Analytic Topology

Rolf Suabedissen

September 28, 2023

This document contains the (important) definitions, statements and proof sketches for results which require a new idea. The other proofs should be straightforward.

Concepts and results which should be known from a previous course are typeset in a smaller size.

Throughout this document assume that X, Y, Z as well as $X_i, Y_i, Z_i, i \in I$ are topological spaces and I is some index set unless otherwise indicated.

1 Topological spaces, Bases, Subbases, Initial Topology, Products

1.1 Definitions

A topology on a set X is a collection τ of subsets of X containing the empty set, X that is closed under taking finite intersections and arbitrary unions.

A topological space is a pair of (X, τ) such that τ is a topology on X.

In a topological space (X, τ) , elements of X are called points, elements of τ are called open sets, complements of elements of τ are called closed sets and subsets of X that are closed and open are called clopen.

For a subset A of a topological space X, the closure of A, \overline{A} , is the smallest closed set containing A and the interior of A, int (A), is the largest open set contained in A.

A function $f: X \to Y$ is continuous if and only if preimages of Y-open sets under f are X-open.

If $A \subseteq X$, the subspace topology on A is $\{U \cap A \colon U \text{ open } \subseteq X\}$.

A basis for a topology τ on X is a collection $\mathcal{B} \subseteq \tau$ such that every open set is a union of a subcollection \mathcal{B}' of \mathcal{B} . If a basis has been fixed, its elements are called basic open sets.

X is metrizable if and only if there is a metric d on X such that $\{B^d_{\epsilon}(x) \colon x \in X, \epsilon > 0\}$ is a basis for X.

A space is second countable if and only if it has a countable basis.

A subbasis for a topology τ on X is a collection $S \subseteq \tau$ such that the set of finite intersections of elements of S is a basis for τ . If a subbasis has been fixed, its elements are called subbasic open sets.

Given a set X and a collection $\mathcal{F} = \{f_i \colon X \to Y_i \colon i \in I\}$ the initial topology with respect to \mathcal{F} is the smallest (wrt \subseteq) topology on X such that each $f_i \in \mathcal{F}$ is continuous.

The Tychonoff product $\prod_{i \in I} X_i$ of topological spaces $X_i, i \in I$ is the topological space consisting of the Cartesian (set) product equipped with the initial topology with respect to the projections.

1.2 Results

Lemma 1.1 (Recall). *1.* If $A \subseteq X$, then \overline{A} exists and equals

 $\bigcap \left\{ C \colon A \subseteq C \text{ closed } \subseteq X \right\} = \left\{ x \in X \colon \forall \text{ open } U \ni x \text{ } U \cap A \neq \emptyset \right\}.$

- 2. The closure operator $A \mapsto \overline{A}$ satisfies $\overline{\emptyset} = \emptyset$, $\overline{\overline{A}} = \overline{A}$, $A \subseteq \overline{A}$, $\overline{A \cup B} = \overline{A} \cup \overline{B}$ and $\overline{\bigcap_i A_i} \subseteq \bigcap_i \overline{A_i}$. Dual results hold for the interior operator.
- 3. A function $f: X \to Y$ is continuous if and only if for every $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$.
- 4. If $B \subseteq A \subseteq X$ then $\overline{B}^A = \overline{B}^X \cap A$.
- **Theorem 1.2.** 1. The set of topologies on a fixed set X is a complete lattice with respect to \subseteq , i.e. a partial order with arbitrary infima and suprema. The infimum of a collection $\tau_i, i \in I$ of topologies on X is $\bigcap_i \tau_i$. The greatest element of the complete lattice is the discrete topology $\mathcal{P}(X)$, the smallest element is the indiscrete topology $\{\emptyset, X\}$.
 - 2. A collection \mathcal{B} of subsets of X is the basis for a (necessarily unique) topology $\tau = \{\bigcup \mathcal{B}' : \mathcal{B}' \subseteq \mathcal{B}\}$ on X if and only if $\bigcup \mathcal{B} = X$ and for every $B_1, B_2 \in \mathcal{B}$ there is $\mathcal{B}' \subseteq \mathcal{B}$ such that $B_1 \cap B_2 = \bigcup \mathcal{B}'$. Moreover, τ is the smallest topology on X containing \mathcal{B} .
 - 3. Every collection S is a subbasis for a (necessarily unique) topology τ on X with basis $\{\bigcap \mathcal{F} \colon \mathcal{F} \text{ finite } \subseteq S\}$. Moreover, τ is the smallest topology on X containing S.
 - 4. If Y is a topological space with a fixed subbasis, a function $f: X \to Y$ is continuous if and only if preimages of subbasic open sets under f are open.

- 5. If X is a set, $Y_i, i \in I$ are topological spaces and $f_i: X \to Y_i$ are functions, the initial topology with respect to the f_i exists and has subbasis $\{f_i^{-1}(U): i \in I, U \text{ open } \subseteq Y_i\}$. It is the unique topology on X such that for every topological space Z and every function $f: Z \to X$, f is continuous if and only if each $f_i \circ f$ is continuous.
- 6. The product topology on $\prod_i X_i$ has basis

$$\left\{\prod_{i} U_i \colon U_i \text{ open } \subseteq X \text{ and } X_i = U_i \text{ except for finitely many } i\right\}.$$

- 7. **Embedding Lemma:** If $f_i: X \to X_i$ are continuous maps such that for distinct $x, y \in X$ there is $i \in I$ with $f_i(x) \neq f_i(y)$ and such that $\{f_i^{-1}(U): i \in I, U \text{ open } \subseteq X_i\}$ is a basis for X then the diagonal map $\Delta = \Delta_i f_i: X \to \prod_i X_i; x \mapsto (f_i(x))_i$ is a homeomorphic embedding.
- 8. Countable products of metrizable spaces are metrizable.

Most of the proofs are straightforward set arithmetic.

- 5. For uniqueness, suppose that τ_1, τ_2 are two topologies on X satisfying the condition. Then $\operatorname{id}_{1,1}: (X, \tau_1) \to (X, \tau_1)$ is continuous, so each $f_i: (X, \tau_1) \to Y_i = f_i \circ \operatorname{id}_{1,1}$ is continuous. Thus every $f_i \circ \operatorname{id}_{1,2}$ is continuous and hence $\operatorname{id}_{1,2}$ is continuous. By symmetry $\operatorname{id}_{2,1}$ is continuous and hence $\tau_1 = \tau_2$.
- 7; **Embedding Lemma:** The only non-trivial bit is to check that Δ is open onto its image. For this note that unions and images commute and hence it is sufficient to consider basic open sets of the form $f_i^{-1}(U)$. But $\Delta(f_i^{-1}(U)) = \pi_i^{-1}(U) \cap \Delta(X)$.
- 8. Exercise Sheet.

2 Separation Properties

2.1 Definitions

X is T_0 if and only if for every distinct $x, y \in X$ there is open U that contains exactly one of x and y.

X is T_1 if and only if for every distinct $x, y \in X$ there is open U such that $x \in U \not\supseteq y$.

X is T_2 (Hausdorff) if and only if for every distinct $x, y \in X$ there are disjoint open $U \ni x, V \ni y$ (x and y are separated by open sets).

X is T_3 (regular) if and only if X is T_1 and for every $x \in X$ and every closed $C \not\supseteq x$ there are disjoint open $U \supseteq x, V \supseteq C$.

X is $T_{3.5}$ (Tychonoff) if and only if X is T_1 and for every $x \in X$ and every closed $C \not\supseteq x$ there is a continuous $f: X \to [0, 1]$ such that f(x) = 0and $f(C) \subseteq \{1\}$.

X is T_4 (normal) if and only if X is T_1 and for every disjoint closed C, D there are disjoint open $U \supseteq C, V \supseteq D$.

X is functionally normal if and only if X is T_1 and for every disjoint closed C, D there is a continuous function $f: X \to [0, 1]$ such that $f(U) \subseteq \{0\}, f(V) \subseteq \{1\}.$

X is T_5 (hereditarily normal) if and only if every subspace of X is normal.

X is T_6 (perfectly normal) if and only if X is T_1 and for every closed subspace C of X there is a continuous $f: X \to [0, 1]$ such that $C = f^{-1}(\{0\})$.

2.2 Results

Theorem 2.1. 1. X is T_1 if and only if every singleton is closed.

- 2. If a basis for X has been fixed then for $i \leq 2$, replacing 'open' in the definition of T_i by 'basic open' yields an equivalent property.
- 3. functionally normal $\implies T_{3.5} \implies T_3 \implies T_2 \implies T_1 \implies T_0.$ (None of these reverse in general.)
- X is Tychonoff if and only if X is (homeomorphic to) a subspace of a power of [0, 1].
- 5. For $i \leq 3.5$, products and subspaces of T_i -spaces are T_i .
- 6. Urysohn's Lemma: Functionally Normal $\iff T_4$.

- 7. Subspaces of normal spaces need not be normal. Products (even squares) of normal spaces need not be normal.
- 8. Urysohn's Metrization Theorem I: If X is normal and second countable then X is metrizable.
- 9. Metric spaces are perfectly normal.
- 10. $T_6 \implies T_5 \implies T_4$ (Not examinable as bookwork.)
- 11. A normal space is perfectly normal if and only if every closed subset is a countable intersection of open subsets (a G_{δ}). (Not examinable as bookwork.)

General important ideas are:

- A, B disjoint is equivalent to $A \subseteq X \setminus B$ (and of course B is open if and only if $X \setminus B$ is closed).
- If $f: X \to [0, 1]$ is continuous, then $f^{-1}([0, 1/3)), f^{-1}((2/3, 1])$ are disjoint open and $f^{-1}(0) = \bigcap_n f^{-1}([0, 2^{-n})).$
- 4. Apply the Embedding Lemma.
- 5. For productivity of Tychonoffness, let $x \in U_1 \times \cdots \times U_n \times \prod X_i$. For each $k = 1, \ldots, n$, find a continuous f_k which is 1 at $\pi_k(x)$ and 0 outside U_i and take the product of the $f_k \circ \pi_k$.
- 6. Urysohn's Lemma: Backwards direction: Well order the countable set $\mathbb{Q} \cap (0, 1)$, set $\overline{U_0} = C$, $U_1 = X \setminus D$ and inductively construct open U_r such that $r < s \implies \overline{U_r} \subseteq U_s$. Now define $f: X \to [0,1]$ by $f(x) = \sup\{r: x \in U_r\}$, note that $f(x) = \sup\{r: x \in \overline{U_r}\}$ and hence that $f(x) > \alpha$ if and only if there is $r \in \mathbb{Q} \cap (\alpha, 1]$ such that $x \in U_r$ and $f(x) < \alpha$ if and only if there is $r \in \mathbb{Q} \cap [0, \alpha)$ such that $x \in X \setminus \overline{U_r}$. Thus $f^{-1}((\alpha, 1]) = \bigcup_{r > \alpha} U_r$ and $f^{-1}([0, \alpha)) = \bigcup_{r < \alpha} X \setminus \overline{U_r}$ gives continuity.
- 7. Below you can replace \aleph_1 by any uncountable set.

We let $Y_f = \aleph_1 \cup \{\star\}$ with topology $\mathcal{P}(\aleph_1) \cup \{Y \setminus C : C \text{ finite } \subseteq \aleph_1\}$. It is easy to check that this is normal (it is compact Hausdorff) and we let $X = \{0\} \cup \{2^{-n} : n \in \mathbb{N}\}$ (with its usual topology). Then $Y_f \times X$ is compact Hausdorff so normal. Consider the subspace $Y_f \times X \setminus \{(\star, 0)\}$. $C = \aleph_1 \times \{0\}$ and $D = \{\star\} \times \{2^{-n} : n \in \mathbb{N}\}$ are closed disjoint. If $U \supseteq D$, then for each $n \in \mathbb{N}$ there is a countable $C_n \subseteq \aleph_1$ such that $(\aleph_1 \setminus C_n) \times \{2^{-n}\} \subseteq U$. Pick $\alpha \in \aleph_1 \setminus \bigcup_n C_n$ (this is non-empty at $\bigcup_n C_n$ is countable) and note that $\{\alpha\} \times \{2^{-n} : n \in \mathbb{N}\} \subseteq U$. Thus $(\alpha, 0) \in \overline{U} \cap C$.

- 8. Urysohn's Metrization Theorem I: Let \mathcal{B} be a countable basis and for each $(B, B') \in \mathcal{B}^2$ such that $\overline{B} \subseteq B'$ find a continuous $f: X \to [0, 1]$ such that $\overline{B} \subseteq f^{-1}(0), X \setminus B' \subseteq f^{-1}(1)$ and apply the Embedding Lemma to these (countably many) f.
- 9. If $C \subseteq X$ is closed then $d_C(x) = \inf \{ d(x, c) \colon c \in C \}$ is as required.
- 10. T_6 is hereditary. For normality, note that if C, D are disjoint closed and $C = f^{-1}(0), D = g^{-1}(0)$ then $\frac{f}{f+q}$ is the required Urysohn function.
- 11. For the converse, let closed $C = \bigcap_n U_n$ and let $f_n : X \to [0, 2^{-n}]$ be continuous functions that are 0 on C and 2^{-n} outside U_n . Let $f = \sum_n f_n$.

3 Filters

3.1 Definitions

Suppose X is a set.

A filter \mathcal{F} on X is a non-empty collection of subsets of X that does not contain \emptyset and is closed under supersets and finite intersections.

A filter basis \mathcal{B} for a filter \mathcal{F} on X is a subcollection of \mathcal{F} such that for every $F \in \mathcal{F}$ there is $\mathcal{B} \in \mathcal{B}$ with $B \subseteq F$.

Two collections \mathcal{A}, \mathcal{B} of subsets of X mesh, written $\mathcal{A}\#\mathcal{B}$ if and only if for every $A \in \mathcal{A}, B \in \mathcal{B}$ we have $A \cap B \neq \emptyset$. We also write $\mathcal{A}\#\mathcal{B} = \{A \cap B : A \in \mathcal{A}, B \in \mathcal{B}\}.$

An ultrafilter on X is a filter on X that is maximal wrt \subseteq .

For $x \in X$, the principal filter at x is $\mathcal{P}_x = \{A \subseteq X : x \in A\}$. If $f: X \to Y$ is a function and \mathcal{F} is a filter on X then $f(F) := \{B \subseteq Y : f^{-1}(B) \in \mathcal{F}\}$. Now assume that X is a topological space.

For $x \in X$, the neighbourhood filter at x is $\mathcal{N}_x = \{N \subseteq X : \exists \text{ open } U \ x \in U \subseteq N\}$. If \mathcal{F} is a filter on X, $\lim \mathcal{F} = \{x \in X : \mathcal{N}_x \subseteq \mathcal{F}\}$ and $\mathcal{F} \to x$ if and only if $x \in \lim \mathcal{F}$.

If \mathcal{P} is a property of topological spaces then X is locally \mathcal{P} if and only if every neighbourhood filter has a filter basis of sets that are \mathcal{P} (with respect to the subspace topology).

3.2 Results I

Lemma 3.1. Suppose X is a set.

- 1. A non-empty collection \mathcal{B} of non-empty subsets of X is a filter basis for a (necessarily unique) filter \mathcal{F} on X if and only if for every $B_1, B_2 \in \mathcal{B}$ there is $B_3 \in \mathcal{B}$ such that $B_3 \subseteq B_1 \cap B_2$.
- 2. If C is a family of subsets of X with the f.i.p. then $\{\bigcap \mathcal{F} : \mathcal{F} \text{ finite } \subseteq C\}$ is a filter basis for the smallest filter containing C.
- 3. A filter \mathcal{U} on X is an ultrafilter if and only if for every $A \subseteq X$ exactly one of A and $X \setminus A$ belongs to \mathcal{U} if and only if whenever $A \cup B \in \mathcal{U}$ at least one of A or B belongs to \mathcal{U} .
- 4. Ultrafilter Extension Lemma: Every filter can be extended to an ultrafilter.
- 5. If $f: X \to Y$ is a function and \mathcal{F} a filter on X then f(F) is a filter on Y with filter basis $\{f(F): F \in \mathcal{F}\}$. Moreover, if \mathcal{F} is an ultrafilter then so if f(F).

3.3 Proofs I

Most of this is easy (once comfortable with the notation) set arithmetic. General important ideas are:

- A family of subsets of X with the f.i.p. can be extended to a filter.
- If two families \mathcal{A}, \mathcal{B} mesh, their mesh $\mathcal{A} \# \mathcal{B}$ can be extended to a filter.

Specific Lemmas:

- 3. Suppose \mathcal{U} is an ultrafilter. If $A \notin \mathcal{U}$, then $X \setminus A \# \mathcal{U}$, so by maximality $X \setminus A \in \mathcal{U}$. The converse is obvious. For the last if and only if: for the forward direction assume $A \notin \mathcal{U}$. Then $X \setminus A, A \cup B \in \mathcal{U}$, so $B \supseteq (X \setminus A) \cap (A \cup B) \in \mathcal{U}$. For the backwards direction note that $A \cup (X \setminus A) = X \in \mathcal{U}$.
- 4. Ultrafilter Extension Lemma: Proof not examinable! Note that the union of a chain of filters is a filter and apply Zorn's Lemma.

3.4 Results II

Theorem 3.2. Suppose X is a topological space.

- 1. Suppose $A \subseteq X$ and $x \in X$. $x \in \overline{A}$ if and only if there is a filter $\mathcal{F} \ni A$ such that $\mathcal{F} \to x$ if and only if there is an ultrafilter $\mathcal{U} \ni A$ such that $\mathcal{U} \to x$.
- 2. $f: X \to Y$ is continuous if and only if for every $x \in X$ and filter $\mathcal{F} \to x$, $f(F) \to f(x)$ if and only if for every $x \in X$ and ultrafilter $\mathcal{U} \to x$, $f(U) \to f(x)$.
- 3. X is Hausdorff if and only if every filter converges to at most one point if and only if every ultrafilter converges to at most one point.

4 Compactness, Compactifications, Local Compactness, Čech-completeness

4.1 Definitions

A topological space is compact if and only if every open cover has a finite subcover.

A topological space is Lindelöf if and only if every open cover has a countable subcover.

A Hausdorff compactification of a topological space X is a pair (h, Y)where Y is compact Hausdorff and $h: X \to Y$ is a dense homeomorphic embedding.

For a topological space X and two Hausdorff compactification (h_1, Y_1) , (h_2, Y_2) , we define $(h_2, Y_2) \leq (h_1, Y_1)$ if and only if there is a continuous

 $g: Y_1 \to Y_2$ such that $g \circ h_1 = h_2$. We define $(h_1, Y_1) \sim (h_2, Y_2)$ if and only if there is a homeomorphism $g: Y_1 \to Y_2$ such that $g \circ h_1 = h_2$.

For a topological space X and a Hausdorff compactification (h, Y) we say that (h, Y) satisfies the Stone-Čech-property with respect to continuous maps into compact Hausdorff spaces if and only if for every compact Hausdorff space Z and every continuous $f: X \to Z$ there is a continuous $F: Y \to Z$ such that $f = F \circ h$.

The Stone-Čech compactifiation of a topological space is (the unique, if it exists) Hausdorff compactification $(\beta, \beta X)$ of X satisfying the Stone-Čech property wrt continuous maps into compact Hausdorff spaces.

Recall that a space X is locally compact if and only if for every $x \in U$ open $\subseteq X$ there is compact K and open V with $x \in V \subseteq K \subseteq U$ or equivalently if the neighbourhood filter of every point has a filter basis consisting of compact sets.

The Alexandroff one-point compactification of a topological space X is (the unique, if it exists) Hausdorff compactification $(\omega, \omega X)$ of X such that $\omega X \setminus \omega(X)$ is a singleton.

A Tychonoff topological space is Čech-complete if and only if for every Hausdorff compactification (h, Y) of $X, Y \setminus h(X)$ is a countable union of closed subsets of Y (i.e. an F_{σ}).

4.2 Results

The key ideas are:

- Compactness properties are inherited by closed subsets.
- Diagonal maps!
- if $f: Y \to Z$ is continuous and X dense in Y then $f(Y) \subseteq \overline{f(X)}$.
- Compactness is preserved by images, closedness by pre-images.

Lemma 4.1 (Recall). 1. A topological space is compact if and only if every family of closed sets with the finite intersection property has non-empty intersection.

- 2. Every closed subset of a compact topological space is compact.
- 3. Every compact subset of a Hausdorff space is closed.
- 4. Every compact Hausdorff space is regular. Every compact regular space is normal.

5. If X is compact, Y is a topological space and $f: X \to Y$ is continuous then f(X) is compact.

Theorem 4.2. 1. Every Lindelöf regular space is normal.

- 2. Every second countable space is Lindelöf.
- 3. Every Lindelöf metric space is second countable.
- 4. Urysohn's Metrization Theorem II: A compact Hausdorff space is metrizable if and only if it is second countable.
- 5. X is compact if and only if every ultrafilter on X converges (to some point).
- 6. Tychonoff's Theorem: Products of compact spaces are compact.
- 7. X has a Hausdorff compactification if and only if it is Tychonoff.
- 8. ~ is an equivalence relation on the Hausdorff compactifications of X. If (h_1, Y_1) , (h_2, Y_2) are Hausdorff compactifications of X such that $(h_1, Y_1) \leq (h_2, Y_2) \leq (h_1, Y_1)$ then $(h_1, Y_1) \sim (h_2, Y_2)$ and thus \leq induces a partial order on the equivalence classes of Hausdorff compactifications under ~.
- 9. If (h_1, Y_1) , (h_2, Y_2) are Hausdorff compactifications of X such that $(h_1, Y_1) \leq (h_2, Y_2)$ as witnessed by $g: Y_2 \to Y_1$ then $g(Y_2 \setminus h_2(X)) = Y_1 \setminus h_1(X)$.
- 10. If X is Tychonoff, then the partial order of (equivalence classes of) Hausdorff compactifications has suprema. Moreover each equivalence class has a representative with cardinality at most $2^{2^{|X|}}$.
- 11. If X is Tychonoff, then X has a Stone-Cech compactification which is unique (up to equivalence) and is the greatest compactification of X.
- 12. A Hausdorff compactification of X satisfies the Stone-Čech property with respect to continuous maps into compact Hausdorff spaces if and only if it satisfies the Stone-Čech property with respect to continuous maps into [0, 1].
- 13. Open subsets of locally compact spaces are locally compact.

- 14. Compact Hausdorff spaces are locally compact.
- 15. If X is non-compact, locally compact, Hausdorff and $\infty \notin X$ then $\omega X = X \cup \{\infty\}$ with topology $\{U : U \text{ open } \subseteq X\} \cup \{\omega X \setminus K : K \text{ compact } \subseteq X\}$ and embedding $\omega : X \to \omega X; x \mapsto x$ is the unique one-point compactification of X.
- 16. If X is Tychonoff, the following are equivalent:
 - (a) X is locally compact.
 - (b) X has a smallest Hausdorff compactification.
 - (c) X has a one-point compactification.
 - (d) $\beta X \setminus \beta(X)$ is closed.
 - (e) For every Hausdorff compactification (h, Y) of $X, Y \setminus h(X)$ is closed.
 - (f) For some Hausdorff compactification (h, Y) of $X, Y \setminus h(X)$ is closed.
- 17. If X is Tychonoff, the following are equivalent:
 - (a) $\beta X \setminus \beta(X)$ is a F_{σ} .
 - (b) X is Čech-complete.
 - (c) For some Hausdorff compactification (h, Y) of $X, Y \setminus h(X)$ is a F_{σ} .

- 1. Exercise Sheet.
- 5. Suppose X is compact and \mathcal{U} is an ultrafilter not converging to any $x \in X$. For each $x \in X$, choose open $U_x \ni x$ such that $U_x \notin \mathcal{U}$. Then $\{U_x : x \in X\}$ is an open cover with finite subcover U_{x_1}, \ldots, U_{x_n} . Thus one of $U_{x_i} \in \mathcal{U}$ (a contradiction).

Now assume that X is not compact: let \mathcal{C} be a family of closed subsets with the f.i.p. but empty intersection. Extend \mathcal{C} to a filter and then to an ultrafilter \mathcal{U} . If $x \in X$ then $x \notin$ some C_x , so $x \in X \setminus C_x \in \mathcal{N}_x$ and hence $\mathcal{N}_x \not\subseteq \mathcal{U}$, i.e. $\mathcal{U} \not\rightarrow x$.

- 6. Tychonoff's Theorem: Let \mathcal{U} be an ultrafilter on $\prod_i X_i$. For each $i \in I$, $\pi_i(\mathcal{U})$ is an ultrafilter on X_i , so converges to some x_i . Now check that $\mathcal{U} \to (x_i)_i$.
- 8. If $(h_1, Y_1) \leq (h_2, Y_2) \leq (h_1, Y_1)$ is witnessed by $g: Y_2 \to Y_1$ and $h: Y_1 \to Y_2$ respectively, note that $g \circ h$ and $h \circ g$ are the identity on $h_1(X)$ and $h_2(X)$ respectively. But $h_i(X)$ is dense in the Hausdorff Y_i , so $g \circ h$ and $h \circ g$ are the identity on Y_1 and Y_2 respectively. Hence g is a homeomorphism as required.
- 9. Wlog h_2 is the identity. Suppose $y \in Y_2 \setminus X$ and $x \in X$ with $g(y) = h_1(x)$. Let \mathcal{F} be a filter on Y_2 containing X and converging to $y \in \overline{X}$. As Y_2 is Hausdorff $\mathcal{F} \not\to x$. Then $\mathcal{F}_X = \{F \cap X : F \in \mathcal{F}\}$ is a filter on X and $\mathcal{F}_X \not\to x$. As h_1 is a homeomorphism $X \to h_1(X), h_1(\mathcal{F}_X) \not\to h_1(x) = g(y)$. But $h_1(\mathcal{F}_X) = g(\mathcal{F})$ and $g(\mathcal{F}) \to g(y)$ by continuity.
- 10. If (h_i, Y_i) are compactifications, then check that $(\Delta_i h_i, \overline{\Delta_i h_i(X)}^{\prod_i Y_i})$ is an upper bound. If (g, Z) is another upper bound witnessed by the $g_i \colon Z \to Y_i$, then $\Delta_i g_i \colon Z \to \prod_i Y_i$ is continuous and into $\overline{\Delta_i h_i(X)}$ since $\Delta_i g_i(Z) = \Delta_i g_i\left(\overline{g(X)}^Z\right) \subseteq \overline{\Delta_i g_i(g(X))} = \overline{\Delta_i h_i(X)}$. For the 'moreover' claim: suppose X is dense in Y and let $f \colon Y \to \mathcal{P}(\mathcal{P}(X)); y \mapsto \left\{A \subseteq X \colon y \in \overline{A}^Y\right\}$. As Y is Hausdorff, for $y \neq y'$ there is open $U \ni y$ with $y' \notin \overline{U}^Y = \overline{U \cap X}^Y$. Thus f is an injection.
- 11. First uniqueness up to \sim : suppose (h_1, Y_1) , (h_2, Y_2) are Hausdorff compactifications of X satisfying the Stone-Čech property. Then $h_2: X \rightarrow$ Y_2 is a continuous map into a compact Hausdorff space, so there is $H_2: Y_1 \rightarrow Y_2$ such that $H_2 \circ h_1 = h_2$, i.e. $(h_2, Y_2) \leq (h_1, Y_1)$. By symmetry $(h_1, Y_1) \leq (h_2, Y_2)$ and hence $(h_1, Y_1) \sim (h_2, Y_2)$.

Now we show existence, by showing that the greatest Hausdorff compactification of X satisfies the Stone-Čech property: for each equivalence class, choose a representative, and let $(\beta, \beta X)$ be the supremum over these representatives (there are only set many). If $f: X \to Z$ is continuous into a compact Hausdorff Z, then $f\Delta\beta: X \to \overline{f\Delta\beta(X)}^{Z \times \beta X} =$ Y is an embedding by the Embedding Lemma and hence determines a Hausdorff compactification of X. As $(\beta, \beta X)$ is the greatest Hausdorff compactification of X, there is a continuous $g: \beta X \to Y$ with $g \circ \beta = f \Delta \beta$. Then $F = \pi_Z \circ g$ is as required.

Note that the existence proof has a special case $(f = h: X \to Y)$ that shows that any compactification with the Stone-Čech property must be the greatest compactification of X (up to equivalence).

- 12. It is enough to check that the Stone-Čech property for continuous [0, 1]-valued maps implies the Stone-Čech property for continuous maps into compact Hausdorff spaces. To that end, note that every compact Hausdorff space is normal, so Tychonoff, so homeomorphic to a closed subspace C of $[0, 1]^I$ (for some I). So assume (h, Y) satisfies the Stone-Čech property for continuous [0, 1]-valued maps and wlog $X \subseteq Y, h = \operatorname{id}_X$. If $f: X \to C$ is continuous, then each $f_i = \pi_i \circ f$ extends to some $F_i: Y \to [0, 1]$ and thus $\Delta_i f_i = f: X \to [0, 1]^I$ extends to $\Delta = \Delta_i F_i: Y \to [0, 1]^I$. But $\Delta(Y) = \Delta(\overline{X}) \subseteq \overline{\Delta(X)} \subseteq \overline{C} = C$. Hence Δ is as required.
- 16. Statements 1 and 3 are equivalent to 6. To see 4,5,6 are equivalent, we use that remainders map (on)to remainders: If $X \subseteq Y$ and Y compact Hausdorff with $Y \setminus X$ closed, then note that $\beta X \setminus \beta (X) = g^{-1} (Y \setminus X)$ where g witnesses (id, Y) $\leq (\beta, \beta X)$ so that $\beta X \setminus \beta (X)$ is closed. If $\beta X \setminus \beta (X)$ is closed, it is compact and hence $Y \setminus X = g (\beta X \setminus \beta (X))$ is compact so closed where $X \subseteq Y$, Y is compact Hausdorff and g witnesses (id_X, Y) $\leq (\beta, \beta X)$ giving 4 implies 5. Finally note that X is Tychonoff, so 5 implies 6 as X has a compactification.

So assume one (hence all) of 1,3,4,5,6, let $(\omega, \omega X)$ be the one-point compactification of X and (h, Y) some Hausdorff compactification: we claim that $g: Y \to \omega X$ given by $g(h(x)) = \omega(x)$ and $g(y) = \star$ for $y \in Y \setminus h(X)$ is continuous: if C is closed in ωX then either $C \subseteq X$ and hence $g^{-1}(C) = h(C)$ is closed in h(X) which is closed in Y or $C \ni \star$ and hence $g^{-1}(C) = (Y \setminus h(X)) \cup h(C \cap X)$ is a union of two closed sets, so closed.

Finally assume 2 and that there is a smallest compactification (h, Y) that is not the one-point compactification: let $y_1, y_2 \in Y \setminus h(X)$ be distinct. Then $Y \setminus \{y_1, y_2\}$ is locally compact, Tychonoff and hence has a one-point compactification $Z = (Y \setminus \{y_1, y_2\}) \cup \{\star\}$. Since Y is a two-point compactification of $Y \setminus \{y_1, y_2\}$, there is a continuous $g: Y \to Z$

(which is the identity except that $g(y_1) = g(y_2) = \star$). But (h, Z) is also a Hausdorff compactification X so that there is and g witnesses that $(h, Z) \leq (h, Y)$. Thus the g above must be a homeomorphism, a contradiction to it not being injective.

17. Just like the equivalence of 4,5,6 in 16., noting that unions and images as well as pre-images commute.

5 Paracompactness, Bing's Metrization Theorem

5.1 Definitions

A family \mathcal{A} of subsets of X is locally finite (resp. discrete) if and only if for every $x \in X$ there is open $U \ni x$ such that $\{A \in \mathcal{A} : U \cap A \neq \emptyset\}$ is finite (resp. empty or a singleton).

A family \mathcal{A} of subsets of X is closure preserving if and only if for every $\mathcal{A}' \subseteq \mathcal{A}, \ \overline{\bigcup_{A \in \mathcal{A}'} A} = \bigcup_{A \in \mathcal{A}'} \overline{A}.$

A family \mathcal{A} is a refinement of a family \mathcal{B} (of subsets of X) if and only if for every $A \in \mathcal{A}$, there is $B \in \mathcal{B}$ such that $A \subseteq B$.

A topological space is paracompact if and only if every open cover \mathcal{U} of X has a locally finite open refinement covering X.

The hedgehog of spininess κ is $H_{\kappa} = \{0\} \cup ((0, 1] \times \kappa)$ with metric d given by d(0, (t, i)) = t, d((t, i), (s, i)) = |t - s|, d((t, i), (s, j)) = t + s for $i \neq j$.

5.2 Results

Theorem 5.1. 1. Locally finite families are closure preserving.

- 2. A paracompact regular space is normal.
- 3. For a regular space X the following are equivalent:
 - (a) X is paracompact.
 - (b) Every open cover \mathcal{U} has a sequence \mathcal{V}_n of locally finite, open refinements such that $\bigcup_n \mathcal{V}_n$ covers X (i.e. every open cover has a σ -locally finite open refinement covering X).
 - (c) Every open cover \mathcal{U} has a locally finite refinement covering X.

- (d) Every open cover \mathcal{U} has a locally finite closed refinement covering X.
- 4. Stone's Theorem: Every metric space is paracompact. If X is a metric space and \mathcal{U} is an open cover of X then there are refinements $\mathcal{V}_n, n \in \mathbb{N}$ of \mathcal{U} such that each \mathcal{V}_n is a discrete family, and $\bigcup_n \mathcal{V}_n$ covers X. I.e. Every open cover of X has an open, σ -discrete refinement covering X.
- 5. Bing's Metrization Theorem: A space is metrizable if and only if X is perfectly normal and has a σ -discrete basis if and only if X is homeomorphic to a subspace of a countable product of hedgehogs (of some spininess).

- 1. If \mathcal{A} is locally finite and $\mathcal{A}' \subseteq \mathcal{A}$, \mathcal{A}' is still locally finite. It is thus sufficient to show $\overline{\bigcup \mathcal{A}} = \bigcup_{A \in \mathcal{A}} \overline{A}$. \supseteq is clear. For \subseteq , assume that $x \notin \bigcup_{A \in \mathcal{A}} \overline{A}$. Let $U \ni x$ be open such that U meets only finitely many elements of \mathcal{A} , say A_1, \ldots, A_n . For each $i = 1, \ldots, n, x \notin \overline{A_i}$, so choose open $V_i \ni x$ disjoint from A_i . Then $x \in U \cap \bigcap_i V_i$ and the RHS is open and disjoint from $\bigcup \mathcal{A}$ as required.
- 2. If C, D are disjoint closed, for each $c \in C$ choose open $U_c \ni c$ such that $\overline{U_c} \cap D = \emptyset$. Then $\{U_c : c \in C\} \cup \{X \setminus C\}$ is an open cover of X so has a locally finite open refinement \mathcal{V}' . Let $\mathcal{V} = \{V \in \mathcal{V}' : V \cap C \neq \emptyset\}$, still a locally finite family which refines $\{U_c : c \in C\}$ and covers C. Since locally finite families are closure preserving we have $\overline{\bigcup_{V \in \mathcal{V}} V} = \bigcup_{V \in \mathcal{V}} \overline{V} \subseteq \bigcup_{c \in C} \overline{U_c}$ disjoint from D, so that $U = \bigcup \mathcal{V}$ is as required.
- 3. Exercise Sheet.
- 4. Stone's Theorem: Suppose \mathcal{U} is an open cover of X. Well order \mathcal{U} by some well-order \leq (using Choice). For each $n \in \mathbb{N}$ and $U \in \mathcal{U}$, define

$$S_{U,n} = \left\{ x \in X \colon B_{3/2^n}(x) \subseteq U \land \forall U' < U \ x \notin U' \right\}$$

and let

$$V_{U,n} = \bigcup_{x \in S_{U,n}} B_{1/2^n}(x),$$

an open subset of U. If $y \in V_{U,n}$ and $y' \in V_{U',n}$ with (wlog) U < U' then there is $x \in S_{U,n}$ with $d(x,y) < 1/2^n$ and $x' \in S_{U',n}$ with $d(x',y') < 1/2^n$. But if $x' \in S_{U',n}$ then $x' \notin U$ so $d(x,x') \ge 3/2^n$ and hence $d(y,y') \ge d(x,x') - d(x,y) - d(x',y') \ge 1/2^n$. Thus each $B_{2^{-(n+1)}}(y), y \in X$ meets at most one $V_{U,n}, U \in \mathcal{U}$ and hence $\mathcal{V}_n = \{V_{U,n} : U \in \mathcal{U}\}$ is a discrete family. Clearly $V_{U,n} \subseteq U$. Finally $\bigcup_n \mathcal{V}_n$ covers X, since for $x \in X$, choose $U \in \mathcal{U}$ minimal such that $x \in U$ and as U is open, find $n \in \mathbb{N}$ with $B_{3/2^n}(x) \subseteq U$ giving $x \in V_{U,n}$.

Noting that metric spaces are regular and that σ -discrete implies σ locally finite, we see that metric spaces are paracompact. (In fact, by defining $S_{U,n} = \left\{ x \in X : B_{3/2^n}(x) \subseteq U \land \forall U' < U \ x \notin U' \land x \notin \bigcup_{U \in \mathcal{U}, n' < n} V_{U,n'} \right\}$ you could directly obtain a locally finite open refinement.)

5. Bing's Metrization Theorem: $d_C(x) = \inf \{ d(x, c) : c \in C \}$ witnesses perfect normality of metric spaces. For the σ -discrete base, apply Stone's Theorem to each $\{B_{2^{-n}}(x) : x \in X\}$ to obtain a σ -discrete open refinement \mathcal{V}_n covering X and then note that $\bigcup_n \mathcal{V}_n$ is a σ -discrete basis of X.

Now assume that X is perfectly normal and has a σ -discrete basis $\mathcal{B} = \bigcup_n \mathcal{B}_n$ with each \mathcal{B}_n discrete. Fix $n \in \mathbb{N}$. For each $B \in \mathcal{B}_n$, let $f_B \colon X \to [0,1]$ be continuous such that $f^{-1}(0) = X \setminus B$ and define $F_n \colon X \to H_{\mathcal{B}_n}$ by F(x) = 0 if $x \notin \bigcup \mathcal{B}_n$ and $F(x) = (f_B(x), B)$ if $x \in B \in \mathcal{B}_n$. This is well-defined since \mathcal{B}_n is discrete (each x is in at most one B). It is continuous since each f_B is continuous and \mathcal{B}_n is discrete: for $x \in X$, choose open $U \ni x$ that meets at most one element of \mathcal{B}_n , say B. Then $F_n|_U = f_B$ is continuous on U, hence F_n is continuous at x. Note that $\{F_n^{-1}(U) : U \text{ open } \subseteq H_{\mathcal{B}_n}\} \supseteq \mathcal{B}_n$. Thus $\{F_n \colon n \in \mathbb{N}\}$ satisfies the conditions of the Embedding Lemma and hence X is homeomorphic to a subspace of a countable product of hedgehogs.

Finally, a countable product of metric spaces is metrizable.

6 Connectedness, Zero-Dimensionality

6.1 Definitions

A disconnection of X is a partition of X into two non-empty closed-and-open (clopen) subsets. X is disconnected if and only if there is a disconnection of X.

X is connected if and only if it is not disconnected.

The component of a point $x \in X$ is the greatest connected subspace C(x) of X containing x.

The quasicomponent of a point $x \in X$ is $Q(x) = \bigcap \{F \subseteq X \colon x \in F \text{ clopen}\}$.

X is totally disconnected if and only if every component is a singleton.

X is zero-dimensional if and only if X has a basis of clopen sets.

6.2 Results

Lemma 6.1 (Recall). 1. X is connected if and only if every continuous function into the discrete two-point space is constant.

- 2. Suppose $A, A_i \subseteq X, i \in I$ are connected. If for each $i \in I, A \cap A_i \neq \emptyset$ then $A \cup \bigcup_i A_i$ is connected.
- 3. The component of a point exists and equals $\bigcup \{C \subseteq X : x \in C \text{ connected} \}$.
- **Theorem 6.2.** 1. Both the components and the quasicomponents of a space form a partition.
 - 2. For every $x \in X$, $C(x) \subseteq Q(x)$.
 - 3. Sura-Bura Lemma: If X is compact Hausdorff, then for every $x \in X$, C(x) = Q(x).
 - 4. A totally disconnected compact Hausdorff space is zero-dimensional.

6.3 Proofs

3. Sura-Bura Lemma: Suppose that some quasicomponent Q = Q(x)is disconnected, i.e. there are Q-clopen non-empty disjoint A, B such $Q = A \cup B$. As Q is closed (an intersection of closed sets), A, Bare closed in X. As X is compact Hausdorff, it is normal, so there are disjoint open $U \supseteq A, V \supseteq B$. As X is compact and $\{U \cup V\} \cup$ $\{X \setminus F : x \in F \text{ clopen } \subseteq X\}$ covers X, there are finitely many X-clopen F_1, \ldots, F_n containing x such that $U \cup V, F_1, \ldots, F_n$ covers X so that $x \in F = \bigcap_i F_i \subseteq U \cup V$ and F is clopen (in X). Now $\overline{F \cap U} \subseteq \overline{F} \cap \overline{U} \subseteq F \cap (X \setminus V) \subseteq (F \cap (U \cup V)) \cap (X \setminus V) \subseteq F \cap U$. Hence $F \cap U$ is X-clopen and similarly $F \cap V$ is X-clopen. Wlog $x \in F \cap U$ and hene $Q \subseteq F \cap U$, contradicting $B \neq \emptyset$.

7 Stone Duality

7.1 Definitions

A Boolean Algebra is a partial order (B, \leq) with greatest element **1**, least element **0**, binary infima $a \wedge b$, binary suprema $a \vee b$ and unary negation operator $\neg a$ such that $a \wedge \neg a = \mathbf{0}$, $a \vee \neg a = \mathbf{1}$, $\neg(a \wedge b) = (\neg a) \vee (\neg b)$, $\neg(a \vee b) = (\neg a) \wedge (\neg b)$.

Given two Boolean Algebras $(A, \leq_A), (B, \leq_B)$ a function $f : A \to B$ is a Boolean Algebra homomorphism if and only if it preserves all the above notions, i.e.

- $a \leq a' \Rightarrow f(a) \leq f(a')$ (here and below for the Boolean Algebra notions, the first is the one on A, the second the one on B)
- f(1) = 1
- f(0) = 0
- $f(a \wedge a') = f(a) \wedge f(a')$
- $f(a \lor a') = f(a) \lor f(a')$
- $f(\neg a) = \neg f(a)$

f is a Boolean Algebra isomorphism if and only if f is a Boolean Algebra homomorphism and is bijective.

For a topological space $X, \mathcal{B}_X = \{C: C \text{ clopen } \subseteq X\}$. For a continuous map $f: X \to Y, \mathcal{B}_f: \mathcal{B}_Y \to \mathcal{B}_X; C \mapsto f^{-1}(C)$. A filter \mathcal{F} on a Boolean Algebra B is a subset of B such that

- $\mathbf{0} \notin \mathcal{F} \neq \emptyset;$
- $a \leq b, a \in \mathcal{F} \Rightarrow b \in \mathcal{F};$
- $a, b \in \mathcal{F} \Rightarrow a \land b \in \mathcal{F};$

An ultrafilter \mathcal{U} on a Boolean Algebra B is a filter on B which is maximal wrt \leq .

For a Boolean Algebra B and $b \in B$, write $b^* = \{\mathcal{U} : b \in \mathcal{U} \text{ ultrafilter on } B\}$.

For a Boolean Algebra B the Stone Space of B is $\mathcal{S}(B) = \{\mathcal{U} : \mathcal{U} \text{ ultrafilter on } B\}$ with topology generated by the basis $\{b^* : b \in B\}$.

For a Boolean Algebra homomorphism $g : B \to A$ we define $\mathcal{S}(g) : \mathcal{S}(A) \to \mathcal{S}(B)$ by $\mathcal{S}(g)(\mathcal{U}) = \{b \in B : \exists a \in \mathcal{U} \ g(a) \leq b\}.$

A Stone space is a compact Hausdorff zero-dimensional topological space.

7.2 Results

Theorem 7.1. Suppose B is a Boolean Algebra.

- 1. \land and \lor are commutative and associative.
- 2. \land and \lor satisfy the distributive laws $a \land (b \lor c) = (a \land b) \lor (a \land c)$ and $a \lor (b \land c) = (a \lor b) \land (a \lor c)$.
- 3. If f is a Boolean Algebra isomorphism then f^{-1} is one as well.
- 4. If \mathcal{F} is a filter on a Boolean Algebra then $1 \in \mathcal{F}$.
- 5. A filter \mathcal{F} on a Boolean Algebra B is an ultrafilter if and only if for every $a \in B$ $a \in \mathcal{F}$ or $\neg a \in \mathcal{F}$.
- 6. A filter \mathcal{F} on a Boolean Algebra B is an ultrafilter if and only if for every $a, b \in B$, $a \lor b \in \mathcal{F} \Rightarrow a \in \mathcal{F}$ or $b \in \mathcal{F}$.
- 7. Every filter on a Boolean Algebra can be extended to an ultrafilter.
- 8. If $g: B \to A$ is a Boolean Algebra homomorphism and \mathcal{U} is an ultrafilter on A then $\{b \in B: \exists a \in \mathcal{U} \ g(a) \leq b\}$ is an ultrafilter on B.
- 9. $\mathcal{BA}(X)$ ordered by \subseteq is a Boolean Algebra with $\mathbf{1} = X$, $\mathbf{0} = \emptyset$, $\forall = \cap$, $\land = \cup, \neg C = X \setminus C$.
- 10. If $f : X \to Y$ is a continuous map between topological spaces then $\mathcal{BA}(f) : \mathcal{BA}(Y) \to \mathcal{BA}(X).$
- 11. If B is a Boolean Algebra then τ_B is a compact Hausdorff zero-dimensional topology on $\mathcal{S}(B)$.

- 12. If $g : B \to A$ is a Boolean Algebra homomorphism then $\mathcal{S}(g)$ is continuous map.
- 13. If X is a Stone then $\mathcal{S}(\mathcal{B}_X)$ is homeomorphic to X by the homeomorphism $h_X : X \to \mathcal{S}(\mathcal{B}_X); x \mapsto \{C \in \mathcal{B}_X : x \in C\}.$
- 14. If B is a Boolean Algebra then $\mathcal{B}_{\mathcal{S}(B)}$ is isomorphic to B by the isomorphism $h_B : B \to \mathcal{B}_{\mathcal{S}(B)}; b \mapsto \{\mathcal{U} \in \mathcal{S}(B) : b \in \mathcal{U}\}.$
- 15. If $f : X \to Y$ is a continuous map between Stone spaces then $h_X \circ \mathcal{S}(\mathcal{B}_f) \circ h_X = h_Y \circ f$.
- 16. If $g: B \to A$ is a Boolean Algebra homomorphism then $\mathcal{B}_{\mathcal{S}(g)} \circ h_B = h_A \circ g$.
- 17. (Non-examinable) S(.) and $\mathcal{B}_{.}$ witness that the categories of Boolean Algebras and Stone spaces are dually equivalent.

11. First note that $(a \wedge b)^* = a^* \cap b^*$, $(a \vee b)^* = a^* \cup b^*$ and $(\neg a)^* = \mathcal{S}(B) \setminus a^*$. Also $\mathbf{0}^* = \emptyset$ and $\mathbf{1}^* = \mathcal{S}(B)$.

Thus $\{b^* : b \in B\}$ is a basis for a topology τ on $\mathcal{S}(B)$ consisting of clopen sets $(\mathcal{S}(B) \setminus b^* = (\neg b)^*)$.

 τ is Hausdorff since if $\mathcal{U} \neq \mathcal{V}$ are ultrafilters on B then find $a \in \mathcal{U} \setminus \mathcal{V}$ (wlog). Then $\neg a \in \mathcal{V} \setminus \mathcal{V}$ and $\mathcal{U} \in a^*, \mathcal{V}in(\neg a)^*$ are disjoint open sets.

We show that τ is compact by checking the finite intersection property for basic closed sets, i.e. those of the form b^* , $b \in B$. So suppose \mathcal{F} is a collection of basic closed sets such that every finite intersection is non-empty. Then $\#\mathcal{F}$ is a filter on B which extends to an ultrafilter \mathcal{U} and $\mathcal{U} \in \bigcap \mathcal{F}$.