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This document contains the (important) definitions, statements and proof
sketches for results which require a new idea. The other proofs should be
straightforward.

Concepts and results which should be known from a previous course are
typeset in a smaller size.

Throughout this document assume that XY, Z as well as X;,Y;, Z;,i € [
are topological spaces and [ is some index set unless otherwise indicated.

1 Topological spaces, Bases, Subbases, Initial
Topology, Products

1.1 Definitions

A topology on a set X is a collection 7 of subsets of X containing the empty set, X that
is closed under taking finite intersections and arbitrary unions.

A topological space is a pair of (X, 7) such that 7 is a topology on X.

In a topological space (X, 7), elements of X are called points, elements of 7 are called
open sets, complements of elements of 7 are called closed sets and subsets of X that are
closed and open are called clopen.

For a subset A of a topological space X, the closure of A, A, is the smallest closed set
containing A and the interior of A, int (A), is the largest open set contained in A.

A function f: X — Y is continuous if and only if preimages of Y-open sets under f
are X-open.

If A C X, the subspace topology on A is {U N A: U open C X}.

A basis for a topology 7 on X is a collection B C 7 such that every open set is a union
of a subcollection B’ of B. If a basis has been fixed, its elements are called basic open sets.

X is metrizable if and only if there is a metric d on X such that {BZ(z): z € X,e > 0}
is a basis for X.



A space is second countable if and only if it has a countable basis.

A subbasis for a topology 7 on X is a collection & C 7 such that the set
of finite intersections of elements of § is a basis for 7. If a subbasis has been
fixed, its elements are called subbasic open sets.

Given a set X and a collection F = {f;: X — Y;: i € I} the initial topol-
ogy with respect to F is the smallest (wrt C) topology on X such that each
f; € F is continuous.

The Tychonoff product [[,.; X; of topological spaces X;,i € I is the
topological space consisting of the Cartesian (set) product equipped with
the initial topology with respect to the projections.

1.2 Results

Lemma 1.1 (Recall). 1. If AC X, then A exists and equals

n{C:AQCclosed CX}={zeX:VopenU>32xUNA#D}.

2. The closure operator A A satisfies 0 = 0, A= A, ACA AUB=AUB and
M; Ai € N; Ai. Dual results hold for the interior operator.

3. A function f: X =Y is continuous if and only if for every A C X, f (Z) C f(A).

4 fBCACX then B =B nA.

Theorem 1.2. 1. The set of topologies on a fived set X is a complete
lattice with respect to C, i.e. a partial order with arbitrary infima and
suprema. The infimum of a collection 7;,1 € I of topologies on X
is (), - The greatest element of the complete lattice is the discrete
topology P (X)), the smallest element is the indiscrete topology {0, X }.

2. A collection B of subsets of X is the basis for a (necessarily unique)
topology 7 = {UB': B' C B} on X if and only if | UB = X and for
every By, By € B there is B' C B such that By N By = |JB'. Moreover,
T 18 the smallest topology on X containing B.

3. Every collection S is a subbasis for a (necessarily unique) topology T
on X with basis {(\F: F finite CS}. Moreover, T is the smallest
topology on X containing S.

4. If Y is a topological space with a fized subbasis, a function f: X —Y
15 continuous if and only if preimages of subbasic open sets under f are
open.



5. If X is a set, Y;,i € I are topological spaces and f;: X — Y; are func-
tions, the initial topology with respect to the f; exists and has subbasis
{ffl (U):1€1,U open C Yi}. It is the unique topology on X such
that for every topological space Z and every function f: Z — X, f is
continuous if and only if each f; o f is continuous.

6. The product topology on [[, X; has basis
{H U;: U; open C X and X; = U; except for finitely many z} .

7. Embedding Lemma: If f;: X — X; are continuous maps such that
for distinct x,y € X there is i € I with f;(x) # f;(y) and such that
{ffl (U):1€1,U open C Xi} is a basis for X then the diagonal map
A=Afi: X =[], Xisz = (fi(x)); is a homeomorphic embedding.

8. Countable products of metrizable spaces are metrizable.

1.3 Proofs

Most of the proofs are straightforward set arithmetic.

5. For uniqueness, suppose that 7,7 are two topologies on X satisfy-
ing the condition. Then id;;: (X, 7) — (X, ) is continuous, so each
fir (X,m) = Y, = fioidy; is continuous. Thus every f; oid; s is con-
tinuous and hence id; 3 is continuous. By symmetry idy; is continuous
and hence 71 = 7.

7; Embedding Lemma: The only non-trivial bit is to check that A is
open onto its image. For this note that unions and images commute
and hence it is sufficient to consider basic open sets of the form f;~* (U).

But A (" (U)) =m~ (U)NA(X).

8. Exercise Sheet.



2 Separation Properties

2.1 Definitions

X is Ty if and only if for every distinct x,y € X there is open U that contains
exactly one of x and .

X is T if and only if for every distinct x,y € X there is open U such
that z € U # v.

X is Ty (Hausdorfl) if and only if for every distinct z,y € X there are disjoint open
U >z, V 3y (z and y are separated by open sets).

X is T3 (regular) if and only if X is T} and for every x € X and every
closed C' Z# x there are disjoint open U 3 z,V O C.

X is T35 (Tychonoff) if and only if X is 7T} and for every z € X and
every closed C' Z# x there is a continuous f: X — [0,1] such that f(z) =0
and f(C) C {1}.

X is Ty (normal) if and only if X is 7} and for every disjoint closed C, D
there are disjoint open U O C,V DO D.

X is functionally normal if and only if X is 77 and for every disjoint
closed C, D there is a continuous function f: X — [0, 1] such that f (U) C
[0}, (V) € {1}.

X is T5 (hereditarily normal) if and only if every subspace of X is normal.

X is Ty (perfectly normal) if and only if X is 77 and for every closed
subspace C' of X there is a continuous f: X — [0, 1] such that C' = f~1 ({0}).

2.2 Results
Theorem 2.1. 1. X is T} if and only if every singleton is closed.

2. If a basis for X has been fized then for i < 2, replacing ‘open’ in the
definition of T; by ‘basic open’ yields an equivalent property.

3. functionally normal — T35 — T3 — T, = T = Tp.
(None of these reverse in general.)

4. X is Tychonoff if and only if X is (homeomorphic to) a subspace of a
power of [0, 1].

5. For i < 3.5, products and subspaces of T;-spaces are Tj.

6. Urysohn’s Lemma: Functionally Normal <= T).
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7. Subspaces of normal spaces need not be normal. Products (even squares)
of normal spaces need not be normal.

8. Urysohn’s Metrization Theorem I: If X is normal and second
countable then X 1is metrizable.

9. Metric spaces are perfectly normal.
10. Ty = Ts = T, (Not examinable as bookwork.)

11. A normal space is perfectly normal if and only if every closed subset is
a countable intersection of open subsets (a Gs).(Not examinable as
bookwork. )

2.3 Proofs
General important ideas are:

e A, B disjoint is equivalent to A C X \ B (and of course B is open if
and only if X \ B is closed).

o If f: X — [0,1] is continuous, then f~'(]0,1/3)),f~'((2/3,1]) are
disjoint open and f~(0) =, f~' ([0,27™)).

4. Apply the Embedding Lemma.

5. For productivity of Tychonoffness, let x € Uy x --- x U, x [[ X;. For
each k =1,... n, find a continuous f, which is 1 at 74 (z) and 0 outside
U; and take the product of the f; o my.

6. Urysohn’s Lemma: Backwards direction: Well order the countable
set QN (0,1), set Uy = C, U; = X \ D and inductively construct open
U, such that r < s = U, C U,. Now define f: X — [0,1] by
f(z) = sup{r: z € U,}, note that f(z) = sup {r: 2 € U,} and hence
that f(z) > « if and only if there is r € QN (a, 1] such that € U, and
f(x) < aif and only if there is 7 € QN0, ) such that # € X\U,. Thus

(1)) = U,20 Ur and f71([0,)) = U,-, X \ U, gives continuity.
7. Below you can replace N; by any uncountable set.

We let Yy = R; U {x} with topology P (¥;) U{Y \ C: C finite C N;}.
It is easy to check that this is normal (it is compact Hausdorff) and we
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let X ={0}U{27™: n € N} (with its usual topology). Then Y; x X is
compact Hausdorff so normal. Consider the subspace Y; x X \ {(x,0)}.
C =Ry x {0} and D = {x} x {27": n € N} are closed disjoint. If
U D D, then for each n € N there is a countable C,, C ¥y such that
R\ Cy) x {27} C U. Pick av € ¥y \ |J,, C,, (this is non-empty at
\U,, C» is countable) and note that {a} x {27":n e N} C U. Thus
(,0)€UNC.

8. Urysohn’s Metrization Theorem I: Let B be a countable basis and
for each (B, B') € B? such that B C B’ find a continuous f: X — [0, 1]
such that B C f71(0),X \ B’ C f~'(1) and apply the Embedding
Lemma to these (countably many) f.

9. If C C X is closed then d¢(x) = inf {d(z,c): ¢ € C} is as required.

10. T is hereditary. For normality, note that if C'; D are disjoint closed and
C=f"1(0),D=g"'(0) then ﬁ is the required Urysohn function.

11. For the converse, let closed C = () U, and let f, : X — [0,27"]
be continuous functions that are 0 on C' and 27" outside U,,. Let

f = ann

3 Filters

3.1 Definitions

Suppose X is a set.

A filter F on X is a non-empty collection of subsets of X that does not
contain () and is closed under supersets and finite intersections.

A filter basis B for a filter F on X is a subcollection of F such that for
every F' € F there is B € B with B C F.

Two collections A, B of subsets of X mesh, written A#B if and only
if for every A € A,B € B we have AN B # (. We also write A#B =
{ANB: A€ A B € B}.

An ultrafilter on X is a filter on X that is maximal wrt C.

For x € X, the principal filter at z is P, = {A C X: x € A}.

If f: X — Y isafunction and F is a filter on X then f (F):={B CY: f~'(B) € F}.



Now assume that X is a topological space.
For 2 € X, the neighbourhood filter at zis N, = {N C X: Jopen U 2 € U C N}.
If Fisafilter on X, limF = {z € X: N, C F} and F — z if and only

if x € lim F.
If P is a property of topological spaces then X is locally P if and only if

every neighbourhood filter has a filter basis of sets that are P (with respect

to the subspace topology).

3.2 Results I
Lemma 3.1. Suppose X is a set.

1. A non-empty collection B of non-empty subsets of X is a filter basis for
a (necessarily unique) filter F on X if and only if for every By, By € B
there is By € B such that Bs C By N Bsy.

2. IfC is a family of subsets of X with the f.i.p. then {(\F: F finite CC}
s a filter basis for the smallest filter containing C.

3. A filter U on X is an ultrafilter if and only if for every A C X ezactly
one of A and X \ A belongs to U if and only if whenever AUB € U at
least one of A or B belongs to U.

4. Ultrafilter Extension Lemma: FEvery filter can be extended to an
ultrafilter.

5. If f+ X = Y is a function and F a filter on X then f(F) is a filter
on'Y with filter basis {f (F) : F' € F}. Moreover, if F is an ultrafilter

then so if f (F).

3.3 Proofs 1

Most of this is easy (once comfortable with the notation) set arithmetic.
General important ideas are:

e A family of subsets of X with the f.i.p. can be extended to a filter.
e If two families A, B mesh, their mesh A#B can be extended to a filter.

Specific Lemmas:



3. Suppose U is an ultrafilter. If A & U, then X \ A#U, so by maximality
X \ A € U. The converse is obvious. For the last if and only if: for
the forward direction assume A ¢ U. Then X \ A, AU B € U, so
B2 (X\A)N(AUB) € U. For the backwards direction note that
AU(X\A) =X el.

4. Ultrafilter Extension Lemma: Proof not examinable! Note that
the union of a chain of filters is a filter and apply Zorn’s Lemma.

3.4 Results II
Theorem 3.2. Suppose X is a topological space.

1. Suppose AC X andx € X. x € A if and only if there is a filter F 3 A
such that F — x if and only if there is an ultrafilter U > A such that
UuU—x.

2. f: X — Y s continuous if and only if for every x € X and filter
F — x, f(F) = f(z) if and only if for every x € X and ultrafilter
U—zx, f(U)— f(x).

3. X 1s Hausdorff if and only if every filter converges to at most one point
if and only if every ultrafilter converges to at most one point.

4 Compactness, Compactifications, Local Com-
pactness, Cech-completeness

4.1 Definitions

A topological space is compact if and only if every open cover has a finite subcover.

A topological space is Lindelof if and only if every open cover has a
countable subcover.

A Hausdorff compactification of a topological space X is a pair (h,Y)
where Y is compact Hausdorff and h: X — Y is a dense homeomorphic
embedding.

For a topological space X and two Hausdorff compactification (hq,Y7),
(he,Ys), we define (hg,Y3) < (hy,Y)) if and only if there is a continuous



g: Y1 — Yy such that go hy = hy. We define (hy, Y1) ~ (he,Y3) if and only if
there is a homeomorphism ¢: Y; — Y5 such that g o hy = hs.

For a topological space X and a Hausdorff compactification (h,Y") we say
that (h,Y) satisfies the Stone-Cech-property with respect to continuous maps
into compact Hausdorff spaces if and only if for every compact Hausdorff
space Z and every continuous f: X — Z there is a continuous F: Y — Z
such that f = F o h.

The Stone-Cech compactifiation of a topological space is (the unique, if
it exists) Hausdorff compactification (3, X) of X satisfying the Stone-Cech
property wrt continuous maps into compact Hausdorff spaces.

Recall that a space X is locally compact if and only if for every z €
U open C X there is compact K and open V with z ¢ V C K C U
or equivalently if the neighbourhood filter of every point has a filter basis
consisting of compact sets.

The Alexandroff one-point compactification of a topological space X is
(the unique, if it exists) Hausdorff compactfication (w,wX) of X such that
wX \ w(X) is a singleton.

A Tychonoff topological space is Cech-complete if and only if for every
Hausdorff compactification (h,Y) of X, Y \ h(X) is a countable union of
closed subsets of Y (i.e. an F,).

4.2 Results
The key ideas are:

e Compactness properties are inherited by closed subsets.

e Diagonal maps!

e if f:Y — Z is continuous and X dense in Y then f (V) C f(X).

e Compactness is preserved by images, closedness by pre-images.

Lemma 4.1 (Recall). 1. A topological space is compact if and only if every family of
closed sets with the finite intersection property has non-empty intersection.

2. FBvery closed subset of a compact topological space is compact.
8. Fvery compact subset of a Hausdorff space is closed.

4. Every compact Hausdorff space is reqular. Every compact reqular space is normal.



5. If X is compact, Y is a topological space and f: X —'Y is continuous then f (X)
18 compact.

Theorem 4.2. 1. Every Lindelof regular space is normal.

2. FEvery second countable space is Lindeldf.

3. Fvery Lindelof metric space is second countable.

4. Urysohn’s Metrization Theorem II: A compact Hausdorff space
1s metrizable if and only if it is second countable.

5. X is compact if and only if every ultrafilter on X converges (to some
point).

6. Tychonoff’s Theorem: Products of compact spaces are compact.

7. X has a Hausdorff compactification if and only if it is Tychonoff.

8. ~ s an equivalence relation on the Hausdorff compactifications of X.
If (h1,Y1), (ho,Y3) are Hausdorff compactifications of X such that
(h1,Y1) < (ho,Y2) < (h1,Y1) then (hy, Y1) ~ (ho,Y2) and thus < in-
duces a partial order on the equivalence classes of Hausdorff compacti-
fications under ~.

9. If (h1,Y1), (he,Ys) are Hausdorff compactifications of X such that
(h, Y1) < (ha,Ya) as witnessed by g: Yo — i then g (Ya \ hy (X)) =
Yi\ b (X).

10. If X is Tychonoff, then the partial order of (equivalence classes of)
Hausdorff compactifications has suprema. Moreover each equivalence
class has a representative with cardinality at most 2211,

11. If X is Tychonoff, then X has a Stone-Cech compactification which is
unique (up to equivalence) and is the greatest compactification of X.

12. A Hausdorff compactification of X satisfies the Stone-Cech property
with respect to continuous maps into compact Hausdorff spaces if and
only if it satisfies the Stone-Cech property with respect to continuous
maps into [0, 1].

13. Open subsets of locally compact spaces are locally compact.
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14. Compact Hausdorff spaces are locally compact.

15. If X is non-compact, locally compact, Hausdorff and oo & X then
wX = XU{oo} with topology {U: U open C X}U{wX \ K: K compact C X}
and embedding w: X — wX;x — x is the unique one-point compactifi-
cation of X.

16. If X is Tychonoff, the following are equivalent:

(a) X is locally compact.

(b) X has a smallest Hausdorff compactification.

(¢) X has a one-point compactification.

(d) BX \ B(X) is closed.

(e) For every Hausdorff compactification (h,Y) of X, Y \ h(X) is
closed.

(f) For some Hausdorff compactification (h,Y) of X, Y \ h(X) is

closed.

17. If X is Tychonoff, the following are equivalent:

(a) BX\ B(X) is a F,.
(b) X is Cech-complete.

(¢) For some Hausdorff compactification (h,Y) of X, Y \ h(X) is a
F,.

4.3 Proofs
1. Exercise Sheet.

5. Suppose X is compact and U is an ultrafilter not converging to any
x € X. For each x € X, choose open U, > x such that U, € U. Then
{U,: x € X} is an open cover with finite subcover U,,,...,U,, . Thus
one of U,, € U (a contradiction).

Now assume that X is not compact: let C be a family of closed subsets
with the f.i.p. but empty intersection. Extend C to a filter and then to
an ultrafilter Y. If x € X then z & some C,, so x € X \ C, € N, and
hence N, Z U, i.e. U / .
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10.

11.

Tychonoff’s Theorem: Let U be an ultrafilter on [[, X;. For each
i €I, m (U)is an ultrafilter on X;, so converges to some z;. Now check
that U — (z;);.

If (hy,Y1) < (he, Ys) < (hy,Y)) is witnessed by g: Yo — Yy and h: Y] —
Y, respectively, note that goh and ho g are the identity on hy (X) and
hy (X) respectively. But h; (X) is dense in the Hausdorff Y;, so go h
and h o g are the identity on Y; and Y5 respectively. Hence g is a
homeomorphism as required.

. Wlog hy is the identity. Suppose y € Y5\ X and = € X with g(y) =

hi(x). Let F be a filter on Y, containing X and converging to y € X.
As Ys is Hausdorft F /4 . Then Fx ={FNX: F € F} is a filter on
X and Fx # x. As h; is a homeomorphism X — hy (X), hy (Fx) 4
hi(x) = g(y). But hy (Fx) = ¢g(F) and g (F) — ¢(y) by continuity.

If (h;,Y;) are compactifications, then check that (A;h;, Ash; (X )Hiyi)
is an upper bound. If (g, Z) is another upper bound witnessed by the
gi: Z — Y;, then A;g;: Z — [],Y; is continuous and into A;h; (X)

For the ‘moreover’ claim: suppose X is dense in Y and let f: Y —
P(P(X));y — {A CX:y GZY}. As Y is Hausdorff, for y # o/

there is open U > y with 3/ & U =UnX'. Thus f is an injection.

First uniqueness up to ~: suppose (hy,Y}), (hs,Ys) are Hausdorff com-
pactifications of X satisfying the Stone-Cech property. Then hy: X —
Y5 is a continuous map into a compact Hausdorff space, so there is
Hy: Y7 — Y, such that Hy o hy = hg, ie. (he,Ys) < (hy,Y1). By
symmetry (hy,Y)) < (he,Y2) and hence (hy,Y)) ~ (he, Y2).

Now we show existence, by showing that the greatest Hausdorff com-
pactification of X satisfies the Stone-Cech property: for each equiva-
lence class, choose a representative, and let (3, 5X) be the supremum
over these representatives (there are only set many). If f: X — Z is

continuous into a compact Hausdorff 7, then fAS: X — fAfS (X)ZX’BX
Y is an embedding by the Embedding Lemma and hence determines
a Hausdorff compactification of X. As (8, 5X) is the greatest Haus-
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12.

16.

dorff compactification of X, there is a continuous ¢g: X — Y with
go = fApB. Then F = 7z o g is as required.

Note that the existence proof has a special case (f = h: X — Y) that
shows that any compactification with the Stone-Cech property must be
the greatest compactification of X (up to equivalence).

It is enough to check that the Stone-Cech property for continuous
0, 1]-valued maps implies the Stone-Cech property for continuous maps
into compact Hausdorff spaces. To that end, note that every com-
pact Hausdorff space is normal, so Tychonoff, so homeomorphic to a
closed subspace C of [0,1]! (for some I). So assume (h,Y) satisfies
the Stone-Cech property for continuous 0, 1]-valued maps and wlog
X CY h=idx. If f: X — C is continuous, then each f; = m; o f
extends to some Fj: Y — [0,1] and thus A, f; = f: X — [0, 1]’ extends
to A =AF: Y = [0,1]. But A(Y) =A(X) CA(X) C 6 C.

Hence A is as required.

Statements 1 and 3 are equivalent to 6. To see 4,5,6 are equivalent, we
use that remainders map (on)to remainders: If X C Y and Y compact
Hausdorff with Y\ X closed, then note that X\ 3(X) =g~ ' (Y \ X)
where g witnesses (id,Y") < (8, 8X) so that fX \ §(X) is closed. If
BX \ B (X) is closed, it is compact and hence Y \ X = g (56X \ (X))
is compact so closed where X C Y, Y is compact Hausdorff and g
witnesses (idx,Y) < (8, 8X) giving 4 implies 5. Finally note that X
is Tychonoff, so 5 implies 6 as X has a compactification.

So assume one (hence all) of 1,3,4,5,6, let (w,wX) be the one-point
compactification of X and (h,Y’) some Hausdorff compactification: we
claim that ¢g: ¥ — wX given by g(h(z)) = w(z) and ¢(y) = « for
y € Y\ h(X) is continuous: if C' is closed in wX then either C' C X
and hence ¢! (C) = h(C) is closed in h (X) which is closed in Y or
C 2 x and hence ¢7' (C) = (Y \ h (X)) Uh(C N X) is a union of two
closed sets, so closed.

Finally assume 2 and that there is a smallest compactification (h,Y)
that is not the one-point compactification: let y;,y2 € Y \ h(X) be
distinct. Then Y\ {y1,y2} is locally compact, Tychonoff and hence has
a one-point compactification Z = (Y'\ {y1,y2}) U{x}. Since Y is a two-
point compactification of Y\ {y1,y2}, there is a continuous g: Y — Z
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(which is the identity except that g(y1) = g(y2) = *). But (h,Z2) is
also a Hausdorff compactificationof X so that there is and g witnesses
that (h,Z) < (h,Y). Thus the g above must be a homeomorphism, a
contradiction to it not being injective.

17. Just like the equivalence of 4,5,6 in 16., noting that unions and images
as well as pre-images commute.

5 Paracompactness, Bing’s Metrization The-
orem

5.1 Definitions

A family A of subsets of X is locally finite (resp. discrete) if and only if for
every © € X there is open U > x such that {A € A: UN A # 0} is finite
(resp. empty or a singleton).

A family A of subsets of X is closure preserving if and only if for every
A CA Upew A=Upew A

A family A is a refinement of a family B (of subsets of X) if and only if
for every A € A, there is B € B such that A C B.

A topological space is paracompact if and only if every open cover U of
X has a locally finite open refinement covering X.

The hedgehog of spininess x is H, = {0} U((0, 1] x k) with metric d given
by d(0, (t,i)) = t, d((t,4), (s,7)) = |t — s|, d((t,7), (s,7)) =t + s for i # j.

5.2 Results

Theorem 5.1. 1. Locally finite families are closure preserving.
2. A paracompact reqular space is normal.
3. For a reqular space X the following are equivalent:

(a) X is paracompact.

(b) Every open cover U has a sequence V,, of locally finite, open re-
finements such that |, V, covers X (i.e. every open cover has a
o-locally finite open refinement covering X ).

(c) Every open cover U has a locally finite refinement covering X .
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5.3

2.

(d) Every open cover U has a locally finite closed refinement covering
X.

Stone’s Theorem: FEvery metric space is paracompact. If X is a
metric space and U is an open cover of X then there are refinements
Vn.n € N of U such that each 'V, is a discrete family, and |, V, covers
X. Le. FEvery open cover of X has an open, o-discrete refinement
covering X.

Bing’s Metrization Theorem: A space is metrizable if and only
if X s perfectly normal and has a o-discrete basis if and only if X
is homeomorphic to a subspace of a countable product of hedgehogs (of
some spininess).

Proofs

. If A is locally finite and A" C A, A’ is still locally finite. It is thus

sufficient to show |JA = UAeAZ. D is clear. For C, assume that
r & Jyeq A Let U > x be open such that U meets only finitely many
elements of A, say Ay,...,A,. Foreachi=1,...,n, z & A;, so choose
open V; 2 z disjoint from A;. Then z € UN(),V; and the RHS is open
and disjoint from ( J A as required.

If C, D are disjoint closed, for each ¢ € C' choose open U, 5 ¢ such that
U.ND = . Then {U.: c€ C} U{X \ C} is an open cover of X so
has a locally finite open refinement V'. Let V ={V € V': VN C # 0},
still a locally finite family which refines {U.: ¢ € C'} and covers C.
Since locally finite families are closure preserving we have (J,, .,V =
Uvey V C U,ee Ue disjoint from D, so that U = (JV is as required.

Exercise Sheet.

Stone’s Theorem: Suppose U is an open cover of X. Well order U by
some well-order < (using Choice). For each n € N and U € U, define

Stn = {x € X: Byon(z) CUANVU < U z ¢ U’}

and let
VU,n: U Bl/zn(ﬂﬁ),

Z‘ESU,n
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an open subset of U. If y € Vi, and ¢ € Vi, with (wlog) U <
U’ then there is x € Sy, with d(z,y) < 1/2" and 2’ € Sy, with
d(z',y') < 1/2". But if 2’ € Sy, then 2/ € U so d(z,2') > 3/2"
and hence d(y,vy') > d(z,2") — d(z,y) — d(«’,y’) > 1/2". Thus each
By i (y),y € X meets at most one Vy,,U € U and hence V, =
{Vun: U €U} is a discrete family. Clearly Vi,, € U. Finally |, Vs
covers X, since for x € X, choose U € U minimal such that € U and
as U is open, find n € N with Byon(z) C U giving x € Viyp.

Noting that metric spaces are regular and that o-discrete implies o-
locally finite, we see that metric spaces are paracompact. (In fact, by

defining Sy, = {:c € X: Byjon(2) CUAVU' <U 2 ¢ U A & Upeyyren VU,n,}

you could directly obtain a locally finite open refinement.)

. Bing’s Metrization Theorem: dg(x) = inf{d(z,c): c € C} wit-
nesses perfect normality of metric spaces. For the o-discrete base, ap-
ply Stone’s Theorem to each {By-»(z): z € X} to obtain a o-discrete
open refinement V,, covering X and then note that | J,, V, is a o-discrete
basis of X.

Now assume that X is perfectly normal and has a o-discrete basis
B =, B, with each B, discrete. Fix n € N. For each B € B, let
fB: X — [0,1] be continuous such that f~!(0) = X \ B and define
F,: X — Hg, by F(z) = 01if z ¢ UB, and F(z) = (fg(x),B) if
x € B € B,. This is well-defined since B, is discrete (each x is in
at most one B). It is continuous since each fp is continuous and B,
is discrete: for x € X, choose open U > x that meets at most one
element of B,, say B. Then F,|y = fp is continuous on U, hence
F,, is continuous at . Note that {Fn_1 (U) : U open C Hgn} D B,.
Thus {F,: n € N} satisfies the conditions of the Embedding Lemma
and hence X is homeomorphic to a subspace of a countable product of
hedgehogs.

Finally, a countable product of metric spaces is metrizable.
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6 Connectedness, Zero-Dimensionality

6.1 Definitions

A disconnection of X is a partition of X into two non-empty closed-and-open (clopen)
subsets. X is disconnected if and only if there is a disconnection of X.
X is connected if and only if it is not disconnected.

The component of a point z € X is the greatest connected subspace C(z) of X
containing x.

The quasicomponent of a point x € X is Q(x) = ({F C X: x € F clopen}.

X is totally disconnected if and only if every component is a singleton.

X is zero-dimensional if and only if X has a basis of clopen sets.

6.2 Results

Lemma 6.1 (Recall). 1. X is connected if and only if every continuous function into
the discrete two-point space is constant.

2. Suppose A, A; C X,i € I are connected. If for eachi € I, ANA; # 0 then AU, A;
s connected.

3. The component of a point exists and equals | J{C C X: xz € C connected}.

Theorem 6.2. 1. Both the components and the quasicomponents of a
space form a partition.

2. For every x € X, C(z) C Q(x).

3. Sura-Bura Lemma: If X is compact Hausdorff, then for every x €

X, C(z) = Q(x).

4. A totally disconnected compact Hausdorff space is zero-dimensional.

6.3 Proofs

3. Sura-Bura Lemma: Suppose that some quasicomponent Q) = Q(x)
is disconnected, i.e. there are ()-clopen non-empty disjoint A, B such
Q = AUB. As Q is closed (an intersection of closed sets), A, B
are closed in X. As X is compact Hausdorff, it is normal, so there
are disjoint open U O A,V O B. As X is compact and {U UV} U
{X\ F: xz € F clopen C X} covers X, there are finitely many X-clopen
Fy, ..., F, containing x such that U UV, F},..., F, covers X so that
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z€F=),F CUUV and Fis clopen (in X). Now FNU C FNU C
FN(X\V)C(FNOUV)N((X\V)C FNU. Hence FNU is
X-clopen and similarly F' NV is X-clopen. Wlog x € F'N U and hene
Q C FNU, contradicting B # ().

7 Stone Duality

7.1 Definitions

A Boolean Algebra is a partial order (B, <) with greatest elemetn 1, least
element 0, binary infima a A b, binary suprema a V b and unary negation
operator —a such that a A ma = 0, a V. —a = 1, =(a A b) = (—a) V (—b),
—(aV b) = (—a) A (—b).

Given two Boolean Algebras (A4, <4), (B, <p) a function f : A — B is
a Boolean Algebra homomorphism if and only if it preserves all the above
notions, i.e.

e a < d = f(a) < f(d’) (here and below for the Boolean Algebra
notions, the first is the one on A, the second the one on B)

f is a Boolean Algebra isomorphism if and only if f is a Boolean Algebra
homomorphism and is bijective.

For a topological space X, Bx = {C: C clopen C X}.

For a continuous map f: X =Y, By : By — Byx;C — f71(C).

A filter F on a Boolean Algebra B is a subset of B such that

e 0& F +#0;
e a<baecF=0beF;

e a,be F=aNbeF,
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An ultrafilter U on a Boolean Algebra B is a filter on B which is maximal
wrt <.

For a Boolean Algebra B and b € B, write b* = {U: b € U ultrafilter on B}.

For a Boolean Algebra B the Stone Space of Bis S (B) = {U: U ultrafilter on B}
with topology generated by the basis {b*: b € B}.

For a Boolean Algebra homomorphism g : B — A we define S(g) :

S(A) ->S(B)by S(g9)U) ={be B: Ja €U g(a) < b}.
A Stone space is a compact Hausdorff zero-dimensional topological space.

7.2 Results
Theorem 7.1. Suppose B is a Boolean Algebra.

1. A and VvV are commutative and associative.

2. N and V satisfy the distributive laws a A (bV ¢) = (a Ab) V (a A c) and
aV(bAe)=(aVDb)A(aVec).

3. If f is a Boolean Algebra isomorphism then f~! is one as well.
4. If F is a filter on a Boolean Algebra then 1 € F.

5. A filter F on a Boolean Algebra B is an ultrafilter if and only if for
everya € Ba e F or-aeF.

6. A filter F on a Boolean Algebra B is an ultrafilter if and only if for
every a,b€ B,avVbe F=a€ F orbe F.

7. Every filter on a Boolean Algebra can be extended to an ultrafilter.

8. Ifg: B — A s a Boolean Algebra homomorphism andU is an ultrafilter
on A then {b€ B: Ja €U g(a) < b} is an ultrafilter on B.

9. BA(X) ordered by C is a Boolean Algebra with 1 =X, 0=10, Vv =0,
AN=U, -C=X\C.

10. If f + X — Y is a continuous map between topological spaces then
BA(f) : BA(YY) — BA(X).

11. If B is a Boolean Algebra then g is a compact Hausdorff zero-dimensional
topology on S (B).
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12.

13.

1.

15.

16.

17.

7.3

11.

If g : B — A is a Boolean Algebra homomorphism then S (g) is con-
tinuous map.

If X is a Stone then S (Bx) is homeomorphic to X by the homeomor-
phism hx : X — S (Bx);z— {C € Bx: x € C}.

If B is a Boolean Algebra then Bs(p) is isomorphic to B by the isomor-
phism hg : B — Bgpy;b—{UU € S(B) : beU}.

If f: X — Y is a continuous map between Stone spaces then hyx o
S(Bf)OhX:hyOf

If g : B — A is a Boolean Algebra homomorphism then Bsy) o hp =
haog.

(Non-examinable) S (.) and B, witness that the categories of Boolean
Algebras and Stone spaces are dually equivalent.

Proofs

First note that (aAb)* = a*Nb*, (aVb)* = a*Ub* and (—a)* = S (B)\a*.
Also 0* = () and 1* = S (B).

Thus {b*: b€ B} is a basis for a topology 7 on & (B) consisting of
clopen sets (S (B) \ b* = (—b)*).

7 is Hausdorff since if U # V are ultrafilters on B then find a € U \ V
(wlog). Then —a € V\ V and U € a*,Vin(—a)* are disjoint open sets.

We show that 7 is compact by checking the finite intersection property
for basic closed sets, i.e. those of the form b*, b € B. So suppose F
is a collection of basic closed sets such that every finite intersection is
non-empty. Then #F is a filter on B which extends to an ultrafilter U
and U € N F.
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