley on the use of algebra in optics. While serv-
ing as a mathematics instructor at a Piedmontese artillery school,
he invented the calculus of variations, a central mathematical tool
in understanding the universe. In 1765 he was persuaded to move
to Berlin, where he wrote his magnum opus, the Mécanique Analy-
tique, which established the Lagrangian formulation of Newtonian
mechanics. In 1786 the Prussian king died, and Lagrangia moved
to an apartment in the Louvre. As a result he was caught up in the
French Revolution; Lagrangia was specifically exempted by name
in the decree of October 1793 that ordered all foreigners to leave
France, and wound up proposing the use of decimal subdivision in
the metric system. He became a firm favourite of Napoleon, who
appointed him a senator. Lagrangia was the first signatory of the
annexation of Piedmont to France in 1802. He died in 1813, two
years before Napoleon’s final defeat by the Irish general Wellington
at Waterloo.

Roughly speaking, Lagrangian mechanics formulates problems
in terms of tradeoffs between energies, whereas the Newtonian
mechanics you study in Prelims M4 Dynamics formulates problems
in terms of forces. One of the many benefits of this approach is that
it allows for the use of generalised coordinates: you can express the
state of the system in terms of whatever variables are convenient.
For example, when describing the motion of a pendulum, in a
Newtonian framework one must enforce the constraint that xptq2 `

yptq2 “ constant, but in a Lagrangian framework this is enforced
naturally by describing the state of the system with the angle θptq.
No matter the coordinates used to describe the system, Lagrangian
mechanics allows you to derive the associated equations of motion.
You will learn more if you take the third-year option B7.1 Classical
Mechanics.

112 computational mathematics

Consider the orbit of the earth (of mass m P R`) around the sun
(of mass M P R`), which is fixed to lie at the origin. It is natural to
describe the system in terms of the generalised (polar) coordinates
rptq ě 0 and θptq. The associated kinetic energy of the system is
given by

Tpr, θ, 9r, 9θq “
1
2

m
´

9x2 ` 9y2
¯

,

where we consider xptq, yptq to be functions of pr, θq given by

x “ r cos θ, y “ r sin θ.

The potential energy of the system is given by the Kepler potential

Vpr, θ, 9r, 9θq “ ´
GMm

r
,

where G P R` is the gravitational constant. With these, we define
the Lagrangian as the difference between these energies,

Lpr, θ, 9r, 9θq “ Tpr, θ, 9r, 9θq ´ Vpr, θ, 9r, 9θq.

Lagrange has now asked for your help. He wishes to derive the
equations of motion for the system (called the Euler–Lagrange
equations1), given by 1 Lagrange wrote Ce sont ces équations

qui serviront à déterminer la courbe décrite
par le corps M et sa vitesse à chaque instant
….
J.-L. Lagrange. Applications de la

méthode exposée dans le mémoire
précédent à la solution de différents
problèmes de dynamique. Mélanges
de Philosophie et de Mathématiques de la
Société Royale de Turin, 2:196–298

d
dt

BL
B 9θ

“
BL
Bθ

, (‹)

d
dt

BL
B 9r

“
BL
Br

, (:)

but is otherwise occupied surviving the French Revolution.

(a) Verify that the Lagrangian for the system is given by

Lpr, θ, 9r, 9θq “
1
2

m
´

9r2 ` r2 9θ2
¯

`
GMm

r
. (;)

(b) Observe that (;) only depends on 9θ; it is independent of θ. This
means that the right-hand side of (‹) is zero, and that BL{B 9θ

must be a constant, ` ą 0. (In fact, ` is the angular momentum.)
Use this to derive a symbolic expression for 9θ in terms of `, m,
and r.

(c) Calculate the Euler–Lagrange equation (:). Using the expression
derived in (b), verify that it reduces to

:r “
`2

m2r3 ´
GM
r2 . (˛)

problem sheet 3 113

[Hint: for (b), you should use sp.solve instead of sp.solveset.]

[Comment: equation (˛) cannot be solved in closed form for rptq. How-
ever, it is possible to derive an equation for rpθq from (˛), which is possible
to solve analytically; this derived equation is known as the orbit equation.
The orbit equation hidden in (˛) reveals that the orbits of the planets are
given by conic sections: circles, ellipses, parabolas, and hyperbolas. This
was first understood in 1710 by Johann Bernoulli; Newton included it in
the second edition of the Principia in 1713, without attribution. Details
of the derivation can be found in e.g. section I.2.2 of Hairer, Lubich &
Wanner (2006)2.] 2 E. Hairer, C. Lubich, and G. Wan-

ner. Geometric Numerical Integration,
volume 31 of Springer Series in Compu-
tational Matheematics. Springer-Verlag,
2006

2. Wolfgang Pauli (1900–1958) was an Austrian physicist. He finished
high school in 1918; he wrote his first scientific paper two months
later, on Einstein’s theory of general relativity, and received his
PhD in 1921. He was one of the founders of quantum mechanics,
formulating the Pauli exclusion principle and the concept of spin.
He worked in Zürich from 1928–1940; the Anschluss of Germany
and Austria caused him difficulties in Switzerland, and he fled to
the United States. He was awarded the Nobel Prize in Physics in
1933. He was a relentless perfectionist, once famously describing
a theory as ‘not even wrong’. Among many other contributions,
he was the first to successfully describe the hydrogen atom using
quantum mechanics; he submitted his paper on the subject ten days
before Schrödinger’s.

The wave function for the non-relativistic hydrogen atom in spheri-
cal polar coordinates pr, θ, φq is given by

Ψn`m “ Rn`prqYm
` pθ, φq,

where n “ 1, 2, . . . is the principal quantum number (describing
the shell the electron occupies), ` “ 0, 1, . . . n ´ 1 is the azimuthal
quantum number (describing the magnitude of the angular mo-
mentum), and m “ ´`, . . . , ` is the magnetic quantum number
(describing the projection of the angular momentum onto the z-
axis). Here Ym

` is a spherical harmonic function of degree ` and
order m, while the radial part of the wave function is given by

Rn`prq “

d

ˆ

2
na

˙3
pn ´ ` ´ 1q!
2nrpn ` `q!s

e´r{na
ˆ

2r
na

˙`
”

L2``1
n´`´1p2r{naq

ı

.

Here Lα
nprq is an associated Laguerre polynomial and a is the Bohr

radius (a positive real physical constant whose value is not re-
quired).

Pauli has now asked for your help. He wishes to compute the mean
µ and standard deviation σ of the distance of the electron to the

114 computational mathematics

nucleus for a given quantum state pn, `q via

µn` “

ż 8

0
R2

n`r
3dr and σn` “

d

ˆ
ż 8

0
R2

n`r
4dr

˙

´

ˆ
ż 8

0
R2

n`r
3dr

˙2
,

but he is too busy formulating the Pauli exclusion principle.

(a) Write a program for Pauli that computes

f pn, `, kq “

ż 8

0
R2

n`r
kdr,

for given (i.e. specified, not symbolic) integer values of n, `, k,
in terms of a. Verify that for the ground state pn, `q “ p1, 0q,
µ10 “ 3a{2 and σ10 “

?
3a{2.

(b) Using your code, plot the mean distance µn0 in units of a for
n “ 1, . . . , 8, with error bars given by the associated standard
deviations. On the same plot, plot µn1 with error bars given by
the associated standard deviations for ` “ 1, n “ 2, . . . , 8. Are the
higher-` states closer to the nucleus, or further away, on average?

[Hint: the associated Laguerre polynomials Lα
nprq are available in sympy

as

sympy.assoc_laguerre(n, alpha, r).]

[Hint: you can plot data with error bars with

matplotlib.pyplot.errorbar.

You might use the keyword arguments yerr, fmt, color, ecolor,
label, and capsize.]

[Comment: the spherical harmonics Ym
` pθ, φq are available in sympy as

sympy.Ynm(l, m, theta, phi), but you do not need this for the
question.]

12 Introduction to numerical computing

What does it mean to solve a mathematical problem?
One understanding is that a problem is solved when we have a

closed-form expression for the objects we seek to know. We want
a formula, derived by pen-and-paper calculations or via a symbolic
computing engine. For example, we consider that the problem of
finding the roots of a quadratic equation is solved by the quadratic
formula. A more advanced example is that the Schrödinger equation
of quantum mechanics is exactly solvable for the case of the hydrogen
atom, with one electron orbiting one proton: we know the formula for
the wave function, and may thereby compute everything we wish to
know about the system.

This conception of mathematical solution soon meets its limits,
however. We can solve for the roots of a quadratic, cubic, or quartic
equation, but no general formula exists for the roots of polynomials
of degree five or higher1. We can solve for the wave function of the 1 This result is known as the Abel–

Ruffini theorem; Ruffini gave an incom-
plete proof in 1799, with Abel proving it
rigorously in 1824.

hydrogen atom, but no analytical solution exists for the wave function
of the helium atom, or for any other heavier element. In fact, most
mathematical problems do not permit solutions with simple formulae.

So must we give up? Must we abandon all hope of computing the
roots of polynomials of degree five, or more complicated equations?
Will we never understand helium, never mind carbon or iron or ura-
nium? Should we restrict ourselves to that tiny subset of problems
where the answer is summarised in a formula? Or should we limit
our ambitions, and merely hope to prove that solutions exist, or make
other qualitative statements about them?

No! Absolutely not. We can solve all of these problems, and far
more beyond, with stunning accuracy and lightning speed. We do this
by expanding our conception of what it means to solve a mathematical
problem: we seek algorithms, not formulae, for computing the desired
solutions. A formula says what the solution is; an algorithm says how
to compute the solution2. An algorithm specifies a sequence of com- 2 In other words, formulae are declarative

while algorithms are imperative. For
more on this distinction, see
H. Abelson and G. J. Sussman. Struc-

ture and Interpretation of Computer Pro-
grams. MIT Press, 2 edition, 1996

putations to perform for given inputs that yield the desired outputs,
but because these computations will typically involve iteration and
conditionals, we cannot express usually the outputs of the algorithm

116 computational mathematics

as a simple formula of the inputs. We might say that a mathematical
problem is solved if an algorithm is known to compute its solutions to
arbitrary accuracy with a reasonable amount of effort.

In numerical mathematics, we discover, develop, study, and analyse
algorithms for solving mathematical problems. This is a tradition with
a glorious history; among its contributors are Archimedes, Heron, Liu
Hui, al-Khwārizmī3, Madhava, al-Kāshī, Newton, Euler, Lagrange, 3 Muḥammad ibn Mūsā al-Khwārizmī

(c. 780–847) was a Persian mathemati-
cian, astronomer, and geographer who
worked at the House of Wisdom in
Baghdad. His book The Compendious
Book on Calculation by Completion and
Balancing founded the field of algebra;
its Arabic name al-Jabr is the root of the
word. His textbook On the Calculation
with Hindu Numerals introduced the
Indo–Arabic numeral system and the
decimal position system we use today.
His name was itself the source for the
word algorithm.

Legendre, Jacobi, Gauss, Adams, Richardson, Turing, von Neumann,
Kantorovich, Courant, and Lanczos.

In this chapter, we will study the use of various classical algorithms
of numerical analysis to solve mathematical problems arising in math-
ematics or the sciences. We begin with the numpymodule4, which is

4 C. R. Harris et al. Array pro-
gramming with NumPy. Nature,
585(7825):357–362, 2020

the foundation of the scientific software ecosystem in Python. Numpy
offers a powerful n-dimensional array datatype, allowing for the ex-
tremely efficient implementation of operations on vectors, matrices,
and tensors5.

5 We already met numpy briefly when
plotting with matplotlib, in chapter
7.

12.1 Vectors

Let us start by representing a vector x P Rn as a numpy array:

(python) import numpy as np

(python) a = np.array([1, 10, 100, 1000])

(python) a
array([1, 10, 100, 1000])

This is the first way to make a numpy array, via a list. Unlike a list,
but like a mathematical vector, each entry in an array must have the
same type. Numpy automatically infers the type from the given data:

(python) a.dtype
dtype('int64')

Here 'int64' denotes 64-bit integers, i.e. integers z P Z satisfying
´263 ď z ď 263 ´ 16. If a mix of types is given, numpy attempts 6 One bit is used to store the sign. Each

integer type also has an unsigned friend,
which assumes the integer is nonneg-
ative. For example, the np.uint64
datatype represents integers satisfying
0 ď z ď 264 ´ 1.

to promote the objects to the broadest type. For example, passing a
single float in the list coerces all elements to a floating-point datatype:

(python) b = np.array([1, 10, 100, 1000.0])

(python) b.dtype
dtype('float64')

(python) b

introduction to numerical computing 117

array([1., 10., 100., 1000.])

You can specify the datatype, if more control is needed7:
7 You can find a list of all numpy
datatypes at https://numpy.org/
doc/stable/reference/arrays.
scalars.html#sized-aliases.

(python) a = np.array([1, 10, 100, 1000], dtype=np.int32)

(python) a.dtype
dtype('int32')

Since each entry in an array is the same type, it occupies the same
amount of memory. This allows operations on numpy arrays to be
much faster than on lists. However, you need to be aware of the data
type you are using and ensure that your calculations remain within
its bounds. For example, if you created an array with 8-bit integers to
save memory with

(python) c = np.array([1, 25, 50], dtype=np.int8)

then adding 100 would give the wrong result:

(python) c + 100
array([101, 125, -106], dtype=int8)

Here 50 ` 100 “ 150 ą 127 “ 27 ´ 1, which is the largest number
storable in an np.int88. 8 As you can see, arithmetic on fixed-size

integers is subtle. The value ´106 is
returned because

´106 ” 150 pmod 128q.

On the other hand, your code can be
much faster if it has to move substan-
tially less data around memory. As with
many things in programming, speed
and danger are on two sides of the same
coin.

You can also make numpy arrays with various convenience func-
tions, like np.arange (which makes a numpy array akin to that of
range), np.linspace (which makes an array with a specified num-
ber of divisions between the beginning and end), np.zeros and
np.ones:

(python) np.arange(1, 12, 3)
array([1, 4, 7, 10])

(python) np.arange(0, 11, 2.5)
array([0., 2.5, 5., 7.5, 10.])

(python) np.linspace(0, 1, 11)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

(python) np.zeros(4)
array([0., 0., 0., 0.])

(python) np.ones(4)
array([1., 1., 1., 1.])

We see that np.arange allows for non-integer steps, unlike range.
You can query the dimension of an array with its ndim attribute:

https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases
https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases
https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases

118 computational mathematics

(python) a.ndim
1

Here the return value 1 indicates we are dealing with a vector9. You 9 A matrix would return 2.

can query the shape of the array with its shape attribute:

(python) a.shape
(4,)

This returns a tuple with len(a.shape) == a.ndim10. You can 10 A matrix would return a tuple with
two entries, the number of rows and
columns.

query the number of bytes required to store the array with its nbytes
attribute:

(python) np.arange(1, 5, dtype=np.int8).nbytes
4

(python) np.arange(1, 5, dtype=np.int32).nbytes
16

(python) np.arange(1, 5, dtype=np.int64).nbytes
32

Like Python lists, numpy arrays fully support indexing and slicing:

(python) a[2]
100

(python) a[-1]
1000

(python) a[1:3]
array([10, 100])

Unlike a list, we can set all elements of a slice with a convenient syn-
tax:

(python) b[1:3] = 0

(python) b
array([1., 0., 0., 1000.])

In other words, taking a slice gives a view of the underlying data, so
that modifying the slice modifies the underlying data. Attempting the
same on a list raises a TypeError.

Numpy arrays offer the arithmetical operations you would expect
for vectors. For example, we can add them together componentwise:

(python) a + np.arange(1, 5)
array([2, 12, 103, 1004])

or multiply them by a scalar:

introduction to numerical computing 119

(python) 3*a
array([3, 30, 300, 3000], dtype=int32)

Recall that for lists, these two operations would concatenate or repeat
lists, respectively. We can also add a scalar value:

(python) a + 5
array([6, 15, 105, 1005], dtype=int32)

Under the hood, if you add two numpy arrays of different shapes, it
attempts to broadcast one to the shape of the other. In this example, it
broadcasts the scalar 5 to a vector of the right length with all entries
5, and adds that. If you try to add two numpy arrays that cannot be
broadcast to the same shape, numpy raises a ValueError.

Numpy gives a convenient syntax for other componentwise opera-
tions. For example, multiplying two arrays with * does so component-
wise11: 11 This is sometimes known as the

Hadamard product.
(python) a * np.arange(1, 5)

array([1, 20, 300, 4000])

Similarly, division between arrays or exponentiating an array is under-
stood componentwise:

(python) np.arange(1, 5) / a
array([1. , 0.2 , 0.03 , 0.004])

(python) np.arange(1, 5)**2
array([1, 4, 9, 16])

If you wished, you could exponentiate one array with exponents from
another.

Inequalities are also understood componentwise:

(python) a >= 50
array([False, False, True, True])

These Boolean arrays can be used to select entries of a given array
satisfying some criterion. You can use this to extract the entries of a
that are greater than or equal to 50:

(python) a[a >= 50]
array([100, 1000], dtype=int32)

or to extract the entries divisible by 4:

(python) a[a % 4 == 0]
array([100, 1000], dtype=int32)

As we saw previously, numpy also includes every operation from

120 computational mathematics

the mathmodule, with the twist that they act componentwise12: 12 In numpy terminology, these are
called universal functions. You can create
your own with np.vectorize.(python) np.sin(a)

array([0.84147098, -0.54402111, -0.50636564, 0.82687954])
(python) np.log10(a)

array([0., 1., 2., 3.])

Using these functions is much faster than applying the function from
mathwith a for loop. This is because with the numpy function
the loop is in a compiled language that avoids all the overhead of
Python’s interpretation and safety checks. In general, when coding
with numpy, we want to use as few for loops as possible; write your
code so that all loops are done inside numpy.

Exercise 12.1. Let x and y be two numpy arrays representing the x-
and y- coordinates of a discretely sampled function in one dimension.
Say that xi is near a root if the sign of yi is different to the sign of yi`1

13. 13 In other words, pxi , xi`1q form an in-
terval suitable for applying the bisection
rootfinding algorithm of code block
4.14.

Write one line of Python to identify the entries of x that are near a
root.

12.2 Matrices

To represent a matrix A14, you can construct a np.arraywith a list of 14 As with vectors, the built-in datatypes
represent (subsets of) the ring Z and
the fields R and C. In mathematics, we
often wish to represent matrices over
finite fields; you can do so with the
galois package, which is an add-on for
numpy.

lists specifying its rows:

(python) A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

(python) A

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

Matrices are also the same np.array class, and have the same meth-
ods like ndim, shape, nbytes etc.:

(python) A.ndim
2

(python) A.shape
(3, 3)

(python) A.nbytes
72

The total number of entries in a matrix can be queried with the size
attribute:

introduction to numerical computing 121

(python) A.size
9

Matrices can be indexed along each axis independently:

(python) A[0, :] # first row, all cols
array([1, 2, 3])

(python) A[1, :] # second row, all cols
array([4, 5, 6])

(python) A[:, 0] # first col, all rows
array([1, 4, 7])

(python) A[1, 1] # second row, second col
5

Matrices can also be sliced along each axis independently:

(python) A[1:, :-1] # from second row on, until last column

array([[4, 5],
[7, 8]])

A numpy array can be reshaped to interpret it in different ways. For
example, to create a 10 ˆ 10 matrix with the numbers 1, . . . , 100, we
can start with the vector of these numbers, and then reshape it:

(python) B = np.arange(1, 101).reshape(10, 10)

(python) B

array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
[41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
[51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
[61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
[71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
[81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
[91, 92, 93, 94, 95, 96, 97, 98, 99, 100]])

As with slicing, this reshaping creates a view of the underlying data;
changing the reshaped object changes the underlying one. This can
be very useful for accessing certain entries of an array with slicing. To
make a copy, use the np.copy function.

You can apply various aggregating functions along a given axis. For
example, to sum along the rows of B (i.e. compute the column sums),
we can do

122 computational mathematics

(python) B.sum(axis=0)
array([460, 470, 480, 490, 500, 510, 520, 530, 540, 550])

Other aggregating functions available include np.mean, np.max, and
np.min:

(python) B.mean(axis=1) # average each row
array([5.5, 15.5, 25.5, 35.5, 45.5, 55.5, 65.5, 75.5, 85.5, 95.5])

(python) B.min(axis=0) # min of each column
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

As with one-dimensional arrays, the usual arithmetical operations
are understood componentwise:

(python) A + 1
array([[2, 3, 4],

[5, 6, 7],
[8, 9, 10]])

To make the identity matrix, use the np.eye function:

(python) I = np.eye(3)

(python) I
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

One of the main operations we do with matrices is matrix-vector
multiplication. In Python, this is denoted with the @ symbol:

(python) A @ np.arange(1, 4)
array([14, 32, 50])

This symbol also denotes matrix-matrix multiplication:

(python) (A @ I == A).all()
True

(python) A @ A
array([[30, 36, 42],

[66, 81, 96],
[102, 126, 150]])

When applied between two vectors, @ denotes the dot product15: 15 All of these uses are consistent: @
really represents tensor contraction over
the last index of the first argument and
the first index of the second argument.

(python) np.arange(3) @ np.arange(1, 4)
8

introduction to numerical computing 123

Finally, to transpose a matrix, use its .T attribute:

(python) A.T
array([[1, 4, 7],

[2, 5, 8],
[3, 6, 9]])

Similarly, the .H attribute of a matrix A returns its conjugate transpose
A˚ (which is usually what is required if dealing with complex-valued
matrices).

Exercise 12.2. The Pauli matrices

σx “

˜

0 1
1 0

¸

, σy “

˜

0 ´i
i 0

¸

, σz “

˜

1 0
0 ´1

¸

,

form a basis for the Hermitian 2 ˆ 2 matrices, and hence for complex
observable quantities in quantum mechanics. They occur in the Pauli
equation which accounts for the interaction of the spin of a particle
with an external electromagnetic field.

Verify that each Pauli matrix is Hermitian (σ “ σ˚), unitary (σ´1 “

σ˚), and hence involutary (σ “ σ´1).

12.3 Numerical linear algebra

Numpy offers the fundamental data structure for scientific computing.
Its sister package, scipy, offers many algorithms for scientific and
technical computing16. To install it, at the terminal type 16 P. Virtanen et al. SciPy 1.0: Fundamen-

tal Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272,
2020

(terminal) pip install scipy

Scipy offers algorithms for optimisation, linear algebra, integration,
interpolation, Fourier transforms, ODE solvers, and much more be-
sides. We will meet some of this functionality as we go on.

First let us study the use of scipy for numerical linear algebra. Scipy
puts its algorithms for linear algebra in a submodule, linalg. For
example, to solve a linear system Ax “ b, use sc.linalg.solve:

(python) A = np.array([[3, 4, 1], [-1, 8, 6], [5, 6, 7]])

(python) b = np.arange(3)

(python) import scipy as sc

(python) x = sc.linalg.solve(A, b)

124 computational mathematics

(python) x
array([0.0617284 , -0.13580247, 0.35802469])

There are special routines like sc.linalg.solve_triangular or
sc.linalg.solve_toeplitz if you know that your matrix has the
relevant structure17.

17 A Toeplitz matrix is one where the
entries are constant along diagonals.

You can also compute the inverse of a matrix with sc.linalg.inv18:

18 Computing the inverse of a matrix
is very rarely the right thing to do. If
you have to solve a sequence of linear
systems with the same matrix, it is much
faster to compute an appropriate matrix
factorisation. This is what Gaussian
elimination does (it computes the so-
called LU factorisation), but as far as I
can work out no one tells you this until
second year A7: Numerical Analysis.(python) sc.linalg.inv(A)

array([[0.12345679, -0.13580247, 0.09876543],
[0.22839506, 0.09876543, -0.11728395],
[-0.28395062, 0.01234568, 0.17283951]])

Determinants are a major topic of Prelims Linear Algebra II in Hilary
term. They are computed with19: 19 Again, computing determinants is

very rarely the right thing to do in
practice. The computational cost of
the naïve formula scales like n! for an
n ˆ n matrix. To improve on this, one
first computes an LU factorisation, then
calculates the determinant of that. The
cost of this approach scales like n3 for an
n ˆ n matrix.

(python) sc.linalg.det(A)
162.0

To compute the eigenvalues of a matrix, use sc.linalg.eigvals:

(python) sc.linalg.eigvals(A)
array([1.83954294+2.81570752j, 1.83954294-2.81570752j, 14.32091412+0.j])

If you want the eigenvectors too, use sc.linalg.eig. You can
control whether it computes the left eigenvectors, right eigenvec-
tors, or both by passing the optional arguments left=False and
right=True.

When working with matrices, different matrix factorisations are
crucial20. Scipy can compute all of the major factorisations, such as

20 You will learn more if you take the
Part A option A7: Numerical Analysis or
the Part C option C6.1 Numerical Linear
Algebra.

the LU factorisation (for solving linear systems), the QR factorisation
(for solving eigenvalue and least-squares problems), and the singular
value decomposition (for computing pseudoinverses, determining
range and nullspace, low-rank approximations, and many other pur-
poses):

(python) sc.linalg.lu(A) # LU decomposition

(python) sc.linalg.qr(A) # QR decomposition

(python) sc.linalg.svd(A) # Singular values

Alan Turing, 1912–1954.

The LU factorisation factors a matrix A into

A “ LU

where L is lower-triangular and U is upper-triangular. This reduces

introduction to numerical computing 125

the solution of Ax “ b to two solutions with triangular matrices,
each of which may be done efficiently using substitution. The LU
factorisation is produced by recording the calculations involved in
Gaussian elimination; this view of things was introduced by Turing in
a landmark 1948 paper21. 21 A. M. Turing. Rounding-off errors in

matrix processes. The Quarterly Journal
of Mechanics and Applied Mathematics,
1(1):287–308, 1948

The QR factorisation factors a matrix A into

A “ QR

where Q is unitary (i.e. Q´1 “ Q˚) and R is upper-triangular. The QR
factorisation is used in solving linear least-squares problems; it con-
verts the optimisation problem into an upper-triangular solve using
R, which can be done quickly using substitution. The QR factorisation
formalises the process of Gram–Schmidt orthogonalisation procedure
you encounter in Prelims Linear Algebra II22. The QR factorisation also 22 Gram–Schmidt is not numerically

stable, so QR factorisations are in fact
computed in other ways, e.g. using
Householder reflections.

lies at the heart of the so-called QR algorithm, the standard algorithm
for computing eigenvalue decompositions of matrices, introduced in a
crucial 1961 paper by Francis23. 23 J. G. F. Francis. The QR Transfor-

mation: A Unitary Analogue to the LR
Transformation—Part 1. The Computer
Journal, 4(3):265–271, 1961

The singular value decomposition (SVD) factors a matrix A into

A “ UΣV˚,

where U and V are unitary, and Σ is diagonal. The SVD is perhaps
the most fundamental and important of all matrix decompositions: it
reveals the four fundamental subspaces associated with a matrix24,

24 G. S. Strang. The fundamental
theorem of linear algebra. The American
Mathematical Monthly, 100(9):848–855,
1993

provides the optimal low-rank approximations of a matrix, and allows
for the straightforward computation of its Moore–Penrose pseudoin-
verse25. It is of central importance in statistics and data science. It

25 Oxford’s Roger Penrose invented this
independently while an undergraduate
student; see
R. Penrose. A generalized inverse

for matrices. Mathematical Proceedings
of the Cambridge Philosophical Society,
51(3):406–413, 1955

was independently discovered around the same time by several math-
ematicians, among them Oxford’s Savilian Professor of Geometry,
James Joseph Sylvester26, who also introduced the term ‘matrix’. 26 J. J. Sylvester. A new proof that a

general quadric may be reduced to
its canonical form (that is, a linear
function of squares) by means of a real
orthogonal substitution. Messenger of
Mathematics, 19:1–5, 1889

James Joseph Sylvester,
1814–1897.

Exercise 12.3. The matrix

F “

˜

1 1
1 0

¸

can be used to produce the Fibonacci sequence by repeated multiplica-
tion: the top-left element of Fn is the pn ` 1qth Fibonacci number.

Use the eigenvalue decomposition of F to efficiently calculate the
1100th Fibonacci number.

126 computational mathematics

12.4 Approximating integrals

The method you are taught in school for evaluating a definite integral

Ir f , a, bs “

ż b

a
f pxq dx

involves identifying an antiderivative Fpxq such that F1 “ f , and
applying the fundamental theorem of calculus to express

Ir f , a, bs “ Fpbq ´ Fpaq.

In 1833, Liouville proved that this strategy is severely limited: the
antiderivatives of elementary functions27 cannot generally be ex- 27 These are constants, polynomials,

exponentials and logarithms, trigono-
metric functions, hyperbolic functions,
and their compositions.

pressed as elementary functions28. Among the many examples, the

28 J. Liouville. Premier mémoire sur la
détermination des intégrales dont la
valeur est algébrique. Journal de l’École
Polytechnique, XIV:124–148, 1833

antiderivatives of all of the following functions are non-elementary:
?

1 ´ x4, 1{ log x, exp ´x2, sin x2, sin x{x, exp ´x{x, exp exp x.
Instead, one approximates Ir f , a, bs numerically, using a quadrature

scheme29. This is an ancient idea; Babylonian mathematicians calcu-
29 This name comes from the geometric
interpretation: one is attempting to find
a square with the same area as the given
integral.

lated the position of Jupiter by (in modern words) numerically inte-
grating the time-velocity graph. The basic structure of a quadrature
scheme is to approximate the integral by a weighted sum

Ir f , a, bs «

n
ÿ

i“1

wi f pxiq

Different quadrature schemes differ in their choice of the n quadra-
ture weights wi and quadrature nodes xi. The most prominent family of
schemes was proposed by Carl Friedrich Gauss in 181530: by a won- 30 C. F. Gauss. Methodvs nova integralivm

valores per approximationem inveniendi.
Dieterich, 1815

derfully clever choice, a scheme with n nodes can exactly evaluate
integrals of polynomials of degree 2n ´ 1 or less. This is far from the
end of the story of quadrature—further topics include multidimen-
sional integrals, integrals on unbounded domains, integrals of highly
oscillatory functions, and singular integrals, error estimation, and
adaptive quadrature schemes.

To compactly specify our integrands, we now introduce the final
Python keyword of this course: the lambda statement. This is an
equivalent way to define a function, but without giving it a name (a
so-called anonymous function). For example, the code

(python) square = lambda x: x*x

is completely equivalent to the function definition using the def state-
ment in code block 7.7. With a lambda statement, the expression on
the right is automatically returned by the function defined.

Scipy interfaces the QUADPACK package for automatic integra-
tion31. It can be used as follows:

31 R. Piessens, E. de Doncker-Kapenga,
C. W. Überhuber, and D. K. Kahaner.
QUADPACK: a subroutine package for au-
tomatic integration, volume 1 of Springer
Series in Computational Mathematics.
Springer Berlin Heidelberg, 1983

introduction to numerical computing 127

(python) sc.integrate.quad(lambda x: np.exp(-x), 0, np.inf)
(1.0000000000000002, 5.842606742906004e-11)

The routine returns a tuple; the first element is the estimate of Ir f , a, bs,
while the second is an estimate for the quadrature error. While the
functions listed above do not have elementary antiderivatives, scipy
integrates them handily:

(python) sc.integrate.quad(lambda x: np.sqrt(1-x**4), 0, 1)
(0.8740191847640391, 3.733313658216275e-10)

(python) sc.integrate.quad(lambda x: 1/np.log(x), 10, 20)
(3.7397004728455228, 4.151901570154684e-14)

(python) sc.integrate.quad(lambda x: np.sin(x)/x, 0, np.pi)
(1.851937051982466, 2.0560631552673694e-14)

and so on. If we attempt to integrate the last function sin x{x over an
interval spanning 0, however, QUADPACK fails:

(python) sc.integrate.quad(lambda x: np.sin(x)/x, -np.pi, np.pi)
(nan, nan)

with a RuntimeWarning raised to let us know something has gone
wrong. The problem here is that the integrand has a removable singu-
larity at x “ 0. We can tell QUADPACK to break the integral apart at
this point with

(python) sc.integrate.quad(lambda x: np.sin(x)/x, -np.pi, np.pi, points=[0])
(3.703874103964933, 4.1121263105347394e-14)

which then succeeds.
Scipy also offers routines for double and triple integrals, as sc.integrate.dblquad

and sc.integrate.tplquad respectively. Higher dimensional inte-
grals are computed with the sc.integrate.nquad routine. We will
not discuss these further.

Exercise 12.4. There is no closed-form formula for the perimeter of
an ellipse. Given an ellipse of semi-major axis a ą 0 and eccentricity
e P r0, 1s, the perimeter is given by

L “ a
ż 2π

0

b

1 ´ e2 sin 2φ dφ.

Compute the distance travelled by the Earth in one orbit, using the
values a “ 149598261km and e “ 0.01671123. What is the error in-
curred in the distance travelled if one instead approximates the Earth’s
motion around the sun with a circle of radius r “ 149597870.7km? Ex-
press the error as a percentage of the elliptical value for the distance.

128 computational mathematics

12.5 Least squares and curve-fitting

A very common task in scientific computing is to fit the parameters
of a model to experimental data. This is done with least-squares, as
invented by Gauss for the determination of the orbit of Ceres.

First, let us consider fitting polynomials to given data. This may be
done with numpy’s np.polynomial.Polynomial.fit function32. 32 Numpy offers powerful facilities

for dealing with polynomials in its
np.polynomialmodule, including
numerically stable representations,
polynomial algebra, root-finding, etc.
We will only see a little of this here.

Given data txiu
n
i“1, tyiu

n
i“1, this function finds the polynomial ppxq in

the vector space Πk of polynomials of degree k such that33

33 Here, the arg min means ‘find the
argument qpxq P Πk that minimises the
expression’.

p “ arg min
q P Πk

n
ÿ

i“1

|qpxiq ´ yi|
2.

Consider the task of an astronaut on Mars wishing to estimate the
acceleration due to gravity on a potential site for a base. One way to
estimate this is to drop a weight and measure the distance dptq fallen
as a function of time t ą 0, then fit the data to the polynomial

dptq “ d0 ` v0t `
1
2

gt2.

This problem is solved in code block 12.1.

Code block 12.1. Fitting a quadratic polynomial to data.

import numpy as np

Recorded data
t = np.linspace(0.1, 1, 10)
d = np.array([0.03, 0.062, 0.169, 0.31, 0.468,
 0.67, 0.903, 1.183, 1.516, 1.869])

Fit a quadratic polynomial
The .convert() method is called to express the
polynomial in the familiar monomial basis.
fit = np.polynomial.Polynomial.fit(t, d, deg=2).convert()

Extract coefficients
(d0, v0, ghalf) = fit.coef
g = ghalf * 2

print(f"Fitted data: d(t) = {d0} + {v0}*t + 1/2 * {g} * t**2")

This returns the estimate g « 3.79 m s´2, reasonably close to the
average Martian acceleration due to gravity of 3.72076 m s´2 given the
limited precision of the data.

introduction to numerical computing 129

This can also be used to estimate parameters in exponential rela-
tionships, by taking logarithms. The number of particles Nptq of an
isotope undergoing radioactive decay satisfies

Nptq “ N0 exp ´t{τ,

where N0 is the initial number of particles and τ is related to the half-
life t1{2 via t1{2 “ τ log 2. Taking logarithms, we find

log N “ log N0 ´
t
τ

.

If we fit a linear polynomial between t and log N, the slope estimates
the reciprocal of τ, and hence t1{2.

Consider code block 12.2, which estimates the half-life of the 233
97Bk

isotope of Berkelium34. The code estimates the half-life as 20.7 s, close

34 George Berkeley (1685–1753) was an
Irish philosopher, bishop, slaveholder,
and mathematician. He rejected the
Newtonian idea of absolute space and
time; Karl Popper described him a pre-
cursor of Mach and Einstein’s relativity.
In 1734, he launched a blistering attack
on the shaky foundations of calculus
in his book The Analyst; this had a ma-
jor influence on the development of
analysis, as mathematicians such as
Bayes, Maclaurin, Cauchy, Riemann and
Weierstrass strove to place calculus on a
rigorous foundation. The city of Berke-
ley in California and its university are
named after him; in 2023 Trinity College
Dublin announced they would remove
his name from their main library, be-
cause of his advocacy of slavery. He is
buried in the cathedral of Christ Church,
Oxford.

to the best estimated value of 21 s.

George Berkeley, 1685–1753

Exercise 12.5. Modify code blocks 12.1 and 12.2 to plot the data and
the fitted polynomial.

It is also possible to fit parameters of functions other than polyno-
mials, using scipy’s sc.optimize.curve_fit function. This function
takes in a function that maps inputs to outputs, the known inputs,
the known outputs, and initial guesses for the unknown parameters.
These initial guesses are crucial; the minimisation problems solved in
the least-squares fitting may no longer be convex, and there may be
multiple minimisers. The choice of initial guess will determine both
which minimiser will be found, and how quickly it will be found35. A

35 You can learn more in Part C C6.2
Continuous Optimisation.

good deal of cleverness goes into devising reasonable initial guesses;
when Gauss applied least squares to identify the orbit of Ceres, he first
found the unique ellipse passing through a minimally determining
subset of the observations, then used that as initial guess for fitting to
the full data.

As an example, consider the task of fitting an ellipse with axes
parallel to the x- and y- axes to given data tθi, riu

n
i“1. The formula for

the radius r of such an ellipse as a function of angle θ is given by

rpθ; a, bq “
ab

?
a2 sin 2θ ` b2 cos 2θ

,

where a ą b ą 0 are the semi-major axis and semi-minor axis
lengths, respectively. This is presented in code block 12.3. We gen-
erate synthetic data for θ P r0, π{2s for the ‘true’ parameter values
pa, bq “ p3, 1q and add normally-distributed random noise to model
observation errors. We then initialise the curve fit with an initial guess
pa0, b0q “ p3{2, 3{2q, i.e. a circle of radius 3{2. The curve fit successfully

130 computational mathematics

Code block 12.2. Estimating the half-life of 233
97Bk.

import numpy as np

Recorded data: times in seconds
t = np.array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,10.,11.,12.,13.,14.,
 15.,16.,17.,18.,19.,20.,21.,22.,23.,24.,25.,26.,27.,28.,29.,30.,31.,
 32.,33.,34.,35.,36.,37.,38.,39.,40.,41.,42.,43.,44.,45.,46.,47.,48.,
 49.,50.])

Recorded data: number of particles
N = np.array([100000, 96597, 93400, 90396, 87325, 84345, 81515, 78746,
 76133, 73610, 71221, 68934, 66718, 64502, 62332, 60264, 58326,
 56448, 54618, 52860, 51142, 49498, 47902, 46277, 44690, 43224,
 41735, 40309, 38980, 37615, 36441, 35294, 34046, 33039, 31926,
 30891, 29866, 28907, 27956, 27039, 26173, 25344, 24486, 23685,
 22898, 22100, 21364, 20649, 19992, 19368, 18722])

logN = np.log(N)

fit = np.polynomial.Polynomial.fit(t, logN, deg=1).convert()
(c, m) = fit.coef
print(c, m)

tau = -1/m
t_half = tau * np.log(2)
print(f"Estimated half life of Berkelium-233: {t_half:.3f}")

introduction to numerical computing 131

returns parameters pa‹, b‹q « p3, 1q36. The code prints out the opti- 36 The exact values returned will depend
on the random observation errors
added.

mised parameters, the standard deviation returned from the curve fit,
and plots the data, initial guess, and fitted ellipse. On a sample run,
the code printed

Fitted parameters: [2.9930133 1.00044137] ± [0.0046581 0.00168654]

and renders an image like figure 12.1.

3 2 1 0 1 2 3
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Data
Initial guess
Fitted curve

Figure 12.1: The data, initial
guess, and fitted ellipse of code
block 12.3.

132 computational mathematics

Code block 12.3. Fitting an axis-aligned ellipse to partial noisy data.

import numpy as np
import scipy as sc
import matplotlib.pyplot as plt

Equation for an ellipse, radius as a function of angle.
def f(theta, a, b):
 r = a*b / np.sqrt(a**2 * np.sin(theta)**2 + b**2 * np.cos(theta)**2)
 return r

Make synthetic noisy data.
We hide the true parameters in the scope of a function so that
we cannot accidentally access them in our fitting code.
def make_data():
 a = 3 # semi-major axis
 b = 1 # semi-minor axis

 theta = np.linspace(0, 0.5*np.pi, 21)
 r = f(theta, a, b)
 r = r + np.random.randn(len(theta))*0.01 # noise
 return (theta, r)

(theta, r) = make_data()
plt.grid()
plt.plot(r*np.cos(theta), r*np.sin(theta), '*k', label="Data")
plt.gca().set_aspect('equal') # make ellipses look like ellipses

Specify and plot initial guess:
a circle of radius 1.5
(a0, b0) = (1.5, 1.5)
sample = np.linspace(0, 2*np.pi, 1001)
guess = f(sample, a0, b0)
plt.plot(guess*np.cos(sample), guess*np.sin(sample), '-r', label="Guess")

Now do the fit
(popt, pcov) = sc.optimize.curve_fit(f, theta, r, (a0, b0))
print(f"Fitted parameters: {popt} ± {np.sqrt(np.diag(pcov))}")

Plot fitted curve
fit = f(sample, *popt)
plt.plot(fit*np.cos(sample), fit*np.sin(sample), '--g', label="Fit")

plt.legend(loc="lower right")
plt.xlabel(r"x")
plt.ylabel(r"y")
plt.show()

introduction to numerical computing 133

12.6 Solving differential equation initial value problems

Finally, we consider how scipy may be used to solve initial value
problems associated with systems of ordinary differential equations,
i.e. systems of the form

dy1

dt
“ f1pt, y1, . . . , ynq, (12.6.1a)

dy2

dt
“ f2pt, y1, . . . , ynq, (12.6.1b)

¨ ¨ ¨

dyn

dt
“ fnpt, y1, . . . , ynq, (12.6.1c)

subject to the initial data

y1pt0q “ d1, y2pt0q “ d1, ¨ ¨ ¨ , ynpt0q “ dn. (12.6.2)

Equations (12.6.1)–(12.6.2) are usually summarised in vector notation
as

9y “ fpt, yq, (12.6.3a)
ypt0q “ y0. (12.6.3b)

The restriction to systems of first-order equations is not burdensome,
because any system of higher-order equations can be rewritten in this
form.

Scipy computes numerical approximations to the solution of
(12.6.3) with the sc.integrate.solve_ivp function. This func-
tion takes in three mandatory arguments: a function f(t, y) rep-
resenting (12.6.3a), a tuple containing the initial and final times of
the simulation, and the data for the initial condition (12.6.3b). The
solve_ivp function returns an object solnwith several attributes of
interest, including soln.success (a Boolean indicating success or
failure), soln.t (the time points used for the numerical integration),
and soln.y (the values of the solution at those time points). It also
has many optional arguments for controlling the numerical solution
procedure; we will meet these as they arise.

As an example, consider the equation for a simple pendulum37,

37 Galileo famously realised that the
simple pendulum was isochronous (the
period of a pendulum of a given length
is constant) while observing a lamp at
the centre of the nave of the cathedral in
Pisa.

Galileo Galilei, 1564–1642

d2θ

dt2 “ ´
g
l

θ, θp0q “ θ0, 9θp0q “ 0, (12.6.4)

where g is the acceleration due to gravity and l is the pendulum
length. The analytical solution of this problem is

θptq “ θ0 cos
ˆ

c

g
l

t
˙

. (12.6.5)

134 computational mathematics

To cast this into the form (12.6.3), we set θ “ θ1 and introduce a new
variable θ2:

9θ1 “ θ2, (12.6.6a)
9θ2 “ ´

g
l

θ1. (12.6.6b)

The code comparing the numerical solution and the analytical solu-
tion is given in code block 12.4.

Code block 12.4. Numerical solution of the simple pendulum.

import numpy as np
import scipy as sc
import matplotlib.pyplot as plt

g = 9.81 # acceleration due to gravity
l = 1 # length of the pendulum
ic = [0.1, 0] # initial conditions
ival = (0, 20) # interval of interest

def f(t, theta):
 return [theta[1], -g/l * theta[0]]

soln = sc.integrate.solve_ivp(f, (0, 20), ic, dense_output=True)

Get time grid for plotting
t = np.linspace(*ival, 1001)
Evaluate numerical and analytical solution of IVP
ntheta = soln.sol(t)[0]
atheta = ic[0] * np.cos(np.sqrt(g/l) * t)

plt.grid()
plt.plot(t, ntheta, color='k', label="Numerical solution")
plt.plot(t, atheta, color='b', label="Analytical solution")
plt.xlabel(r"t")
plt.ylabel(r"$\theta(t)$")
plt.legend()
plt.show()

The two solution approaches are indistinguishable to the eye; the fig-
ure the code produces is given in figure 12.2. The dense_output=True
argument to sc.integrate.solve_ivp is necessary to create the
soln.sol function: this is a callable that evaluates (in a vectorised
way) the numerical solution at requested times, by interpolation of

introduction to numerical computing 135

the computed trajectory. Alternatively, one can pass the argument
t_eval to specify an array of times at which to evaluate the solution.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(t) Numerical solution
Analytical solution

Figure 12.2: Comparing the
numerical and analytical solu-
tions of the simple pendulum
(12.6.4). The two solutions lie
on top of each other. This figure
is rendered by code block 12.4.

One convenient feature of the numerical solution is that we can
code events for the solver to track. These are functions hpt, yq of the
state; the solver monitors these functions, and calculates very accu-
rately the times at which each function hpt, yq “ 0 (as well as the state
at these times)38. This allows us to monitor properties of the solution, 38 The solver does so using Brent’s root-

finding algorithm, as implemented
in sc.optimize.brentq. Brent’s
algorithm involves bisection, which we
met briefly in chapter 4.
R. P. Brent. Algorithms for Minimisation

without Derivatives. Prentice Hall, 1973

calculate diagnostics, etc. Briefly, one passes a tuple of these monitor
functions as the events optional argument. The output trajectory
object then has the attributes soln.t_events (for the times at which
the monitor functions were zero) and soln.y_events (for the asso-
ciated states). For example, suppose we wished to monitor when the
pendulum is vertical (so that θ “ 0). We might code an event as in
code block 12.5.

136 computational mathematics

Code block 12.5. Example of event detection.

import scipy as sc

g = 9.81 # acceleration due to gravity
l = 1 # length of the pendulum
ic = [0.1, 0] # initial conditions
ival = (0, 20) # interval of interest

def f(t, theta):
 return [theta[1], -g/l * theta[0]]

def h(t, theta):
 return theta[0]

soln = sc.integrate.solve_ivp(f, (0, 20), ic, events=(h,))

print("Times at which the pendulum is vertical: ")
print(soln.t_events[0]) # Events of the first functional, i.e. h

This prints

Times at which the pendulum is vertical:
[0.50146316 1.50422274 2.50690771 3.50962485 4.51235431 5.51511827

6.51781387 7.52052444 8.52324324 9.52600688 10.52872046 11.53142346
12.53413417 13.5368929 14.53962698 15.54232196 16.54503088 17.54778287
18.55053026 19.55321358]

As with integrals, most differential equations cannot be solved in
closed form in terms of elementary functions. The simple pendulum
equation (12.6.4) is derived from the more accurate model

d2θ

dt2 “ ´
g
l

sin θ, θp0q “ θ0, 9θp0q “ 0, (12.6.7)

under the small-angle assumption θ ! 1, so that sin θ « θ. Solv-
ing (12.6.7) is necessary if this assumption does not hold, but the
equation does not have a closed-form solution. The small-angle as-
sumption is often made in introductory texts in order to make the
hand-calculations tractable, whether it is physically justified or not39. 39 This is a common pattern, and not

something often emphasised. In many
of the problems you will solve on
problem sheets or exams, the questions
have been carefully and delicately
rigged so that your calculations on
paper are tractable. Perturb the problem
a little, or undo one assumption, and
this property will no longer hold.

Let us solve (12.6.7) numerically for θ0 “ 150˝, and compare it to the
analytical solution of (12.6.4). We make the very minor modifications
to code block 12.4 in code block 12.6.

As seen in figure 12.3, the results are strikingly different40. Com-

40 For a graphical exploration of the
nonlinear pendulum, see Chapter 9 of
L. N. Trefethen, Á. Birkisson, and T. A.

Driscoll. Exploring ODEs. Society for
Industrial & Applied Mathematics, 2018

putational mathematics gives us the power to understand and solve
mathematical problems that we otherwise could not.

introduction to numerical computing 137

Code block 12.6. Numerical solution of the simple pendulum.

import numpy as np
import scipy as sc
import matplotlib.pyplot as plt

g = 9.81 # acceleration due to gravity
l = 1 # length of the pendulum
ic = [5*np.pi/6, 0] # initial conditions
ival = (0, 20) # interval of interest

def f(t, theta):
 return [theta[1], -g/l * np.sin(theta[0])]

soln = sc.integrate.solve_ivp(f, (0, 20), ic, dense_output=True)

Get time grid for plotting
t = np.linspace(*ival, 1001)
Evaluate numerical solution, and analytical solution of linearised problem
ntheta = soln.sol(t)[0]
atheta = ic[0] * np.cos(np.sqrt(g/l) * t)

plt.grid()
plt.plot(t, ntheta, color='k', label="Nonlinear solution")
plt.plot(t, atheta, color='b', label="Linearised solution")
plt.xlabel(r"t")
plt.ylabel(r"$\theta(t)$")
plt.legend()
plt.show()

138 computational mathematics

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

2

1

0

1

2

(t) Nonlinear solution
Linearised solution

Figure 12.3: Comparing the
solutions of the nonlinear and
linearised pendulum, (12.6.7)
and (12.6.4), for θ0 “ 5π{6.

13 Coda: simulating the solar system

In 1901, sponge divers off the coast of the small Greek island of An-
tikythera discovered the shipwreck of a Roman-era cargo vessel that
sank in approximately 70 BC. The shipwreck contained treasures
such as marble statues, vases, coins, jewellery, as well as a mysterious
hunk of corroded metal to which no one paid much attention. The
following year, however, the archaeologist Valerios Stais discovered
that the hunk of metal contained a gear—moreover, a precision gear,
with teeth about a millimetre long. In fact, the hunk of metal—now
called the Antikythera Mechanism—was an analogue computer, the
first computer known to history. Driven by a hand crank, it used an
intricate mechanism of bronze gears and cogs to predict the positions
of the Sun, moon, eclipses, and the known planets, according to the
astronomical theories then available in Greece. Its discovery forced
us to rethink the entire history of technology; it was far more sophis-
ticated than what we thought possible for the ancients. Its like would
not be seen again until the astronomical clocks devised by Richard of
Wallingford in the 14th century1.

1 Richard of Wallingford was born in
Wallingford, 21 km from Oxford. He
was orphaned as a boy and raised by
monks. He studied at the University of
Oxford for fifteen years and became a
monk himself. While serving as abbot
of St Albans, he built perhaps the first
astronomical clock since classical times,
which calculated the motions of the
Sun, moon, and planets. A manuscript
describing the clock is preserved in the
Bodleian Library. For more details, see
J. North. God’s clockmaker: Richard

of Wallingford and the invention of time.
Hambledon Continuum, London,
England, 2004

Richard of Wallingford,
1292–1336

Let us now turn to make our own computations of the solar sys-
tem, exploiting the millennia of mathematical, scientific, and engi-
neering advances between ourselves and the Greek designer of the
Antikythera Mechanism, whose name is lost to history.

Our basic strategy will be to write the equations of motion for the
Sun and major planets of the solar system, and use scipy to solve the
resulting differential equations. Before we do so, however, there are
several points we must address.

First, we wish to write the equations of motion in a general and
flexible way. As we have seen in chapter 12, scipy’s ODE integrators
require us to specify a system of first-order differential equations;
for this, the Newtonian and Lagrangian formulations of classical
mechanics are not immediately suitable. Instead, we will derive the
equations of motion from the Hamiltonian formulation of classical me-
chanics, devised by the Irish mathematician and polymath William
Rowan Hamilton in 1833. Whereas Newtonian mechanics formu-
lates problems in terms of forces, and Lagrangian mechanics in terms

140 computational mathematics

Figure 13.1: Front and rear
of the largest fragment of the
Antikythera Mechanism, dis-
playing the largest surviving
gear.

coda: simulating the solar system 141

of tradeoffs T ´ V between the kinetic T and potential energies V,
Hamiltonian mechanics derives the equations of motion from the total
energy of the system, T ` V, called the Hamiltonian2. Another key 2 W. R. Hamilton. XV. On a general

method in dynamics; by which the
study of the motions of all free systems
of attracting or repelling points is
reduced to the search and differentiation
of one central relation, or characteristic
function. Philosophical Transactions of the
Royal Society, 124:247–308, 1834

difference is that where Lagrangian mechanics uses generalised veloc-
ities (the time derivatives of the coordinates employed), Hamiltonian
mechanics employed generalised momenta. For our purposes, the
main advantage is that where the Newtonian and Lagrangian formu-
lations yield n second-order differential equations, the Hamiltonian
formulation yields 2n first-order differential equations3. 3 Hamiltonian mechanics has another

crucial advantage over previous for-
mulations: it exposes the essential
geometric structure of classical mechan-
ics. Indeed, Hamiltonian mechanics had
a significant impact on the development
of geometry itself. The Hamiltonian
formulation of classical mechanics was
central to the subsequent development
of quantum mechanics; the Hamiltonian
arises as an operator in the Schrödinger
equation. As previously noted, you will
learn more if you take the third-year
option B7.1 Classical Mechanics.

William Rowan Hamilton,
1805–1865

Let the subscript i “ 0, . . . N ´ 1 denote the bodies to simulate. Let
qiptq P R3 be the Cartesian position vector for body i at time t, and let
piptq “ mi 9qiptq P R3 be its associated momentum, with mass mi ą 0.
Then the kinetic energy of the system is given by

T “
ÿ

i

pT
i p

2mi
, (13.0.1)

and the potential energy of the system is

V “
ÿ

i

ÿ

jąi

´
Gmimj

}qi ´ qj}
. (13.0.2)

With these, we form the Hamiltonian

H “ T ` V (13.0.3)

and derive the equations of motion via

9qi “
BH
Bpi

, 9pi “ ´
BH
Bqi

. (13.0.4)

We will employ sympy for these manipulations, and use sp.lambdify
to create the right-hand side for the general formulation of the ODE
(12.6.3).

Second, any computation can only be as good as the data furnished
to it. Since Newton’s second law is a second-order differential equa-
tion, we will require the initial positions and velocities of the bodies
concerned. To acquire these, we will employ the astroquery pack-
age4, which queries the Horizons database maintained by the Solar

4 A. Ginsburg et al. astroquery: an
astronomical web-querying package
in Python. The Astronomical Journal,
157(3):98, 2019System Dynamics group of NASA’s Jet Propulsion Laboratory5. The
5 J. D. Giorgini. Status of the JPL
Horizons Ephemeris System. In IAU
General Assembly, volume 29, page
2256293, 2015

package can be installed with

(terminal) pip install astroquery

as usual. For example, to get the position of the Earth-moon barycen-
tre6 at midnight on the author’s birthday relative to the solar system

6 When simulating the solar system,
one must understand the distinction
between the barycentre of a plane-
tary system and the planet itself. The
barycentre is the centre of mass of the
planet and its moons; it is this which
we wish to track on its orbit around the
Sun. The position of the planet itself
will have small-scale oscillations as it is
pulled this way and that by its moons.

barycentre, one could employ the code in code block 13.1.

142 computational mathematics

Code block 13.1. Querying the JPL Horizons database.

from astroquery.jplhorizons import Horizons
from astropy.time import Time

date = Time('1985-03-17 00:00:00').jd
earth_moon_barycentre = 3 # code for Earth-moon barycentre
origin = '500@0' # code for solar system barycentre
query = Horizons(id=earth_moon_barycentre, location=origin, epochs=date)
vec = query.vectors()

print(f"x: {vec['x'][0]} y: {vec['y'][0]}, z: {vec['z'][0]}")

The code 3 for the Earth-moon barycentre is specific to the Hori-
zons database. The code for the barycentre of the Mercury system is
1, Venus is 2, etc. Code 10 refers to the Sun, while code 0 refers to the
solar system barycentre7. 7 For more details, see the Horizons

manual at https://ssd.jpl.nasa.
gov/horizons/manual.html#
select.

Third, the default integrator used by sc.integrate.solve_ivp
will not suffice. The default integrator is an explicit Runge–Kutta
scheme of order 5p4q proposed by Dormand & Prince8. Briefly, this 8 J. R. Dormand and P. J. Prince. A

family of embedded Runge–Kutta
formulae. Journal of Computational and
Applied Mathematics, 6(1):19–26, 1980

timesteps using a method whose error is proportional to the fifth
power p∆tq5 of the timestep ∆t, and adaptively controls ∆t by estimat-
ing the error using an embedded lower-order scheme of order 4. This
is a good default choice, but we would like more accuracy than this
can efficiently deliver, so we will switch to an explicit Runge–Kutta
scheme of order 8p5, 3q written by E. Hairer9,10. 9 See section (II.5) of

E. Hairer, G. Wanner, and S. P. Nørsett.
Solving Ordinary Differential Equations
I, volume 8 of Springer Series in Com-
putational Mathematics. Springer Berlin
Heidelberg, 2nd edition, 1993
10 Ernst Hairer is the father of Fields
medallist Martin Hairer.

Without further ado, the code is presented in code blocks 13.2–13.5.
The results are shown in figure 13.2.

https://ssd.jpl.nasa.gov/horizons/manual.html#select
https://ssd.jpl.nasa.gov/horizons/manual.html#select
https://ssd.jpl.nasa.gov/horizons/manual.html#select

coda: simulating the solar system 143

30 20 10 0 10 20 30
x [AU]

30

20

10

0

10

20

30
y

[A
U]

Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x [AU]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y
[A

U]

Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

Figure 13.2: A simulation of the
solar system over one Neptu-
nian year, code blocks 13.2–13.5.
The lower figure zooms in to the
rocky inner planets.

144 computational mathematics

Code block 13.2. Code for simulating the solar system: step zero.

import sympy as sp
import numpy as np
import scipy as sc
import matplotlib.pyplot as plt

from astroquery.jplhorizons import Horizons
from astropy.time import Time
import time

#
Step 0. Gather data for the bodies to be simulated.
#

Mapping from body to JPL Horizons ID
ids = {"Sun": 10,
 "Mercury": 1,
 "Venus": 2,
 "Earth": 3,
 "Mars": 4,
 "Jupiter": 5,
 "Saturn": 6,
 "Uranus": 7,
 "Neptune": 8}

Masses in kg
masses = {"Sun": 1.9884e30,
 "Mercury": 3.301e23,
 "Venus": 4.867e24,
 "Earth": 5.97e24,
 "Mars": 6.417e23,
 "Jupiter": 1.898e27,
 "Saturn": 5.683e26,
 "Uranus": 8.681e25,
 "Neptune": 1.024e26}

Colours to use in plotting: (red, green, blue)
colours = {"Sun": (1.0000, 0.4982, 0.0549),
 "Mercury": (0.1725, 0.6274, 0.1725),
 "Venus": (0.5490, 0.3372, 0.2941),
 "Earth": (0.1215, 0.4666, 0.7058),
 "Mars": (0.8392, 0.1529, 0.1568),
 "Jupiter": (0.5803, 0.4039, 0.7411),
 "Saturn": (0.8901, 0.4666, 0.7607),
 "Uranus": (0.4980, 0.4980, 0.4980),
 "Neptune": (0.0901, 0.7450, 0.8117)}

bodies = list(ids.keys())
N = len(bodies)

coda: simulating the solar system 145

Code block 13.3. Code for simulating the solar system: step one.

#
Step 1. Derive equations of motion from the Hamiltonian formulation.
#

pv = sp.symbols(f"p1:{3*N+1}", real=True) # momenta
qv = sp.symbols(f"q1:{3*N+1}", real=True) # positions

Massage these scalars into a nicer vector format
momenta = {}
positions = {}
for (i, body) in enumerate(bodies):
 momenta[body] = sp.Matrix([pv[3*i+0], pv[3*i+1], pv[3*i+2]])
 positions[body] = sp.Matrix([qv[3*i+0], qv[3*i+1], qv[3*i+2]])

Gravitational constant in AU, Earth days, kg
G = 1.4878e-34

Construct kinetic energy
V = 0
for body in bodies:
 p = momenta[body]
 m = masses[body]
 V = V + p.dot(p)/(2*m)

Construct potential energy
T = 0
for (i, body_a) in enumerate(bodies):
 m_a = masses[body_a]
 q_a = positions[body_a]

 for body_b in bodies[i+1:]:
 m_b = masses[body_b]
 q_b = positions[body_b]

 T = T - G * m_a * m_b / (q_a - q_b).norm()

Write the Hamiltonian
H = V + T

Derive equations of motion
equations = [-sp.diff(H, q) for q in qv] + [+sp.diff(H, p) for p in pv]

Lambdify to construct right-hand side of ODE
t = sp.Symbol("t", real=True, nonnegative=True)
f = sp.lambdify([t, pv + qv], equations)

146 computational mathematics

Code block 13.4. Code for simulating the solar system: step two.

#
Step 2. Construct initial data by querying Horizons database.
#

ic = np.zeros(6*N)

Start time of our simulation
epoch = Time('1985-03-17 00:00:00').jd

for (i, body) in enumerate(bodies):
 # Query Horizons database for coordinates relative to
 # barycentre of the solar system
 query = Horizons(id=ids[body], location='500@0', epochs=epoch)
 vec = query.vectors()

 # Multiply by mass to compute momentum
 ic[3*i+0] = vec['vx'][0]*masses[body]
 ic[3*i+1] = vec['vy'][0]*masses[body]
 ic[3*i+2] = vec['vz'][0]*masses[body]
 ic[3*i+3*N+0] = vec['x'][0]
 ic[3*i+3*N+1] = vec['y'][0]
 ic[3*i+3*N+2] = vec['z'][0]

 # Plot initial position of the planet in grey
 plt.plot(vec['x'][0], vec['y'][0], 'o', color="gray")

coda: simulating the solar system 147

Code block 13.5. Code for simulating the solar system: step three.

#
Step 3. Simulate and plot.
#

t0 = 0
t1 = 60191 # Just over one Neptune year
t_eval = np.linspace(t0, t1, t1+1) # store simulation data every day

start = time.time()
trajectory = sc.integrate.solve_ivp(f, (t0, t1), ic, t_eval=t_eval,
 method='DOP853', rtol=1e-8, atol=1e-8)
end = time.time()
print(f"Simulation complete. Successful: {trajectory.success}. ", end="")
print(f"Time taken: {end - start:.2f} s.")

for (i, body) in enumerate(bodies):
 x = trajectory.y[3*N + 3*i + 0, :]
 y = trajectory.y[3*N + 3*i + 1, :]

 # Plot trajectory
 plt.plot(x, y, label=body, color=colours[body])

 # Plot final position of the planet
 plt.plot(x[-1], y[-1], 'o', color=colours[body])

 # Annotate final position with letter
 plt.annotate(body[0], (x[-1] + 0.08, y[-1] + 0.08), color=colours[body])

plt.legend()
plt.xlabel(r"x [AU]")
plt.ylabel(r"y [AU]")
plt.gca().set_aspect('equal')
plt.show()

14 Problem sheet 4

1. Geoffrey Ingram Taylor (1886–1975) was an English mathemati-
cian and physicist. He came from a mathematical family; his Irish
mother was the daughter of George Boole. He studied mathematics
and physics at Cambridge under Whitehead, Hardy, and Thomson,
and eventually won a faculty position at Cambridge in mathemat-
ical meteorology. He made many fundamental contributions to
fluid mechanics, such as in Taylor–Couette flow, the Taylor–Green
solution of the incompressible Navier–Stokes equations, and the
Rayleigh–Taylor instability; the latter arises in everything from
clouds to nuclear explosions to supernovae. He was a keen out-
doorsman; he loved to sail, participated in oceanographic cruises,
learned to fly aircraft, and to parachute jump. He conducted re-
search work for His Majesty’s Government during both world wars;
in the second world war he independently invented the concept of
a nuclear fission bomb, and participated in the Manhattan Project,
where he studied the propagation of blast waves. As part of this
he directly observed the Trinity nuclear test on July 16 1945 that
ushered in the atomic age.

In 1950 Taylor published a famous paper1 estimating the initial 1 G. I. Taylor. The formation of a blast
wave by a very intense explosion. II. The
atomic explosion of 1945. Proceedings of
the Royal Society A, 201(1065):175–186,
1950

energy E released by the Trinity nuclear test, which was highly
classified at the time, using timed photographs of the expansion of
the spherical ball of fire from four unclassified sources. Solving the
equations describing the conservation of momentum, mass, and
energy, and the equation of state, he calculated that the radius of
the ball Rptq should be related to E, the density of air ρair, and time
t through

Rptq 9 E
1
5 ρ

´ 1
5

air t
2
5 ,

and via experiment estimated that the constant of proportionality
was about 1. (It is often erroneously reported that he derived this
via dimensional analysis alone. This is not true. However, this
relationship is recoverable via dimensional analysis if you assume
that the radius only depends on these quantities.)

Taylor has now asked for your help. Taking ρair “ 1.25 kg m´3,

150 computational mathematics

write a Python program to estimate the yield of the Trinity nuclear
explosion from the data in table 14.1, gathered by Taylor in 1949.
State your answer both in Joules and in kilotons of TNT, where the
energy released by 1 kiloton of TNT is 4.184 ˆ 1012 J.

[Hint: a modern re-analysis by Hanson et al. (2016)2 gives an estimate of 2 S. K. Hanson, A. D. Pollington, C. R.
Waidmann, W. S. Kinman, A. M. Wende,
J. L. Miller, J. A. Berger, W. J. Oldham,
and H. D. Selby. Measurements of
extinct fission products in nuclear
bomb debris: determination of the yield
of the Trinity nuclear test 70 y later.
Proceedings of the National Academy of
Sciences of the United States of America,
113(29):8104–8108, 2016

E “ 22.1 ˘ 2.7 kt.]

2. Pierre–Simon, Marquis de Laplace (1749–1827) was a French math-
ematician. Raised in a bourgeois family in Normandy, he first
studied to become a priest at the University of Caen, but quickly
realised his vocation was in mathematics rather than theology.
He won an appointment to teach at the École Militaire in Paris,
where he was Napoleon’s examiner in 1785. He made fundamen-
tal contributions to the study of probability, devised the correct
mathematical theory of the tides, discovered spherical harmon-
ics, finite differences, potential theory, the Laplace transform, and
proposed the idea of black holes. The stability of the solar system
was a lifelong obsession; Newton had believed that periodic divine
intervention was necessary to guarantee the stability of the solar
system, but Laplace was determined to prove him wrong. In pur-
suing this Laplace wrote his magnum opus, the Traité de Mécanique
Céleste, published in five volumes from 1798 to 1825. The book was
infamous for its invocation Il est aisé à voir que … (it is easy to see
that …) whenever Laplace had mislaid the details of a derivation
or proof. A favourite of Napoleon, he was appointed a count of the
Empire in 1806; his relationship with the Emperor cooled consid-
erably after his son fought in Napoleon’s disastrous 1812 campaign
in Russia. In 1814 he voted in the Senate to restore the Bourbon
monarchy; he fled Paris when Napoleon briefly retook power in
1815. He was appointed a marquis in 1817 and died in 1827.

In Volume IV of the Traité de Mécanique Céleste, Laplace discusses
the orbits of the Galilean moons of Jupiter, Io, Europa, Ganymede
and Callisto3. These moons are of a similar size to the rocky plan- 3 P. S. Laplace. Traité de Mécanique Céleste,

volume IV. Chez Courcier, Paris, 1805ets; Ganymede is larger than Mercury, while Callisto is very slightly
smaller. The moons were discovered by Galileo and Simon Marius;
they were the first objects discovered in the solar system since the
classical planets of antiquity. They were also the first discovered
to orbit a planet other than the Earth, dealing a fatal blow to the
geocentric model of the solar system.

Laplace realised that the three inner moons (Io, Europa, and
Ganymede) were in a 1:2:4 orbital resonance: the orbital period of
Europa is almost exactly twice that of Io, while the orbital period
of Ganymede is almost exactly four times that of Io. (Callisto is not
yet in resonance, but numerical simulations indicate it will enter a

problem sheet 4 151

1:2:4:8 resonance in about 1.5 billion years4.) 4 G. Lari, M. Saillenfest, and M. Fenucci.
Long-term evolution of the Galilean
satellites: the capture of Callisto into
resonance. Astronomy & Astrophysics,
639:A40, 2020

Laplace has now asked for your help. He wishes to solve the equa-
tions of motion for the orbits of Io, Europa, Ganymede, and Callisto
around Jupiter, but is otherwise occupied proving the Central Limit
Theorem. Write a Python program for Laplace to simulate the or-
bits of Jupiter and the Galilean moons, and use your code to verify
the 1:2:4 Laplacian resonance. Plot the orbits taken over 170 Earth
days (approximately 10 orbits of Callisto).

[Hint: the ID numbers of these bodies for the NASA/JPL Horizons
database are given in table 14.2. Fetch their initial positions and velocity
relative to the barycentre of the Jovian system using location='500@5'.]

[Hint: Use the events functionality of sc.integrate.solve_ivp
to compute the orbital periods of the Galilean moons. Write a function for
each moon that detects when its y-coordinate is the same as Jupiter’s, and
from this compute the mean orbital periods.]

t (ms) R (m) t (ms) R (m) t (ms) R (m)

0.1 11.1 1.36 42.8 4.34 65.6
0.24 19.9 1.50 44.4 4.61 67.3
0.38 25.4 1.65 46.0 15.0 106.5
0.52 28.8 1.79 46.9 25.0 130.0
0.66 31.9 1.93 48.7 34.0 145.0
0.80 34.2 3.26 59.0 53.0 175.0
0.94 36.3 3.53 61.1 62.0 185.0
1.08 38.9 3.80 62.9
1.22 41.0 4.07 64.3

Table 14.1: Radius of the Trin-
ity nuclear test as a function of
time.

Body Horizons ID

Jupiter 599
Io 501

Europa 502
Ganymede 503
Callisto 504

Table 14.2: ID numbers of
the relevant bodies in the
NASA/JPL Horizons database.

General advice on computational projects

In Hilary term you will undertake two of the three computational
projects listed below. Each project is worth up to twenty marks, which
are split between mathematical content, programming skill, and clar-
ity of exposition. The marks will count towards the Preliminary exam-
inations; they carry the weight of one third of a paper. The deadlines
for the projects are

• 12:00 (noon), Monday, week 6: online submission of first project;

• 12:00 (noon), Monday, week 9: online submission of second project.

The projects are to be submitted online via Inspera. The projects
can be done in any order (e.g. one may submit project C in week 6
and project A in week 9). It is recommended that students famil-
iarise themselves with Inspera and all data necessary for submission
(e.g. single sign-on and examination candidate number) well in ad-
vance of the deadlines. The deadlines are strict and penalties for late
submission apply.

Your submissions should consist of one or more .py files and a
.html file produced from the main .py file via publish, as de-
scribed in chapter 5. The examiners will primarily scrutinise the
published .html file, but may modify and execute your code. The
files for your submission should be gathered into exactly one .zip or
.tar.gz file for upload.

A key difference from the problem sheets is that the project reports
should be more expository. The mathematics behind and intent of the
code written for the project must be made as clear as possible, since
marks are awarded for mathematical understanding.

When you complete your projects, you must not upload them on
the internet e.g. on web forums or in public code repositories. This is
to assist in the prevention of plagiarism.

All projects must be your own unaided work. You will be asked
to make a declaration to this effect when you submit them. The
University’s plagiarism policy applies in full, with potential penalties
for plagiarism ranging from deduction of marks to expulsion from the
University.

Frequently asked questions

Do I need to do any background reading for the projects?

No. References to the literature are included for any students who
may be interested in learning more, but are not required to solve the
problems.

Can we use TeX for our documentation?

It is not expected at this stage that students know TeX/LaTeX. How-
ever, if you are familiar with it, you are encouraged to use TeX no-
tation for writing equations. TeX notation written in comments is
rendered appropriately by publish.py. TikZ diagrams are not sup-
ported; any diagrams required by the projects should be rendered
with matplotlib.

Are we allowed to use Jupyter Notebooks?

Again, it is not expected that students are familiar with Jupyter
Notebooks. It is possible to use Jupyter Notebooks for your code de-
velopment if you prefer, but your code should ultimately be submitted
as a .py file. You can convert Jupyter Notebooks to plain Python with
jupyter nbconvert.

How important is code optimisation?

The code should not be egregiously inefficient (e.g. having drasti-
cally worse scaling in time or memory than a straightforward imple-
mentation). Beyond that, do not invest too much effort into it; code
clarity is more important than running as fast as possible. As long as
the code runs in reasonable time, it suffices. The reference solutions
for the projects each take no more than ten minutes or so to execute on
modest hardware.

156 computational mathematics

Should we determine the complexity of our algorithms in time
and/or memory?

You do not need to do this unless explicitly requested.

How should I structure my code?

A good general structure for your code is to first write out the solu-
tion idea in comments, then give the (commented) implementation,
then show the code is correct with examples. In many cases the ques-
tion will indicate what examples to run your code on.

A Primality testing

(This project relates to material in the Trinity term Prelims course M1:
Groups and Group Actions, and in the Part A option ASO: Number
Theory.)

Computing whether a natural number is prime, and identifying its
factors, are core tasks in number theory and in cryptography. As Carl
Friedrich Gauss wrote in article 329 of his magnum opus Disquisitiones
Arithmeticae (1801) (translated by Arthur A. Clarke, 19651): 1 C. F. Gauss. Disquisitiones Arithmeticae.

Yale University Press, 1965. Translation
by A. A. Clarke

The problem of distinguishing prime numbers from composite numbers
and of resolving the latter into their prime factors is known to be one of
the most important and useful in arithmetic. It has engaged the industry
and wisdom of ancient and modern geometers to such an extent that it
would be superfluous to discuss the problem at length. Nevertheless
we must confess that all methods that have been proposed thus far are
either restricted to very special cases or are so laborious and prolix that
even for numbers that do not exceed the limits of tables constructed by
estimable men, i.e. for numbers that do not require ingenious methods,
they try the patience of even the practiced calculator. … Further, the
dignity of the science itself seems to require that every possible means
be explored for the solution of a problem so elegant and so celebrated.

The two tasks Gauss mentions—primality testing and number fac-
torisation—are rather different. An algorithm is known for primality
testing (due to Agrawal, Kayal, and Saxena2) that deterministically 2 M. Agrawal, N. Kayal, and N. Saxena.

PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004

gives the correct answer with a runtime that is a polynomial func-
tion of the number of digits of the input. By contrast, the existence or
nonexistence of a polynomial-time algorithm for factorising a number
remains a major open problem in mathematics, and indeed most of
the cryptography in practical use today relies centrally on its computa-
tional difficulty.

In this project you will investigate algorithms for testing whether a
number is prime or not. For more details on this subject, see the book
of Crandall and Pomerance3. 3 R. Crandall and C. Pomerance. Prime

Numbers: a Computational Perspective.
Springer-Verlag New York, second
edition, 2010

158 computational mathematics

A.1 Trial division

Trial division, the algorithm we met in Code block 7.11 and Exercise
7.6, was first described in Fibonacci’s Liber Abaci (1202)4. In Chapter 5, 4 L. Pisano (Fibonacci). Liber Abaci.

Springer Science & Business Media,
2003. Translation by L. E. Sigler

Fibonacci writes

If it is even, then he recognises its composition. However if odd, then
it will be composite or prime …Odd numbers truly are composed of
odds alone. Whence the components of them by odds are investigated,
for which we take the beginning. Therefore when in the figure of first
place of any odd number there is the number 5, one will know 5 to be a
factor. However, if another odd figure will appear in the first place, then
one indeed takes the residue of number when divided by 9; if a zephir
[i.e. zero] results, then 9 is a factor, and if 3 or 6 is the residue, then 3 is
a factor; however if the residue will show none of these, one divides by
7; and if there will be an excess, then one again divides the number by
11; and if there is an excess, then he divides again by 13, and always he
goes on dividing in order by prime numbers until he will find a prime
number by which he can divide, and thence he will come to the square
root; if he will be able to divide by none of them, then one will judge the
number to be prime.

We will employ some convenient notation for this question. Define
a : b as

a : b :“ ra, bs X Z. (A.1.1)

We denote numbers known to be prime by p, and the number whose
primality we wish to determine by n.

Question A.1. Modify your code for Exercise 7.6 (which implements
an efficient variant of trial division) to return (flag, ndivisions),
where flag = True if the input is prime and False otherwise, and
ndivisions is the count of the number of divisions performed.
Print the output of the function applied to all n P 2 : 20. How many
divisions are performed to test the primality of 9999991111111?

Question A.2. Compute the number of divisions performed for all
numbers n P 2 : 105. By means of a plot, verify that trial division
takes about

?
n{3 divisions in the worst case to test a number n for

primality.

Expressing
?

n{3 in terms of the logarithm of n, we see that the
work involved in trial division is exponential in the number of digits.
This exponential dependence on the number of digits motivates the
search for more efficient algorithms.

primality testing 159

A.2 The Fermat test

The trial division algorithm is based on the definition of primality,
i.e. that n has no factors other than one and n. Ideally, we would base
a test for primality on alternative condition that is equivalent to pri-
mality, i.e. that is necessary and sufficient for primality. Finding such
conditions is tricky. Instead, we will base our next algorithm on a con-
dition that is merely necessary for primality—all prime numbers satisfy
the condition, but some composite numbers may also. The condition
is inspired by Fermat’s Little Theorem, which you will meet in Hilary
Term Groups and Group Actions.

Theorem A.2.1 (Fermat, 1640). Let p P N be prime. Let a P N such that
gcdpa, pq “ 1 (i.e. a is not a multiple of p). Then

ap´1 ” 1 mod p. (A.2.1)

This inspires the following procedure. Let n be the number we wish
to test for primality.

1. Choose a P 2 : pn ´ 2q.

2. Calculate the greatest common divisor gcdpa, nq;5 if the greatest 5 The greatest common divisor can be
efficiently computed using Euclid’s
algorithm, as in code block 4.9.

common divisor is not 1, then n is composite.

3. Calculate an´1 mod n; if it is not congruent to 1, then n is compos-
ite.

4. If it is congruent to 1, then the test is inconclusive.

We refer to conducting this procedure for a single a as a Fermat trial; a
Fermat test is to do this for a set of candidate values of a.

Of course, since a Fermat test relies on a condition that is only
necessary for primality, it can only prove that n is not prime—in other
words, this is actually a compositeness test. Nevertheless, if n passes
enough trials, it might give us confidence that n is probably prime.

Question A.3. Write a function to implement the Fermat trial for
given n and a.

Write another function to apply the Fermat test with all a in a
given list; if no list is supplied, use as default value all a P 2 : pn ´

2q in ascending order. This latter function should return a tuple
(flag, ntrials)where flag = False if the Fermat test has shown
n to not be prime and True otherwise6, and where ntrials is the 6 In other words, a number with flag

True might still be composite.number of Fermat trials performed. Print the output of the function
applied to the natural numbers n P 2 : 20, using in each case all
a P 2 : pn ´ 2q in ascending order.

160 computational mathematics

[Hint: the greatest common divisor can be computed using math.gcd.]

[Hint: in Python, the pow function takes an optional third argument.
pow(x, y, z) calculates xy mod z.]

Question A.4. Compute the first 5 odd numbers n where the Fermat
test proves compositeness with just one trial, i.e. with a “ 2.

Question A.5. For how many odd n P 3 : 10, 000 does the Fer-
mat test prove compositeness with at most five trials (using a P

2 : min p6, n ´ 2q)? What proportion of odd composite numbers in
3 : 10, 000 does this represent?

Question A.6. A Carmichael number, also called an absolute Fermat
pseudoprime, is a composite number which passes the Fermat trial
for any a P 2 : pn ´ 1q with gcdpa, nq “ 1. Compute the Carmichael
numbers up to 10, 000.

[Hint: the first Carmichael number is 561.]

In 1994, Alford, Granville & Pomerance proved that there are in-
finitely many Carmichael numbers7; for large enough n, there are 7 W. R. Alford, A. Granville, and

C. Pomerance. There are infinitely
many Carmichael numbers. Annals of
Mathematics, 139(3):703, 1994

at least n2{7 Carmichael numbers in 1 : n. This fact limits the util-
ity of the standalone Fermat test; for the Fermat test to work on a
Carmichael number, only those bases that share a factor with n will
detect its compositeness, and choosing a few a’s will likely not help
us. However, in the words of Carl Pomerance, ‘‘using the Fermat con-
gruence is so simple that it seems a shame to give up on it just because
there are a few counterexamples’’ 8. It is often used in combined algo- 8 F. Bornemann. PRIMES is in P: a

breakthrough for ‘‘Everyman’’. Notices
of the American Mathematical Society,
50(5):545–553, 2003

rithms to quickly test for compositeness with a handful of choices of a
before subjecting n to more complicated algorithms.

A.3 Miller–Rabin primality test

The Miller–Rabin test is a refinement of the Fermat test. Like the Fer-
mat test, we will computationally determine whether a specific prop-
erty that must hold for primes holds for the n in question. A determin-
istic version was introduced by Miller in 19769, with its correctness 9 G. L. Miller. Riemann’s hypothesis and

tests for primality. Journal of Computer
and System Sciences, 13(3):300–317, 1976

dependent on the (unproven) extended Riemann hypothesis; Rabin
introduced a probabilistic version in 198010. 10 M. O. Rabin. Probabilistic algorithm

for testing primality. Journal of Number
Theory, 12(1):128–138, 1980

primality testing 161

To motivate the Miller–Rabin trial, suppose p ą 4 is prime. Let
a P 2 : pp ´ 2q with gcdpa, pq “ 1. From Fermat’s Little Theorem, we
know that

ap´1 ´ 1 ” 0 mod p. (A.3.1)

Since p ´ 1 is even, the left-hand side is the difference of two squares,
so we can write

´

a
p´1

2 ´ 1
¯ ´

a
p´1

2 ` 1
¯

” 0 mod p. (A.3.2)

If pp ´ 1q{2 is still even we can expand the left-most term further, as
´

a
p´1

4 ´ 1
¯ ´

a
p´1

4 ` 1
¯ ´

a
p´1

2 ` 1
¯

” 0 mod p. (A.3.3)

Repeating this process yields
ˆ

a
p´1
2s ´ 1

˙ ˆ

a
p´1
2s ` 1

˙

¨ ¨ ¨

´

a
p´1

2 ` 1
¯

” 0 mod p (A.3.4)

for some s such that p ´ 1 “ 2sd with d odd. The left-hand side is di-
visible by p; we wish to assert that p must divide one of the factors. To
do so we invoke Euclid’s lemma, given as Proposition 30 in Book VII
of Euclid’s Elements (approximately 300 B.C., translated by Richard
Fitzpatrick, 200811): 11 Εκλεδης. Στοιχεα. 300 B.C. Trans-

lation by R. Fitzpatrick. Independently
publishedIf two numbers make some number by multiplying one another, and

some prime number measures the number so created from them, then it
will also measure one of the original numbers.

In modern language, we would express this as

Lemma A.3.1. If a prime p divides the product ab of two integers a and b,
then p must divide at least one of a or b.

By the primality of p, we can therefore conclude that at least one of
the following conditions must hold:

1. ad ” 1 mod p,

2. a2rd ” ´1 ” p ´ 1 mod p for some r P 0 : ps ´ 1q,

where again p ´ 1 “ 2sd.
Now let n ą 4 be the number whose primality we wish to test.

Write n ´ 1 “ 2sd. For a given a P 2 : pn ´ 2q, the Miller–Rabin trial for
n ą 4 proceeds as follows. If one of the following conditions holds:

1. ad ” 1 mod n,

2. a2rd ” ´1 ” n ´ 1 mod n for some r P 0 : ps ´ 1q,

162 computational mathematics

then the trial is inconclusive. If none of these conditions hold, then the
trial yields the conclusion that n is composite.

As with the Fermat test, the Miller–Rabin test consists of one or
more Miller–Rabin trials with different choices of a. Choosing sev-
eral bases at random gives a probabilistic primality test; Miller gave
a clever choice of deterministic bases that guarantees correctness,
subject to the extended Riemann hypothesis.

Question A.7. Write a function to implement the Miller–Rabin trial
for given n and a.

Write another function to apply the Miller–Rabin test with all a in
a given list; if no list is supplied, use as default value the single trial
a “ 2. This latter function should return a tuple (flag, ntrials)
where flag = False if the Miller–Rabin test has shown n to not be
prime and True otherwise12, and where ntrials is the number 12 In other words, a number with flag

True might still be composite.of Miller–Rabin trials performed. Print the output of the function
applied to the natural numbers n P 5 : 20, using in each case only
a “ 2.

Question A.8. Using only the single trial with base a “ 2, what
is the minimal odd composite number n for which the test does not
conclude that n is composite?

Question A.9. Using only the trials a P t2, 3u, what is the minimal
odd composite number n for which the test does not conclude that n is
composite?

Adding a single additional trial to the Miller–Rabin test greatly
extends the range of natural numbers for which the test is guaran-
teed to be accurate. For example, using a P t2, 3, 5u is guaranteed
to give the correct answer for n ă 25, 326, 001; using a P t2, 3, 5, 7u

is guaranteed to give the correct answer for n ă 3, 215, 031, 751; us-
ing a P t2, 3, 5, 7, 11u is guaranteed to give the correct answer for
n ă 2, 152, 302, 898, 74713. 13 C. Pomerance, J. L. Selfridge, and

S. S. Wagstaff. The pseudoprimes
to 25 ¨ 109. Mathematics of Compu-
tation, 35(151):1003–1026, 1980; and
G. Jaeschke. On strong pseudoprimes to
several bases. Mathematics of Computa-
tion, 61(204):915–926, 1993

Question A.10. Using trials a P t2, 3, 5, 7, 11, 13, 17u14, how much

14 With these bases, the Miller–Rabin test
is guaranteed to be correct for this n.

faster or slower is the Miller–Rabin test than trial division to verify the
primality of n “ 9999991111111?

primality testing 163

A.4 Concluding remarks

The current state of the art for deterministic primality testing is to
combine one Miller–Rabin trial (with base a “ 2) with another test we
have not discussed, the Lucas probable prime test. This combination is
known as the Baillie–Pomerance–Selfridge–Wagstaff (or Baillie–PSW)
test15, and is the algorithm behind the primality testing algorithms in 15 R. Baillie and S. S. Wagstaff. Lu-

cas pseudoprimes. Mathematics of
Computation, 35(152):1391–1417, 1980;
and C. Pomerance, J. L. Selfridge, and
S. S. Wagstaff. The pseudoprimes to
25 ¨ 109. Mathematics of Computation,
35(151):1003–1026, 1980

Mathematica, Maple, PARI/GP, SageMath, and other symbolic algebra
systems. The reason for the popularity of this algorithm is that no
composite number is known that (falsely) passes the Baillie–PSW test.
The construction of such a composite number, or a proof that no such
number exists, would solve a major open question in computational
number theory.

B The Kepler problem

(This project relates to material in Prelims M4: Dynamics, A7: Numerical
Analysis, and B7.1: Classical Mechanics.)

The glorious triumph of Newton’s twin discoveries of calculus and
Newtonian mechanics was that it allowed us to make physical predic-
tions by solving differential equations. Newton’s second law provides an
initial value problem for a second-order differential equation that, if
solved, describes the motion of the given system for all future time.
One of the first examples of the first written treatment of calculus,
Problema II, Solutio Casus II, Ex. I of Newton (1671)1, is to solve 1 I. Newton. The Method of Fluxions and

Infinite Series. Henry Woodfall; and
sold by John Nourse, 1671. Translated
from the Author’s Latin Original Not Yet
Made Publick. To which is Subjoin’d, a
Perpetual Comment Upon the Whole
Work, By John Colson. Published in
1736.

9y :“
dy
dt

“ 1 ´ 3t ` y ` t2 ` ty (B.0.1)

which Newton does by means of an infinite series. Indeed, in the
bitter dispute with Leibniz over the discovery of calculus, Newton
wrote2 2 I. Newton. An account of the book

entituled Commercium Epistolicum
Collinii et Aliorum, de Analysi Promota.
Philosophical Transactions of the Royal
Society of London, 342:173–224, 1715

…and by the Answer of Mr. Leibnitz to the first of those Letters, it is as
certain that he had not then found out the Reduction of Problems either
to differential Equations or to converging Series.

Of course, most differential equation initial value problems cannot
be solved exactly, and so numerical methods for their approximate
solution were (and remain) of pressing concern3. In this project you 3 Even for ordinary differential equation

initial value problems, important
mathematical and algorithmic advances
continue to this day.

will investigate numerical algorithms for computing approximate
solutions of ordinary differential equation initial value problems.
For more details on this subject, see the books of Hairer, Wanner &
Nørsett4, or Hairer, Lubich & Wanner5. 4 E. Hairer, G. Wanner, and S. P. Nørsett.

Solving Ordinary Differential Equations
I, volume 8 of Springer Series in Com-
putational Mathematics. Springer Berlin
Heidelberg, 2nd edition, 1993
5 E. Hairer, C. Lubich, and G. Wan-
ner. Geometric Numerical Integration,
volume 31 of Springer Series in Compu-
tational Matheematics. Springer-Verlag,
2006

We will focus our investigations on the two-body Kepler problem,
modelling the orbit of a single planet around a star. As discussed in
Chapter 9, the two-body problem is amenable to symbolic analysis
that does not extend to three or more bodies. However, it is best to
study the qualitative and quantitative accuracy of our numerical algo-
rithms on the simplest possible case; if an algorithm does not work for
two bodies, we cannot reasonably expect it to work for three or more.

166 computational mathematics

B.1 Equations of motion and invariants

Following section I.2 of Hairer et al.6, we choose one of the two bodies 6 E. Hairer, C. Lubich, and G. Wan-
ner. Geometric Numerical Integration,
volume 31 of Springer Series in Compu-
tational Matheematics. Springer-Verlag,
2006

to be the origin of our coordinate system. Since two-body motion re-
mains in a plane (a fact you will prove in Dynamics), we consider the
position q “ pq1, q2q and momentum p “ pp1, p2q as two-dimensional
vector-valued functions of time. Setting all physical constants to one
for convenience, the Hamiltonian for the system is

Hpp, qq “
1
2

´

p2
1 ` p2

2

¯

´
1

b

q2
1 ` q2

2

. (B.1.1)

Question B.1. Symbolically calculate with sympy the resulting sys-
tem of ordinary differential equations. (Recall (13.0.4).)

As a Hamiltonian system, the equations of motion you derive in
Question B.1 must structurally preserve the Hamiltonian, the total
energy of the system. The Kepler problem has other invariants, how-
ever7. Kepler’s second law is equivalent to the statement that the 7 In fact, the Kepler problem is maximally

superintegrable—it has as many invari-
ants of motion as is possible to have.
The concept of a system being integrable
is rather subtle; Oxford’s Nigel Hitchin,
emeritus Savilian Professor of Geometry,
gives a useful introduction in the first
few pages of
N. J. Hitchin, G. B. Segal, and R. S.

Ward. Integrable systems: Twistors, loop
groups, and Riemann surfaces, volume 4
of Oxford Graduate Texts in Mathematics.
Clarendon Press, 1999

angular momentum is conserved, which is

Lpp, qq “

¨

˚

˝

p1

p2

0

˛

‹

‚

^

¨

˚

˝

q1

q2

0

˛

‹

‚

. (B.1.2)

Question B.2. Prove by symbolic substitution with sympy that the
Hamiltonian is conserved, i.e. that its value does not change over time.

Question B.3. Prove by symbolic substitution with sympy that the
angular momentum is conserved.

These two invariants are also conserved by n-body problems.
The case n “ 2 has one further invariant, the so-called Laplace–
Runge–Lenz (LRL) vector:

App, qq “

¨

˚

˝

p1

p2

0

˛

‹

‚

^

¨

˚

˝

0
0

q1 p2 ´ q2 p1

˛

‹

‚

´
1

b

q2
1 ` q2

2

¨

˚

˝

q1

q2

0

˛

‹

‚

. (B.1.3)

Because of its more complicated form, this invariant is much less well
known, and has thus been rederived independently many times (by,
among others, Hermann, Bernoulli, Laplace, Hamilton, and Gibbs).

the kepler problem 167

The LRL vector points from the star being orbited to the point of clos-
est approach, the periapsis. The LRL vector was crucial to Pauli’s
quantum mechanical analysis of the hydrogen atom, which is a two-
body problem with a central force governed by an inverse square law,
discussed in Chapter 11.

Question B.4. Prove by symbolic substitution with sympy that the
LRL vector is conserved.

The conservation of H, L, and A encode the crucial geometric prop-
erty of Kepler’s problem, that the planet should orbit in an ellipse.
(Roughly speaking, H and L encode the shape of the ellipse, while
A encodes its orientation.) An important way to study the effective-
ness of numerical algorithms for solving differential equations is to
consider how they preserve the geometric properties encoded in the
equations; algorithms that honour the underlying geometry are stud-
ied in the field of geometric numerical integration. In our case, we are
particularly interested to what extent numerical algorithms yield dis-
cretisations that conserve H, L, and A, given in (B.1.1), (B.1.2), and
(B.1.3); if these invariants are conserved, then the discrete solution
will be the correct ellipse, but if they are not, the approximate trajec-
tory will deviate from this. Measuring the conservation error there-
fore gives insight into whether a particular numerical approximation
is unphysical or not.

B.2 Euler’s method

The simplest possible method for solving initial value problems is the
forward Euler method. Suppose we are solving

9y “ fpt, yq, (B.2.1a)
ypt0q “ y0. (B.2.1b)

Let t1 “ t0 ` ∆t with ∆t ą 0 small. Euler’s suggestion is to make the
approximation that f pt, yq is constant over rt0, t1s, with value f pt0, y0q.
Integrating the equation over this interval then yields that

ypt1q “ ypt0q ` ∆t f pt0, y0q. (B.2.2)

More generally, denoting

tn “ t0 ` n∆t, yn our approximation for yptnq, (B.2.3)

the forward Euler scheme is to iteratively compute

yn`1 “ yn ` ∆t f ptn, ynq. (B.2.4)

168 computational mathematics

The forward Euler method was proposed by Euler in Institutiones
Calculi Integralis (the Foundations of Integral Calculus) in 17688. In 8 L. Euler. Institutiones Calculi Integralis.

Academia Imperialis Scientiarum, 1768.
Translation by I. Bruce. Independently
published

Volume I, Section II, Chapter 7 (translated by Ian Bruce in 2010), Euler
writes

Concerning the approximate integration of differential equations.

Problem 85. To assign an approximate value to the complete integral of
any differential equation.

Solution. Let x and y be two variables, between which the differential
equation is proposed, and this equation shall have a form of this kind,
so that dy

dx “ V with V being some function of x and y. Now since
the complete integral is desired, this has to be interpreted thus, so that
while x is given a certain value, for example x “ a, the other variable y is
given a certain value, for example y “ b. Hence in the first place we are
to treat the question, so that we can find the value of y, when the value
of x is attributed a value differing a little from a, on putting x “ a ` ω

so that we may find y. But since shall be the smallest possible amount,
the value of y will differ minimally from b ; from which, while x only is
changed from a as far as to a ` ω , the quantity V is allowed to be looked
on as being constant. Whereby on putting x “ a and y “ b there is made
V “ A and from this very small change we will have dy

dx “ A and thus
on integrating, y “ b ` Apx ´ aq , clearly with a constant of this kind to
be added so that on putting x “ a there becomes y “ b. Hence we may
put in place x “ a ` ω and there becomes y “ b ` A.

Hence just as here from the values given initially x “ a and y “ b we
find approximately the following x “ a ` ω and y “ b ` A, thus from
these in a like manner it is allowed to progress through another very
short interval, as long as it arrives finally at values however far from the
starting value.

This is a natural first idea; if ∆t is small enough, the error in the
value of ypt‹q for some fixed t‹ converges linearly as ∆t is reduced
(i.e. if you halve the timestep, the error in the approximation also
halves). However, the forward Euler scheme does not pay heed to the
geometric structure of our problem, with disastrous physical conse-
quences, as we shall soon see.

Question B.5. Write a function to execute the forward Euler scheme
to approximate the solution of the Kepler problem with initial condi-
tions

ppt “ 0q “ r0, 2s, qpt “ 0q “ r0.4, 0s, (B.2.5)

for a specified timestep and number of timesteps.
On a single figure, plot the trajectory computed with forward Euler

with

1. 50 steps of timestep ∆t “ 0.1;

the kepler problem 169

2. 100 steps of timestep ∆t “ 0.05;

3. 200 steps of timestep ∆t “ 0.025.

For comparison, on the same figure plot also the true orbit, given in
parametric form by

q1 “ ´0.6 ` cos s, q2 “ 0.8 sin s, s P r0, 2πs. (B.2.6)

Comment on your results.

Question B.6. For the finest discretization, on separate figures plot
the computed values of H, L, and θ, where

L :“ }L}, θ :“ arg A (B.2.7)

as a function of time, where arg returns the azimuthal angle from the
positive x-axis of the vector projected to the x-y plane. Are the in-
variants conserved by the forward Euler discretisation? What are the
implications of this for the numerical approximation to the planet’s
orbit?

These results motivate the search for more sophisticated algo-
rithms.

B.3 Explicit midpoint method

Over an interval rtn, tn`1s, the forward Euler method approximates
the slope of the tangent to the solution yptq via its (known) value
at the left end-point. A natural objection to this procedure is that it
violates the symmetry inherent in the equations: whereas Newton’s laws
of motion are symmetric forward or backward in time9, the forward 9 Indeed, the invariance of the laws

of physics in time is precisely what
leads to the conservation of energy:
Noether’s Theorem, one of the most
beautiful in all of mathematics, asserts
that every differentiable symmetry of
a physical system has a corresponding
conservation law.
E. Noether. Invariante Variation-

sprobleme. Nachrichten von der
Gesellschaft der Wissenschaften zu Göt-
tingen, Mathematisch-Physikalische Klasse,
pages 235–257, 1918

Euler method is not symmetric in time. More precisely, exchanging
tn Ø tn`1, yn Ø yn`1, and ∆t Ø ´∆t in (B.2.4), we do not recover
(B.2.4)10.

10 Instead, we recover

yn`1 “ yn ` ∆t f ptn`1, yn`1q. (B.3.1)

This scheme is known as backward Euler.

This consideration of symmetry prompts us to seek a numerical
method where the slope of our approximation matches the right-hand
side of the ordinary differential equation at the midpoint of the interval,
i.e. to find yn`1 such that

yn`1 ´ yn

∆t
“ f

ˆ

tn ` tn`1

2
,

yn ` yn`1

2

˙

. (B.3.2)

The numerical method defined by (B.3.2) is clearly symmetric in time
by construction. However, it has a substantial disadvantage: to com-
pute yn`1, we need to solve (B.3.2), which in general is a nonlinear

170 computational mathematics

equation. (Notice that the right-hand side depends on the unknown
yn`1.) The method defined by (B.3.2) is described as implicit, in con-
trast to explicit methods like forward Euler (B.2.4), where one can
directly compute yn`1 from yn. This method is therefore known as
implicit midpoint.

Moreover, implicit midpoint has a more fundamental geomet-
ric property: the associated discrete system is symplectic, just as our
Hamiltonian system is. Explaining symplecticity is beyond the scope
of this project, but for our purposes the following rough idea will suf-
fice. Imagine an ordinary differential equation with y P R2. The initial
data are thus an element of R2. Imagine taking a (measurable) set A
of many different initial conditions in R2, and integrating the equa-
tions of motion up to an arbitrary fixed time T ą 0 for each a P A. This
procedure will give another set of points B Ă R2. Symplecticity means
that the area is preserved under this procedure: the area of B is exactly
the area of A, for any terminal time T. Symplecticity is crucial to the
geometry of Hamiltonian mechanics; implicit midpoint preserves
symplecticity, whereas forward Euler does not.

Implicit midpoint is therefore a very powerful and popular integra-
tor11. However, in this project we will confine our attention to explicit 11 It is especially popular for problems

where implicit integrators are necessary
for other reasons, such as the parabolic
partial differential equations you will
meet in Part A A1: Differential Equations
I.

schemes, as implementing implicit schemes requires a good knowl-
edge of the numerical solution of nonlinear equations, which you will
study in Trinity Term Constructive Mathematics. An explicit alternative
is to instead approximate

yn ` yn`1

2
« yn `

∆t
2

f ptn, ynq, (B.3.3)

i.e. we estimate the average of the initial and final states with a half-
step of forward Euler. This yields the explicit midpoint method:

yn`1 ´ yn

∆t
“ f

ˆ

tn ` tn`1

2
, yn `

∆t
2

f ptn, ynq

˙

. (B.3.4)

Unlike implicit midpoint, explicit midpoint is neither symmetric nor
symplectic, but it is nevertheless a substantial improvement over for-
ward Euler: on halving the timestep, the error in yn decreases by a
factor of 4, instead of the factor of 2 yielded by forward Euler.

Question B.7. Write a function to execute the explicit midpoint
scheme to approximate the solution of the Kepler problem. Make
an analogous plot as in Question B.5, with the same initial conditions,
timestep ∆t, and number of steps.

Question B.8. Compare on a plot a run of forward Euler with a run

the kepler problem 171

of explicit midpoint. Make the comparison fair by ensuring that both
schemes require the same number of evaluations of the right-hand
side f . Comment on your results.

Question B.9. Comment on the conservation properties of explicit
midpoint. (No plot necessary.)

B.4 Newton–Störmer–Verlet method

Is it possible to devise an explicit scheme for our problem that is both
symmetric and symplectic?

Our intuition for the explicit and implicit midpoint schemes was
that we wished the slope of our approximation at the midpoint of
the time interval rtn, tn`1s to match that specified by the ODE. This
makes sense for a generic first-order system of ODE. But we are not
solving just any first-order system of ODE—we are solving a first-
order reformulation of a problem that is fundamentally second-order
(recall Newton’s second law). In other words, our equations are of the
particular form

9p “ gpqq, (B.4.1a)
9q “ p, (B.4.1b)

which is the first-order reformulation of

:q “ gpqq. (B.4.2)

Since g tells us the second derivative of q, this instead suggests we
should find a numerical approximation that matches the second deriva-
tive at qn with the right-hand side evaluated there. That is, given qn´1

and qn, we compute the next value qn`1 such that the second deriva-
tive of the quadratic function that passes through ptn´1, qn´1q, ptn, qnq,
and ptn`1, qn`1q is gpqnqq. After some algebra, the scheme that results
is

qn`1 ´ 2qn ` qn´1 “ p∆tq2gpqnq. (B.4.3)

The method (B.4.3) has been invented many times, with different
names used in different communities12. Its most common name is 12 This historical account is drawn from

E. Hairer, C. Lubich, and G. Wanner.
Geometric numerical integration illus-
trated by the Störmer–Verlet method.
Acta Numerica, 12:399–450, 2003

the Verlet method, invented by Loup Verlet in 196713 in the context

13 L. Verlet. Computer ‘‘experiments’’
on classical fluids. I. Thermodynamical
properties of Lennard–Jones molecules.
Physical Review, 159(1):98, 1967

of molecular dynamics. It is sometimes called the Störmer method,
as Carl Störmer14 used higher-order variants of it to compute the

14 C. Störmer. Sur les trajectoires des
corpuscules électrisés. Archives des
Sciences Physiques et Naturelles, 24:5–18,
113–158, 221–247, 1907

motion of ionised particles in the Earth’s magnetic field to understand
the aurora borealis15. Loup Verlet subsequently became interested

15 For more details, see Section III.10 of
E. Hairer, G. Wanner, and S. P. Nørsett.

Solving Ordinary Differential Equations
I, volume 8 of Springer Series in Com-
putational Mathematics. Springer Berlin
Heidelberg, 2nd edition, 1993

in the history of science and discovered the method that had made

172 computational mathematics

him famous had been employed by Newton in 1687 to prove Kepler’s
second law, the conservation of angular momentum in the two-body
Kepler problem—in Theorem I of Book I of the Principia. We therefore
refer to it here as the Newton–Störmer–Verlet method.

It turns out that the direct implementation of (B.4.3) suffers from a
numerical instability in the presence of (inevitable) rounding errors16. 16 For more details, see pg. 472 of Hairer

et al. (1993).A more stable equivalent implementation arises for the first-order
system (B.4.1). Given p0 and q0, the Newton–Störmer–Verlet scheme
is to compute

pn` 1
2

“ pn `
∆t
2

gpqnq, (B.4.4)

qn`1 “ qn ` ∆tpn` 1
2
, (B.4.5)

pn`1 “ pn` 1
2

`
∆t
2

gpqn`1q. (B.4.6)

Like explicit and implicit midpoint, Newton–Störmer–Verlet is
second-order accurate: halving the timestep quarters the error. But
unlike explicit midpoint, it is both symmetric and symplectic, with
crucial qualitative advantages in the simulation of the class of prob-
lems to which it applies.

Question B.10. Write a function to execute the Newton–Störmer–Verlet
scheme to approximate the solution of the Kepler problem. Make an
analogous plot as in Question B.5, with the same initial conditions,
timestep ∆t, and number of steps.

Question B.11. Compare on a plot a run of explicit midpoint with a
run of Newton–Störmer–Verlet, both employing ∆t “ 0.05 for 1200
steps. Comment on your results.

Question B.12. Discuss the conservation properties of Newton–
Störmer–Verlet. Provide evidence for your assertions, and relate your
results to your answer for the previous question.

B.5 Concluding remarks

Hamiltonian problems (like the Kepler problem) possess an extremely
rich mathematical structure. The associated differential equations are
symplectic, conserve the Hamiltonian, and possibly conserve other

the kepler problem 173

invariants also. However, when discretising, one must in general make
a choice of structure to preserve: an approximate integrator cannot
generally preserve both symplecticity and the Hamiltonian17. For 17 G. Zhong and J. E. Marsden. Lie–

Poisson Hamilton–Jacobi theory and
Lie–Poisson integrators. Physics Letters
A, 133(3):134–139, 1988

chaotic systems, preserving symplecticity is probably the right choice,
as it is crucial for their statistical behaviour; the inevitable discreti-
sation errors mean that any individual trajectory is not particularly
meaningful, but symplecticity ensures their aggregation is.

However, for other systems, it may be preferable to choose approx-
imate schemes that exactly conserve the invariants of the system. For
example, for the Kepler problem, the trajectory of such an approxima-
tion would be confined to exactly the same ellipse as that of the true
solution, which is very appealing. More generally, the design of such
structure-preserving discretisations for physical systems such as the
Navier–Stokes equations of fluid mechanics or the Einstein field equa-
tions of general relativity is a major focus of ongoing research in the
numerical analysis of differential equations.

C Percolation

(This project relates to material in Prelims and Part A courses on Probabil-
ity and Statistics, and Part A Simulation and Statistical Programming.)

Statistical mechanics is the branch of mathematics that applies sta-
tistical and probabilistic methods to large assemblies of microscopic
entities. For example, one might consider a gas as composed of a very
large number of molecules moving in all directions and colliding with
each other. From this viewpoint we wish to derive macroscopic prop-
erties like its pressure or temperature. Of course, keeping track of the
state of each individual molecule among the trillions of trillions in a
typical cubic metre is simply impossible. One therefore instead de-
velops a theory where one considers the probability distribution of the
molecules of the gas; given knowledge of the probability distribution,
we can at any time calculate the number of molecules of a certain ve-
locity range in a certain volume of space. In 1860, Maxwell calculated
the equilibrium distribution for a gas at a given temperature, now
known as the Maxwellian1; in 1872 Boltzmann derived the equation 1 J. C. Maxwell. V. Illustrations of the

dynamical theory of gases. Part I. On
the motions and collisions of perfectly
elastic spheres. The London, Edinburgh,
and Dublin Philosophical Magazine and
Journal of Science, 19(124):19–32, 1860

governing the time evolution of the probability distribution function,
now known as the Boltzmann equation2.

2 L. Boltzmann. Weitere Studien über
das Wärmegleichgewicht unter Gas-
molekülen. Sitzungsberichte der Akademie
der Wissenschaften zu Wien, 66:275–730,
1872

The Boltzmann equation is a nonlinear integro–differential equa-
tion, where the unknown is a function in six dimensions (three of
position, three of velocity). It is therefore not terribly surprising that it
is rather hard to solve. Computational simulations are crucial to gain-
ing mathematical and physical insight into most systems of statistical
mechanics.

A major goal of statistical mechanics is to understand phase tran-
sitions. A phase transition is an abrupt, discontinuous change in the
properties of a system. For example, if we take our gas and cool it, at a
critical temperature it will (usually) turn into a liquid, with its density
and volume changing discontinuously. Phase transitions are of enor-
mous mathematical, physical, and economic importance. For example,
some materials (known as superconductors) exhibit a phase transi-
tion at a critical temperature, below which they offer no resistance to
electrical current. The discovery of a practical superconducting mate-
rial where the critical temperature is above room temperature would

176 computational mathematics

trigger a second industrial revolution3. 3 The current record at atmospheric
pressure is held by the cuprate of
mercury, barium, and calcium, which
has a critical temperature around ´140
˝C.

One route to understanding phase transitions is to consider simple
mathematical models that exhibit them. A prominent class of such
mathematical models is studied in percolation theory4. Percolation the-

4 D. Stauffer and A. Aharony. Intro-
duction to Percolation Theory. Taylor &
Francis, second edition, 1994

ory describes the properties of a graph as nodes or edges are added.
Hugo Duminil-Copin won the Fields Medal in 2022 for his work on
percolation theory; a popular account of his work was published in
Quanta magazine5. 5 Hugo Duminil-Copin wins the Fields

medal. Quanta Magazine, 2022

Figure C.1: A 10 ˆ 10 grid sam-
pled with vacancy probability
p “ 0.5. Open squares are
white; closed squares are black.

The specific percolation model we consider in this project is the
following. Consider an n ˆ n grid of squares, where each site can be
either open or closed, as in Figure C.1. We say that a site is full if it is
open and can be connected to an open site in the top row via chain of
neighbouring (left, right, up, down) open sites. If there is a full site on
the bottom row, we say the system percolates (see Figures C.2 and C.3
for examples). In other words, is there a connected open component
spanning from the top of the grid to the bottom? You might imagine
this to model the question of whether water poured on the top will
percolate to the bottom (hence the name), or whether a fire started at
one end of a forest will propagate tree-by-tree to the other.

A natural question to ask about this system is: if each site is open
with vacancy probability p, what is the probability that the system
percolates, Cppq? As we will see, the percolation probability Cppq

percolation 177

Figure C.2: A 10 ˆ 10 grid sam-
pled with vacancy probability
p “ 0.5. Full squares are blue.
The system does not percolate.

Figure C.3: A 10 ˆ 10 grid sam-
pled with vacancy probability
p “ 0.5. Full squares are blue.
The system does percolate.

178 computational mathematics

exhibits a phase transition in the vacancy probability. For low values
of p, the system does not percolate; at a critical p “ pc the system
very rapidly switches to always percolating6. No analytical results are 6 In fact, in the limit of infinite grid size,

the percolation probability for a given p
is either zero or one, by Kolmogorov’s
zero-one law. For small n the transition
becomes smoother.

known characterising pc. As described by Newman & Ziff7,

7 M. E. J. Newman and R. M. Ziff.
Fast Monte Carlo algorithm for site or
bond percolation. Physical Review E,
64:016706, 2001

Percolation is one of the best-studied problems in statistical mechanics.
…It is one of the simplest and best understood examples of a phase
transition in any system, and yet there are many things about it that
are still not known. For example, despite decades of effort, no exact
solution for the site percolation problem yet exists on the simplest two-
dimensional lattice, the square lattice, and no exact results are known
on any lattice in three dimensions or above. Because of these and many
other gaps in our current understanding of percolation, numerical
simulations have found wide use in the field.

By means of such numerical simulations, Newman & Ziff computed
that the critical probability pc for large n was approximately pc «

0.592746218. 8 M. E. J. Newman and R. M. Ziff. Effi-
cient Monte Carlo algorithm and high-
precision results for percolation. Physical
Review Letters, 85(19):4104–4107, 2000

In this project you will investigate Monte Carlo algorithms for
estimating the percolation probability Cppq. Monte Carlo methods are
one of the most important and prominent tools for modern statistical
inference. In a Monte Carlo simulation, we randomly draw inputs
from a suitable probability distribution (in this case, the binomial
distribution), perform deterministic computations (in this case, decide
whether the grid percolates or not), and aggregate the results (to
compute Cppq).

C.1 Representing the state

Our first task is to generate suitable random samples of our grids.

Question C.1. Write a function make_grid(n, p) to make an n ˆ n
numpy array of Boolean values, with each site True with probability
p and False otherwise.

[Hint: this should take one line of numpy code.]

Draw a few samples to ensure that the empirical probability of a
site being open is approximately p.

Our next task is to visualise our grid status. This will be very useful
in developing the code for the simulation.

Question C.2.

percolation 179

Write a function visualise_grid to visualise a grid produced by
make_gridwith matplotlib. The function should take in a Boolean
array. The output should look similar to Figure C.1: plot closed sites
in black; plot open sites in white; colour the borders of each square in
black.

[Hint: you will need to consult the matplotlib documentation and other
online resources to do this; the relevant matplotlib methods were not discussed
in Chapter 7.]

Use your function to visualise a few sample grids.

C.2 Calculating percolation

Once we have represented our grid, we now proceed to calculate
whether each site is full or not. As with our grid, we represent the full
status of each site with a numpy array of Boolean variables.

Question C.3.
Write a function visualise_fill to visualise the fill status of a

given grid. The function should take as input two Boolean arrays, the
grid and the fill status. The output should look similar to Figures C.2
and C.3. Plot closed sites in black, open unfilled sites in white, and
open filled sites in blue. Colour the borders of each square in black.

Apply your function to hand-crafted data (e.g. on a 3 ˆ 3 grid) to
verify it is working correctly. Ensure also that the visualisation code
works correctly if the fill status is all False.

We now turn to the central task of computing the full status of
each site. This is more subtle than it appears. An outline might be the
following.

1. Visit each site in the top row.

2. For each visited site, do the following:

(a) If appropriate, set the site to be full.

(b) Visit each neighbouring site (left, right, up, down).

This general approach is known in the graph theory literature as depth-
first search. It is most naturally written as a function that recursively
calls itself, but non-recursive implementations are also possible.

180 computational mathematics

Question C.4. Write a function compute_fill that takes in a grid
produced by make_grid and calculates whether each site is full or
not.

[Hint: think carefully about what should happen when a site is visited.
For example, if it is already full, it should terminate without further action.]

[Hint: it may be useful during your development to visualise the fill state
of the grid as you visit each site in the top row.]

Question C.5. Write a function percolates that returns True if the
given grid percolates, and False otherwise.

[Hint: the core logic can be written with one line of numpy.]

Draw 10 samples of a 20 ˆ 20 grid with vacancy probability p “ 0.6.
For each, visualise its fill status, titling each figure with whether that
grid percolates or not.

C.3 Monte Carlo simulation

With the percolate function in hand, we can now conduct our sta-
tistical simulation. Our goal here is to calculate Cppq, the percolation
probability as a function of the vacancy probability.

Question C.6. Take a suitable grid P Ă r0, 1s of p values. (You may
wish to increase the resolution for p P r0.4, 0.7s.) For each p P P,
draw N samples of a 20 ˆ 20 grid with vacancy probability p. For each
sample, calculate whether the grid percolates or not; the fraction of
grids that percolates is our estimate for Cppq. Plot Cppq as a function of
p.

[Hint: you will need to choose suitable N and P so that the interpolation
error and statistical error due to sampling are acceptable. The curve should
appear smooth; if it is not, try increasing N and/or refining P.]

A word on computational efficiency is in order for question C.6.
This question is the most computationally intensive across the three
projects9. When calling publish() as usual, your code actually 9 On an old laptop, the unoptimised

reference solution for question C.6 takes
approximately 9 minutes.

gets executed twice; normally this is not a problem, but here it may
be. Instead, with the latest version of publish.py it is possible to
execute

percolation 181

(terminal) python publish.py percolation.py

which publishes your script, only executing it once.

C.4 Concluding remarks

The algorithms investigated in this project can be substantially im-
proved upon. For example, Newman & Ziff propose an entirely dif-
ferent approach to the simulation of site percolation that is several
million times faster for 1000 ˆ 100010. Their approach relies on an al- 10 M. E. J. Newman and R. M. Ziff.

Fast Monte Carlo algorithm for site or
bond percolation. Physical Review E,
64:016706, 2001

ternative representation of the state of the system, explicitly keeping
track of each connected cluster as a tree; with this alternative represen-
tation, entirely different statistical ensembles and search algorithms
are used.

In computational mathematics, there is a constant iteration between
programming, computation, and theory; computations motivate new
mathematical questions, and mathematical insights make new compu-
tations possible.

Bibliography

[1] Hugo Duminil-Copin wins the Fields medal. Quanta Magazine,
2022.

[2] H. Abelson and G. J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, 2 edition, 1996.

[3] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of
Mathematics, 160(2):781–793, 2004.

[4] W. R. Alford, A. Granville, and C. Pomerance. There are in-
finitely many Carmichael numbers. Annals of Mathematics,
139(3):703, 1994.

[5] K. Appel and W. Haken. Every planar map is four colorable.
Bulletin of the American Mathematical Society, 82(5), 1976.

[6] R. Baillie and S. S. Wagstaff. Lucas pseudoprimes. Mathematics of
Computation, 35(152):1391–1417, 1980.

[7] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht
unter Gasmolekülen. Sitzungsberichte der Akademie der Wis-
senschaften zu Wien, 66:275–730, 1872.

[8] F. Bornemann. PRIMES is in P: a breakthrough for ‘‘Everyman’’.
Notices of the American Mathematical Society, 50(5):545–553, 2003.

[9] R. P. Brent. Algorithms for Minimisation without Derivatives. Pren-
tice Hall, 1973.

[10] P. L. Chebyshev. Oeuvres de P. L. Tchébychef, volume 1. Commis-
sionaires de l’Académie Impériale des Sciences, 1899–1907.

[11] C. S. Covaci. The Unsolvability of the Quintic: an Insight into
Galois Theory. Master’s thesis, Universidad Politécnica de
Madrid, 2022.

[12] R. Crandall and C. Pomerance. Prime Numbers: a Computational
Perspective. Springer-Verlag New York, second edition, 2010.

184 computational mathematics

[13] R. Dawkins. The Blind Watchmaker. WW Norton & Company,
1996.

[14] J. R. Dormand and P. J. Prince. A family of embedded Runge–
Kutta formulae. Journal of Computational and Applied Mathematics,
6(1):19–26, 1980.

[15] D. R. Emerson, A. J. Sunderland, M. Ashworth, and K. J. Bad-
cock. High performance computing and computational aero-
dynamics in the UK. Aeronautical Journal, 111(1117):125–131,
2007.

[16] A. Ginsburg et al. astroquery: an astronomical web-querying
package in Python. The Astronomical Journal, 157(3):98, 2019.

[17] A. Meurer et al. SymPy: symbolic computing in Python. PeerJ
Computer Science, page e103, 2017.

[18] A. W. Senior et al. Improved protein structure prediction using
potentials from deep learning. Nature, 577(7792):706–710, 2020.

[19] C. R. Harris et al. Array programming with NumPy. Nature,
585(7825):357–362, 2020.

[20] P. Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python. Nature Methods, 17:261–272, 2020.

[21] L. Euler. Institutiones Calculi Integralis. Academia Imperialis
Scientiarum, 1768. Translation by I. Bruce. Independently pub-
lished.

[22] L. Pisano (Fibonacci). Liber Abaci. Springer Science & Business
Media, 2003. Translation by L. E. Sigler.

[23] J. G. F. Francis. The QR Transformation: A Unitary Ana-
logue to the LR Transformation—Part 1. The Computer Journal,
4(3):265–271, 1961.

[24] C. F. Gauss. Methodvs nova integralivm valores per approximationem
inveniendi. Dieterich, 1815.

[25] C. F. Gauss. Disquisitiones Arithmeticae. Yale University Press,
1965. Translation by A. A. Clarke.

[26] J. D. Giorgini. Status of the JPL Horizons Ephemeris System. In
IAU General Assembly, volume 29, page 2256293, 2015.

[27] D. Gruntz. On computing limits in a symbolic manipulation system.
PhD thesis, ETH Zürich, 1996.

bibliography 185

[28] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical inte-
gration illustrated by the Störmer–Verlet method. Acta Numerica,
12:399–450, 2003.

[29] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integra-
tion, volume 31 of Springer Series in Computational Matheematics.
Springer-Verlag, 2006.

[30] E. Hairer, G. Wanner, and S. P. Nørsett. Solving Ordinary Dif-
ferential Equations I, volume 8 of Springer Series in Computational
Mathematics. Springer Berlin Heidelberg, 2nd edition, 1993.

[31] D. A. Ham. Object-oriented Programming in Python for Mathemati-
cians. 2023. Independently published.

[32] W. R. Hamilton. XV. On a general method in dynamics; by
which the study of the motions of all free systems of attracting
or repelling points is reduced to the search and differentiation
of one central relation, or characteristic function. Philosophical
Transactions of the Royal Society, 124:247–308, 1834.

[33] S. K. Hanson, A. D. Pollington, C. R. Waidmann, W. S. Kinman,
A. M. Wende, J. L. Miller, J. A. Berger, W. J. Oldham, and H. D.
Selby. Measurements of extinct fission products in nuclear bomb
debris: determination of the yield of the Trinity nuclear test 70 y
later. Proceedings of the National Academy of Sciences of the United
States of America, 113(29):8104–8108, 2016.

[34] C. Hill. Learning scientific programming with Python. Cambridge
University Press, second edition, 2020.

[35] N. J. Hitchin, G. B. Segal, and R. S. Ward. Integrable systems:
Twistors, loop groups, and Riemann surfaces, volume 4 of Oxford
Graduate Texts in Mathematics. Clarendon Press, 1999.

[36] J. D. Hunter. Matplotlib: a 2D graphics environment. Computing
in Science & Engineering, 9(3):90–95, 2007.

[37] G. Jaeschke. On strong pseudoprimes to several bases. Mathe-
matics of Computation, 61(204):915–926, 1993.

[38] A. Jameson. Time dependent calculations using multigrid, with
applications to unsteady flows past airfoils and wings. In 10th
Computational Fluid Dynamics Conference. American Institute of
Aeronautics and Astronautics, 1991.

[39] A. B. Kempe. On the geographical problem of the four colours.
American Journal of Mathematics, 2(3):193–200, 1879.

186 computational mathematics

[40] L. F. Menabrea of Turin, Officer of the Military Engineers. Sketch
of the analytical engine invented by Charles Babbage, Esq. Sci-
entific Memoirs, Selected from the Transactions of Foreign Academies
of Science and Learned Societies, 3:666–731, 1843. Translated by A.
King, Countess of Lovelace.

[41] J.-L. Lagrange. Applications de la méthode exposée dans le
mémoire précédent à la solution de différents problèmes de
dynamique. Mélanges de Philosophie et de Mathématiques de la
Société Royale de Turin, 2:196–298.

[42] S. Kwan Lam, A. Pitrou, and S. Seibert. Numba: a LLVM-based
Python JIT compiler. In Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC. Association for Computing
Machinery, 2015.

[43] L. J. Lander and T. R. Parkin. Counterexample to Euler’s conjec-
ture on sums of like powers. Bulletin of the American Mathematical
Society, 72(6):1079, 1966.

[44] H. P. Langtangen. A Primer on Scientific Programming with Python.
Springer Berlin Heidelberg, 2016.

[45] P. S. Laplace. Traité de Mécanique Céleste, volume IV. Chez
Courcier, Paris, 1805.

[46] G. Lari, M. Saillenfest, and M. Fenucci. Long-term evolution
of the Galilean satellites: the capture of Callisto into resonance.
Astronomy & Astrophysics, 639:A40, 2020.

[47] J. Liouville. Premier mémoire sur la détermination des intégrales
dont la valeur est algébrique. Journal de l’École Polytechnique,
XIV:124–148, 1833.

[48] J. C. Maxwell. V. Illustrations of the dynamical theory of gases.
Part I. On the motions and collisions of perfectly elastic spheres.
The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 19(124):19–32, 1860.

[49] G. L. Miller. Riemann’s hypothesis and tests for primality. Jour-
nal of Computer and System Sciences, 13(3):300–317, 1976.

[50] M. E. J. Newman and R. M. Ziff. Efficient Monte Carlo algorithm
and high-precision results for percolation. Physical Review Letters,
85(19):4104–4107, 2000.

[51] M. E. J. Newman and R. M. Ziff. Fast Monte Carlo algorithm for
site or bond percolation. Physical Review E, 64:016706, 2001.

bibliography 187

[52] I. Newton. The Method of Fluxions and Infinite Series. Henry
Woodfall; and sold by John Nourse, 1671. Translated from the
Author’s Latin Original Not Yet Made Publick. To which is Sub-
join’d, a Perpetual Comment Upon the Whole Work, By John
Colson. Published in 1736.

[53] I. Newton. An account of the book entituled Commercium Epis-
tolicum Collinii et Aliorum, de Analysi Promota. Philosophical
Transactions of the Royal Society of London, 342:173–224, 1715.

[54] E. Noether. Invariante Variationsprobleme. Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, pages 235–257, 1918.

[55] J. North. God’s clockmaker: Richard of Wallingford and the invention
of time. Hambledon Continuum, London, England, 2004.

[56] R. Penrose. A generalized inverse for matrices. Mathematical
Proceedings of the Cambridge Philosophical Society, 51(3):406–413,
1955.

[57] R. Piessens, E. de Doncker-Kapenga, C. W. Überhuber, and D. K.
Kahaner. QUADPACK: a subroutine package for automatic integra-
tion, volume 1 of Springer Series in Computational Mathematics.
Springer Berlin Heidelberg, 1983.

[58] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff. The pseudo-
primes to 25 ¨ 109. Mathematics of Computation, 35(151):1003–1026,
1980.

[59] M. O. Rabin. Probabilistic algorithm for testing primality. Journal
of Number Theory, 12(1):128–138, 1980.

[60] D. Richardson. Some undecidable problems involving ele-
mentary functions of a real variable. Journal of Symbolic Logic,
33(4):514–520, 1969.

[61] R. H. Risch. The problem of integration in finite terms. Transac-
tions of the American Mathematical Society, 139(0):167–189, 1969.

[62] F. Spufford. Red Plenty. Faber & Faber, 2010.

[63] D. Stauffer and A. Aharony. Introduction to Percolation Theory.
Taylor & Francis, second edition, 1994.

[64] C. Störmer. Sur les trajectoires des corpuscules électrisés.
Archives des Sciences Physiques et Naturelles, 24:5–18, 113–158,
221–247, 1907.

188 computational mathematics

[65] G. S. Strang. The fundamental theorem of linear algebra. The
American Mathematical Monthly, 100(9):848–855, 1993.

[66] J. J. Sylvester. A new proof that a general quadric may be re-
duced to its canonical form (that is, a linear function of squares)
by means of a real orthogonal substitution. Messenger of Mathe-
matics, 19:1–5, 1889.

[67] G. I. Taylor. The formation of a blast wave by a very intense
explosion. II. The atomic explosion of 1945. Proceedings of the
Royal Society A, 201(1065):175–186, 1950.

[68] L. N. Trefethen. Floating point numbers and physics. Newsletter
of the London Mathematical Society, November, 2021.

[69] L. N. Trefethen, Á. Birkisson, and T. A. Driscoll. Exploring ODEs.
Society for Industrial & Applied Mathematics, 2018.

[70] A. M. Turing. Rounding-off errors in matrix processes. The Quar-
terly Journal of Mechanics and Applied Mathematics, 1(1):287–308,
1948.

[71] J. VanderPlas. Python Data Science Handbook. O’Reilly Media, Inc.,
2016.

[72] J. VanderPlas. A Whirlwind Tour of Python. O’Reilly Media, Inc.,
2016.

[73] L. Verlet. Computer ‘‘experiments’’ on classical fluids. I. Ther-
modynamical properties of Lennard–Jones molecules. Physical
Review, 159(1):98, 1967.

[74] R. Wilson. Four Colors Suffice: How the Map Problem Was Solved.
Princeton University Press, 2013.

[75] G. Zhong and J. E. Marsden. Lie–Poisson Hamilton–Jacobi
theory and Lie–Poisson integrators. Physics Letters A,
133(3):134–139, 1988.

[76] G. Zolotareff. Sur la méthode d’intégration de M. Tchébychef.
Mathematische Annalen, 5(4):560–580, 1872.

[77] Εκλεδης. Στοιχεα. 300 B.C. Translation by R. Fitzpatrick.
Independently published.

	Preface
	Introduction
	What is computational mathematics?
	Why should we study computational mathematics?
	How should we study computational mathematics?

	Getting started
	Installing things
	Other resources
	Thinking like a programmer

	Arithmetic, conditionals, and iteration
	Arithmetic
	Variables
	Accessing documentation
	Comparisons and conditionals
	Iteration

	Intermezzo: submitting problem sheets
	Problem sheet 1
	Data structures and plotting
	Lists
	What assignment means in Python
	Tuples
	Dictionaries
	Sets
	Functions
	Plotting

	Intermezzo: the Lander–Parkin counterexample
	Problem sheet 2
	Introduction to symbolic computing
	What is symbolic computing?
	Symbols and expressions
	Assumptions and evaluation
	Solving algebraic equations
	Differentiation and integration
	Limits, sequences, and series
	Solving differential equations
	Coda: rendering sympy objects in published documents

	Problem sheet 3
	Introduction to numerical computing
	Vectors
	Matrices
	Numerical linear algebra
	Approximating integrals
	Least squares and curve-fitting
	Solving differential equation initial value problems

	Coda: simulating the solar system
	Problem sheet 4
	Primality testing
	Trial division
	The Fermat test
	Miller–Rabin primality test
	Concluding remarks

	The Kepler problem
	Equations of motion and invariants
	Euler's method
	Explicit midpoint method
	Newton–Störmer–Verlet method
	Concluding remarks

	Percolation
	Representing the state
	Calculating percolation
	Monte Carlo simulation
	Concluding remarks

	Bibliography

