C3.10 Additive and Combinatorial Number Theory, HT23 Sheet 0

This example sheet will not be marked, and nor will solutions be provided. I am happy to discuss any issues with students after lectures or classes. The aim is to get you a little practice with some basic techniques of the kind that we will see in the course.

Question 1. This question is about basic practice with analytic quantities and asymptotic notation.

- (i) Show that $x^{10} \ll e^x$ for real numbers $x \ge 1$. (Hint: series expansion.)
- (ii) Show that $\log^2 n = O(\sqrt{n})$ for positive integers n. (Hint: previous part. Also, note that $\log^2 n$ is standard notation meaning the same thing as $(\log n)^2$.)
- (iii) Let $x \ge 1$. Show that $f(x) \ll e^{\sqrt{\log x}}$ when f(x) is any fixed power of $\log x$, but that $e^{\sqrt{\log x}} \ll f(x)$ when f(x) is any fixed power of x.
- (iv) Let $f(x) = x^{1/\log \log x}$ and $g(x) = e^{(\log x)^{2/3}}$, for $x \ge 10$. Is either $f(x) \ll g(x)$ or $g(x) \ll f(x)$ true, and if so which?
- (v) Show that $\sqrt{n} \ll \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \ll \sqrt{n}$ for positive integer *n*.

Question 2. The aim of this question is to think about what are typically called 'averaging arguments'. Let X be a finite set, and let $f : X \to \mathbb{R}$ be a function with $|f(x)| \leq 1$ for all x. Let $0 < \delta < 1$.

- (i) Suppose that $|X|^{-1}|\sum_{x\in X} f(x)| \ge \delta$. Show that, for at least $\delta |X|/2$ values of x, we have $|f(x)| \ge \delta/2$.
- (ii) Suppose that $|X|^{-1}|\sum_{x\in X} f(x)| \ge 1-\delta$. Show that, for at least $(1-\sqrt{\delta})|X|$ values of x, we have $|f(x)| \ge 1-\sqrt{\delta}$.

Question 3. The aim of this question is to think a little bit about the behaviour of the divisor function $\tau(n)$, that is to say the number of divisors of n.

- (i) Show that $\sum_{n=1}^{N} \tau(n) \ll N \log N$, uniformly for $N \ge 2$. (Hint: write $\tau(n) = \sum_{d|n} 1$ and then interchange the order of summation.)
- (ii) Show that there are infinitely many n for which $\tau(n) > \log^{10} n$.

ben.green@maths.ox.ac.uk