
1 Disclaimer

These are draft lecture notes in expanded form. If you would like to have a
coherent, checked and correct account of Analytic Topology, you are better served
by reading the relevant part of various textbooks. These notes are not carefully
checked (so will contain errors), may contain material which is not part of the
course and may not contain all material I will cover in the lectures. In particular,
motivation and order of concepts may differ and I may choose other (equivalent)
definitions.

2 Basics

I expect this to have been covered in a first Topology course.

Definition 2.1. A topology on a set X is a collection τ of subsets of X such
that τ is closed under finite intersections and arbitrary unions.

A topological space is a pair (X, τ) where X is a set and τ is a topology on
X.

Note that I use the convention that
⋃
∅ = ∅ and

⋂
∅ is everything (where

everything depends on the context).

Definition 2.2. Suppose (X, τ) is a topological space and A ⊆ X.
A is X-open or an open subset of X if and only if A ∈ τ .
A is X-closed if and only if X \A ∈ τ .
The closure of A, A, is the intersection of all closed subsets of X containing

A. If the space/topology with respect to which the closure is taken is unclear

we will use A
X

.
The interior of A, int (A), is the union of all open subsets of X contained in

A.

Lemma 2.3. Suppose X is a topological space and A ⊆ X.

1. Finite unions and arbitrary intersections of closed sets are closed.

2. A is closed and

A = {x ∈ X : ∀ open U ⊆ X U ∩A 6= ∅} .

Hence A is the smallest closed set containing A.

3. int (A) is open and

int (A) = {x ∈ X : ∃ open U ⊆ X x ∈ U ⊆ A} .

Hence int (A) is the largest open set contained in A.
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Definition 2.4. Suppose X,Y are topological spaces and f : X → Y a function.
f is continuous if and only if the preimage of every Y -open set under f is

X-open.
f is a homeomorphism if and only if f is a continuous bijection with contin-

uous inverse.

Lemma 2.5. Suppose X,Y are topological spaces and f : X → Y a function.
TFAE:

1. f is continuous.

2. the preimage of every Y -closed set under f is X-closed.

3. for every A ⊆ X, f
(
A
)
⊆ f (A).

Definition 2.6. Suppose X is a topological space with topology τ and A ⊆ X.
The subspace topology on A is {U ∩A : U ∈ τ}.

Lemma 2.7. Suppose X is a topological space, Y ⊆ X and A ⊆ Y .

Then A
Y

= Y ∩AX .

Lemma 2.8. Suppose X,Y are topological spaces, f : X → Y a function, A ⊆
X and B ⊆ Y (equipped with the subspace topology).

If f (X) ⊆ B then f is continuous if and only if f ′ : X → B;x 7→ f(x) is
continuous.

If f is continuous then f |A is continuous.

Lemma 2.9 (Pasting Lemma). Suppose X,Y are topological spaces, A,B closed ⊆
X such that A ∪B = X, f : A→ Y, g : B → Y functions.

If f, g are continuous and agree on A ∩ B (i.e. f |A= g|A then the function

h = f ∪g : X → Y given by x 7→

{
f(x); x ∈ A
g(x); x ∈ B

is well-defined and continuous.

3 Bases, Subbases

Definition 3.1. Suppose (X, τ) is a topological space. A collection B of subsets
of X is a basis (of open sets) for τ if and only if

(B0) B ⊆ τ ;

(B1) ∀U ∈ τ ∃B′ ⊆ B : U =
⋃
B′.

We say that B generates τ or that τ is generated by (the basis)
If a basis for a topological space has been fixed, we call its elements basic

open sets.

Note that (B1) can be restated as ∀U ∈ τ ∀x ∈ U ∃B ∈ B x ∈ B ⊆ U .

Lemma 3.2. Suppose X is a set and B is a collection of subsets of X such that
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(B0’) X =
⋃
B;

(B1’) ∀A,B ∈ B ∃B′ ⊆ B A ∩B =
⋃
B′.

Then B is a basis for a unique topology τ on X, namely{⋃
B′ : B′ ⊆ B

}
.

Proof. It is straightforward to check that the given τ is a topology (note that
we use the convention that

⋃
∅ = ∅), that B is a basis for it and that if σ is a

topology on X with basis B then τ = σ.

Note that (B1’) is satisfied if B is closed under binary (finite) intersections.
Also (B1’) is of course equivalent to

∀A,B ∈ B ∀x ∈ A ∩B ∃C ∈ B x ∈ C ⊆ A ∩B.

Definition 3.3. Suppose (X, τ) is a topological space. A collection S of subsets
of X is a subbasis (of open sets) for τ if and only if{⋂

F : F finite ⊆ S
}

is a basis for (X, τ).
We say that S generates τ or that τ is generated by (the subbasis) S.
If a subbasis for a topological space has been fixed, we call its elements

subbasic open sets.

Lemma 3.4. Suppose X is a set and S a collection of subsets of X.
Then

BS =
{⋂
F : F finite ⊆ S

}
satisfies [B0’] and [B1’] and hence S is a subbasis for a topology τ on X.

Moreover, this topology is uniquely determined by S.

Proof. Note that
⋂
∅ = X (by convention in this course) so that B satisfies [B0’].

By construction BS is closed under binary intersections so that [B1’] holds as
well.

Uniqueness follows from 3.2.

Lemma 3.5. Suppose X,Y are topological space, S is a subbasic for Y and
f : X → Y is a function. Then f is continuous if and only if for each subbasic
open set (of Y ) has open preimage.

Proof. Preimages commute with unions and intersections.
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3.1 Examples

1. If (X, d) is a metric space then {Bε (x) : x ∈ X, ε > 0} is a basis for X.

2. {(a, b) : a, b ∈ Q} is a basis for R

3. {[a, b) : a, b ∈ R} is a basis for the Sorgenfrey line.

4. If X is a linearly ordered space, {(−∞, a) : a ∈ X} ∪ {(a,∞) : a ∈ X} is a
subbasis for the order topology on X.

5. {U × R : U open ⊆ R} ∪ {R× U : U open ⊆ R} is a subbasis for R2.

4 The Lattice of Topologies

Definition 4.1. Suppose X is a set.
Write T for the set of all topologies on X and define a relation ≤ on T by

τ ≤ σ ⇐⇒ τ ⊆ σ, in which case we say that τ is coarser/weaker/smaller than
σ and σ is finer/stronger/greater than τ .

Lemma 4.2. If τi, i ∈ I are topologies on X then so is τ =
⋂
i∈I τi. Moreover,

τ is the greatest topology contained in each of the τi.

Proof. It is straightforward to verify the conditions and check the last sentence.

Lemma 4.3. (T ,≤) is a complete lattice, i.e. a partially ordered set such that
any (non-empty) subset T ′ of T has a sup and inf.

Proof. That ≤ is a partial order (reflexive, transitive, anti-symmetric) is imme-
diate. That infs exist follows from the previous lemma (i.e. inf T ′ =

⋂
T ′) and

finally sup T ′ = inf {τ ∈ T : ∀σ ∈ T ′ : σ ≤ τ} (noting that P (X) is the greatest
topology on X so the inf is well-defined).

Note that
⋃
τi is, in general, not a topology but only a subbasis for the

topology sup τi.

Lemma 4.4. The topology generated by a subbasis is the smallest topology con-
taining this subbasis.

Proof. Let τ be the topology generated by a subbasis S. Clearly S ⊆ τ since⋂
{A} = A for each A.
If σ is a topology containing S then σ must contain all finite intersections of

elements of S, i.e. BS . But every element of τ is the union of elements of BS
and hence must be in σ. Thus τ ⊆ σ as required.

4



5 Initial Topology and Products

Theorem 5.1. Suppose X is a set, (Yi, τi), i ∈ I is a family of topological spaces
and fi : X → Yi, i ∈ I is a family of functions. There is a unique topology τ on
X, called the initial topology on X with respect to the family {fi : i ∈ I}, such
that:

(Test Condition) for every topological space Z and for every function f : Z → X, f is con-
tinuous with respect to τ if and only if for every i ∈ I fi ◦ f is continuous.

This unique topology τ is generated by the subbasis
{
fi
−1 (U) : i ∈ I, U ∈ τi

}
.

Moreover, τ is the coarsest topology on X such that all the fi are continous.

Proof. We first show uniqueness: suppose σ and τ are two topologies satisfying
the Test Condition and consider the map idτ,τ : (X, τ) → (X, τ). Since idτ,τ is
continuous and τ satisfies the Test Condition, each fi = fi ◦ idτ,τ is continuous
(from τ to τi). Now consider idτ,σ : (X, τ) → (X,σ). Since fi ◦ idτ,σ = fi is
continous (from τ to τi) and σ satisfies the Test Condition, idτ,σ is continuous
so that σ ⊆ τ . By symmetry τ ⊆ σ and hence uniqueness follows.

Clearly each fi is continuous from the given τ .
For existence, we only need to verify that the given τ has satisfies the Test

Condition: so suppose that Z is a topological space and f : Z → X is a function.
If f is continuous (into (X, τ)), then, since each fi is continuous, fi ◦ f is a
composition of continuous function so continuous. Conversely, if each fi ◦ f is
continuous and S is subbasic open then S = fi

−1 (U) for some open U ⊆ Yi so

that f−1 (S) = (fi ◦ f)
−1

(U) is Z-open.
The final sentence follows from elementary set algebra.

Definition 5.2. Suppose Xi, i ∈ I are topological spaces. The (Tychonoff)
product topology on P =

∏
i∈I Xi =

{
f : I →

⋃
i∈I Xi : ∀i ∈ I f(i) ∈ Xi

}
is the

initial topology with respect to the natural projections πi : P → Xi given by
πi(f) = f(i).

Lemma 5.3. Suppose Xi, i ∈ I and Y are topological spaces.
The product topology has basis consisting of all sets of the form

∏
i∈I Ui

where each Ui is an open subset of Xi and for all but finitely many i ∈ I we
have Ui = Xi. When no explicit basis for the product topology is given, we
assume that this basis has been selected.

A function f : Y →
∏
iXi is continuous if and only if all of the compositions

πi ◦ f : Y → Xi are continuous and the product topology is the unique topology
on
∏
iXi satisfying this result.

Proof. Straightforward verification: we note that∏
i∈I

Ui =
⋂
i∈I

πi
−1 (Ui) =

⋂
i∈I:Ui 6=Xi

πi
−1 (Ui)

so that the given collection of sets is indeed a basis for the product topology.
The sentence about functions follows immediately from the fact that the

product topology is the initial topology with respect to the πi.
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Definition 5.4. Suppose X and Yi, i ∈ I are sets and fi : X → Yi, i ∈ I are
functions. The diagonal map of the fi is the map

∆i∈Ifi : X →
∏

Yi;x 7→ (fi(x))i∈I .

Lemma 5.5. If all the fi are continuous then so is the diagonal map.

Proof. By the Test Condition for initial topologies (recall that the product topol-
ogy is the initial topology with respect to the πi) it is enough to observe that
for each i ∈ I

πi ◦∆ = fi.

6 Low Separation Properties

Definition 6.1. Suppose X is a topological space.
X is T0 if and only if for any distinct x, y ∈ X there is open U containing

exactly one of x and y.
X is T1 if and only if for any ordered pair (x, y) ∈ X2 \ ∆ of distinct

points there is open U ⊆ X such that x ∈ U 63 y (which is equivalent to
x ∈ U ⊆ X \ {y}).

X is T2 (Hausdorff ) if and only if for any distinct x, y ∈ X there are disjoint
open U 3 x, V 3 y if and only if for any distinct x, y ∈ X there is open U such
that

x ∈ U ⊆ U ⊆ X \ {y} .
X is T3 (regular) if and only if X is T1 and for any x 6∈ C closed ⊆ X

there are disjoint open U 3 x, V ⊇ C if and only if X is T1 and for any
x 6∈ C closed ⊆ X there is open U such that

x ∈ U ⊆ U ⊆ X \ C.

X is T3.5 (Tychonoff ) if and only if X is T1 and for any x 6∈ C closed ⊆ X
there is a continuous f : X → [0, 1] such that f(x) = 0, f (C) ⊆ {1} if and only
if X is T1 and for any x ∈ U open ⊆ X there is a continous f : X → [0, 1] such
that f(x) = 0 and ⊆ (X \ U) {1}.

Lemma 6.2. Suppose X is a topological space and B a basis for X.
Then X is regular (resp. Tychonoff) if and only the condition holds for basic

open sets.
Also in the Tychonoff condition, we can swap the roles of 0 and 1.

Proof. The forward directions are clear.
For the backwards directions: if x ∈ U open X find basic open B with

x ∈ B ⊆ U , apply the condition to the pair x,B and observe that the open set
(resp. continuous function) also works for the pair x, U .

For the last sentence, note that x 7→ 1 − x is a homeomorphism of [0, 1] to
itself swapping 0 and 1.
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Lemma 6.3. X is T1 if and only if every singleton {x} of X is closed.
Thus T3.5 =⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0.

Proof. Suppose X is T1 and x ∈ X. For each y ∈ X \ {x} find Uy 3 y such that
x ∈ X \ Uy. Then

{x} =
⋂
y 6=x

X \ Uy

is an intersection of closed sets, so closed.
For the converse, let x, y ∈ X be distinct. By assumption U = X \ {y} is

open and clearly x ∈ U 63 y.
For the (non-trivial) implications: If X is T3.5, x ∈ X and C closed ⊆ X

with x 6∈ C, let f : X → [0, 1] be a continuous function with f(x) = 0 and
f (C) ⊆ {1}. Then U = f−1 ([0, 1/3)) and V = f−1 ((2/3, 1]) are the required
open sets.

If X is T3 then it is T1 so singletons are closed. If x, y ∈ X are distinct then
apply regularity to x 6∈ {y} closed ⊆ X.

Lemma 6.4. For i ≤ 3.5 all the Ti are preserved by subspaces and products.

Proof. Suppose X and Xk, k ∈ K are topological spaces satisfying Ti (for some
i ≤ 3.5) and A ⊆ X. We write P =

∏
kXk for the Tychonoff product.

T0, subspace: If x, y ∈ A are distinct, let U be X-open containing exactly
one of x and y. Then A ∩ U is as required.

T1, subspace: As for T0.

T2, subspace: As for T0 (intersect both the open sets).

T3, subspace: Suppose x ∈ A and C ⊆ A is A-closed. Then x 6∈ CX = D

since C = C
A

= A ∩ CX and x ∈ A. Thus we can apply regularity to x 6∈
D closed ⊆ X and intersect the open sets we obtain with A.

T3.5, subspace: As for T3, except we of course restrict the continuous map to
A.

T0, products: If x, y ∈ P are distinct, then there is some k ∈ K such that
xk = πk (x) , yk = πk (y) are distinct. Thus in Xk we can find and open U
containing exactly one of xk, yk. Then πk

−1 (U) is as required.

T1, products: As for T0.

T2, products: As for T0.
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T3, products: It is enough to check the condition for standard basic open
sets. So let x ∈ P and U =

⋂
k∈F πk

−1 (Uk) be basic open (i.e. each Uk is an
open subset of Xk and F is a finite subset of K). If x ∈ U then for k ∈ F ,
xk = πk(x) ∈ Uk so that there is Xk-open Vk and Xk-closed Dk = Vk with
xk ∈ Vk ⊆ Dk ⊆ Uk. Then

x ∈ V =
⋂
k∈F

πk
−1 (Vk) ⊆ D =

⋂
k∈F

πk
−1 (Dk) ⊆ U

and V is open and D closed so that V ⊆ D as well.

T3.5, products: It is enough to check the condition for standard basic open
sets. So let x ∈ P and U =

⋂
k∈F πk

−1 (Uk) be basic open (i.e. each Uk is an
open subset of Xk and F is a finite subset of K). If x ∈ U then for k ∈ F ,
xk = πk(x) ∈ Uk so that there is a continuous function fk : Xk → [0, 1] such
that fk(x) = 1 and fk (Xk \ Uk) ⊆ {0} (note that 0 and 1 have interchanged
roles).

Now consider the functions

πF : P →
∏
k∈F

Xk

g 7→ g|F ,

∏
k∈F

fk :
∏
k∈F

Xk → [0, 1]F

(xk)k∈F 7→ (fk(xk))k∈F

and

m : [0, 1]F → [0, 1]

(rk) 7→
∏
k

rk.

Each of them is continuous (the first two by the Test Condition, the last by
elementary Analysis) and hence so is there composition

h = m ◦
∏
k

fk ◦ πF : P → [0, 1].

It is straightforward to check that h(x) = 1 and h (P \ U) ⊆ {0}.

Theorem 6.5 (The Embedding Lemma). Suppose X is a topological space,
Yi, i ∈ I are topological spaces and fi : X → Yi, i ∈ I are continuous such that

� the fi separate points, i.e. for distinct x, y ∈ X there is i ∈ I with fi(x) 6=
fi(y);

8



�

{
fi
−1 (U) : i ∈ I, U open ⊆ Yi

}
is a basis for X.

Then the diagonal ∆ = ∆i∈Ifi is an embedding of X into
∏
i∈I Yi, i.e. a

continuous map which is a homeomorphism onto its image.

Proof. The diagonal is continuous and as the fi separate points, it is injective.
It remains to check that it is open into f(X): so let U ⊆ X be basic open,
i.e of the form fi

−1 (V ) for some i ∈ I, V open ⊆ Yi. Then by construction
∆ (U) ⊆ πi

−1 (V ) ∩ ∆ (X). On the other hand, if y ∈ πi−1 (V ) ∩ ∆ (X) then
we can find x ∈ X with ∆(x) = y and fi(x) = πi(∆(x)) = πi(y) ∈ V so that
x ∈ fi−1 (V ) giving ⊇. Thus basic open sets are mapped to ∆ (X)-open sets.
Finally, images and unions commute so the result follows.

Corollary 6.6. If X is T1 then the two conditions in the previous theorem are
equivalent to

� the fi separate points from closed sets, i.e. for x 6∈ C open ⊆ X there is
i ∈ I and disjoint open U, V ⊆ Yi with f(x) ∈ U , f (C) ⊆ V .

Definition 6.7. The Sierpinsky space S is ({0, 1} , {∅, {1} , {0, 1}}).

Theorem 6.8. A topological space is T0 if and only if it is homeomorphic to a
subspace of some Sκ.

A topological space is T3.5 if and only if it is homeomorphic to a subspace of
some [0, 1]κ.

Proof. For the first result, apply the Embedding Lemma to the family χU , U open ⊆
X.

For the second result, apply the Embedding Lemma to the family of all
[0, 1]-valued continuous functions.

Lemma 6.9. A topological space X is Hausdorff if and only if the diagonal
∆ = {(x, x) : x ∈ X} is closed in X ×X.

Proof. SupposeX is Hausdorff. If (x, y) ∈ X2\∆ then x 6= y so by Hausdorffness
there are disjoint X-open U 3 x, V 3 y. As U, V are disjoint U × V ∩ ∆ = ∅
so that (x, y) ∈ U × V ⊆ X2 \∆. As (x, y) was arbitrary this shows that ∆ is
closed.

Suppose now that ∆ is closed and x, y ∈ X are distinct. Then (x, y) 6∈ ∆ so
there is a basic open W = U × V (in X2) with (x, y) ∈ W ⊆ X \∆ and U, V
open in X. Then U ∩ V = ∅ so that U 3 x, V 3 y are as required.

Lemma 6.10. Suppose f, g : X → Y are continuous functions and Y a Haus-
dorff space. Then {x ∈ X : f(x) = g(x)} is closed in X.

Proof.
{x ∈ X : f(x) = g(x)} = (f∆g)

−1
(∆) .
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7 Normality

Definition 7.1. Suppose X is a topological space.
X is normal if and only if X is T1 and for every pair C,D of disjoint closed

subsets of X there are disjoint open subsets U, V of X such that C ⊆ U and
D ⊆ V .

Equivalently (by duality) X is normal if and only if X is T1 and for every
closed C ⊆ U open ⊆ X there is open V ⊆ X with C ⊆ V ⊆ V ⊆ U .

Definition 7.2. Suppose X is a topological space.
X is functionally normal if and only if X is T1 and for every pair C,D of

disjoint closed subsets of X there is a continuous function f : X → [0, 1] such
that f (C) ⊆ {0} and f (D) ⊆ {1}. We call f a Urysohn function for the pair
C,D.

Equivalently (by duality) X is functionally normal if and only if X is T1 and
for every closed C ⊆ U open ⊆ X there is a continuous function f : X → [0, 1]
with f (C) ⊆ {0} and f (U) ⊆ [0, 1).

Lemma 7.3. Suppose X is a functionally normal topological space. Then X is
normal.

Proof. For disjoinct closed C,D with Urysohn function f consider U = f−1 ([0, 1/2)),
V = f−1 ((1/2, 1]).

Theorem 7.4 (Urysohn’s Lemma). Suppose X is a topological space.
If X is normal then X is functionally normal.

Proof. Suppose we have a closed C ⊆ U open ⊆ X.

Constructing the Onion Slices Let D = {dn : n ∈ ω} be a countable dense
subset of (0, 1) (e.g. D = Q ∩ (0, 1) or D as the dyadic rationals) and write
D−1 = {0, 1} and Dn = {d0, . . . , dn} ∪ {0, 1} = {dn} ∪ Dn−1 for n ∈ ω. Let
U0 = C and U1 = U .

By (strong) induction on n we will construct open sets Udn , n ∈ ω such that

Induction Hypothesis for r, s ∈ Dn with r < s we have Ur ⊆ Us

(note that we never talk abaout U0 or U1 here!).
Suppose we have defined Udk for k < n.
Let

L = {d ∈ Dn−1 : d < dn} G = {d ∈ Dn−1 : dn < d}

and note that these are both finite non-empty sets. Let l = maxL and g = minG
and apply normality to Ul ⊆ Ug to obtain open Udn with Ul ⊆ Udn ⊆ Udn ⊆ Ug.
By choice of l and g (and transitivity of ⊆) the inductive hypothesis has been
preserved.
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Defining the Urysohn function We define f, g : X → [0, 1] by

f(x) = inf {d ∈ D : x ∈ Ud} g(x) = inf
{
d ∈ D : x ∈ Ud

}
(treating inf ∅ = 1).

Next we claim that f = g: clearly g(x) ≤ f(x) (as if x ∈ Ud then x ∈ Ud).
Next, if g(x) < r ∈ [0, 1] then there are e, d ∈ D with g(x) < e < d < r such
that x ∈ Ue ⊆ Ud, giving f(x) ≤ d < r. Hence f(x) ≤ g(x), as required.

Continuity For r ∈ (0, 1) we see: if f(x) ∈ [0, r) then there is d ∈ D with
f(x) < d < r so that x ∈ Ud and f (Ud) ⊆ [0, r); if on the other hand f(x) =
g(x) ∈ (r, 1] then there is d ∈ D with r < d < g(x) so that x 6∈ Ud and
g
(
X \ Ud

)
⊆ (r, 1]. Hence f is continuous.

Finally observe that if x ∈ C = U0 then x ∈ Ud for all d ∈ D so that f(x) = 0
and if x 6∈ U = U1 then x 6∈ Ud for all d ∈ D so that g(x) = 1.

The following example shows that subspaces of normal spaces need not be
normal. Note that you can replace ℵ1 with any uncountable set.

Example 7.5. Let T = ℵ1∪{r} with topology P (ℵ1)∪{T \ F : F finite ⊆ T}
and let R = ℵ0 ∪ {t} with topology P (ℵ0) ∪ {R \ F : F finite ⊆ R}.

Note that T and R are compact Hausdorff so that T×R is compact Hausdorff
and hence normal.

Let X = T ×R \ {(r, t)}.
X is not normal, specifically the disjoint X-closed subsets C = ℵ1 × {t}

and D = {r} × ℵ0 cannot be separated by open sets. For suppose U ⊇ D
is open. For each n ∈ ℵ0 we can then choose some finite Fn ⊆ ℵ1 such that
(r, n) ∈ (T \Fn)×{n} ⊆ U . Letting α ∈ ℵ1 \

⋃
n∈ℵ0 Fn (the latter is non-empty

as ℵ1 is uncountable but
⋃
n Fn is a countable union of finite sets so countable),

we see that {α} × ℵ0 ⊆ U and hence (α, t) ∈ U ∩ C.

7.1 Urysohn’s Metrization Theorem

Definition 7.6. A topological space is metrizable if and only if there is a metric
on that induces the topology of the space.

Theorem 7.7. A compact Hausdorff space is metrizable if and only if it is
second countable.

Proof. For the forward direction note that compact implies Lindeloef and Lin-
deloef metric spaces are second countable (Sheet 1).

We now prove the reverse implication. By Sheet 0, compact Hausdorff spaces
are normal, hence functionally normal and Tychonoff.

Thus

B =
{
f−1 (U) : f : X → [0, 1] continuous , U open ⊆ [0, 1]

}
is a basis for X.
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By Sheet 2, Q1 and the fact that X has a countable basis, there is a countable
B′ ⊆ B which is still a basis for X. Hence there are countably many continuous
functions fi : X → [0, 1], i ∈ N such that

B′ ⊆
{
fi
−1 (U) : i ∈ N, U open ⊆ [0, 1]

}
=: B′′.

Observe that B′′ is thus still a basis for X and X is T1 so that fi, i ∈ I
satisfies the conditions for the Embedding Lemma.

Thus ∆i∈Nfi : X → [0, 1]N is a homeomorphic embedding. But [0, 1]N is
metrizable (Sheet 1) so that X is homeomorphic to a subspace of a metrizable
space and hence metrizable.

Note that we can replace ‘compact Hausdorff’ with ‘Lindelöf regular’ or
‘separable normal’ in the above theorem.

Alternative proof. Instead of appealing to Sheet 2, Q1, fix a countable basis
B of X. Note that there are only countably many pairs (U, V ) ∈ B2. For
each such pair which satisfies U ⊆ V , use Urysohn’s Lemma (i.e. functional
normality) to find a continuous f = fU,V : X → [0, 1] such that f

(
U
)
⊆ {0}

and f (X \ V ) ⊆ {1}. Note that then U ⊆ f−1 ([0, 1/2)) ⊆ V .
We then claim that{

fU,V
−1 ([0, 1/2)) : (U, V ) ∈ B2, U ⊆ V

}
is a basis for X and hence the family fU,V , (U, V ) ∈ B2 with U ⊆ V satisfies the
conditions of the Embedding Lemma.

To prove the claim, let x ∈ W open ⊆ X. Find V ∈ B with x ∈ V ⊆ W .
Use regularity to find open W ′ such that x ∈ W ′ ⊆ W ′ ⊆ V and then find
U ∈ B such that x ∈ U ⊆ W ′. We thus have (U, V ) ∈ B2 such that x ∈ U ⊆
U ⊆ fU,V −1 ([0, 1/2)) ⊆ V ⊆W as required.

8 Paracompactness

8.1 General Theory of Paracompactness

Definition 8.1. Suppose X is a set and A is a collection of subsets of X.
A collection A′ is a refinement of A if and only if ∀A′ ∈ A∃A′ ∈ A′ A′ ⊆ A.

Definition 8.2. Suppose X is a topological space.
A collectionA of subsets ofX is locally finite if and only if ∀x ∈ X∃ open U 3

x |{A ∈ A : A ∩ U 6= ∅}| < ℵ0.
A collection A of subsets of X is discrete if and only if ∀x ∈ X∃ open U 3

x |{A ∈ A : A ∩ U 6= ∅}| ≤ 1.
A collection A of subsets of X is closure preserving if and only if for every

A′ ⊆ A,
⋃
A∈A′ A =

⋃
A∈A′ A.

12



Lemma 8.3. Suppose X is a topological space and A a collection of subsets of
X.

If A is discrete then it is locally finite.
If A is locally finite then it is closure preserving.

Proof. The first statement is trivial (1 < ℵ0).
For the second, suppose A′ ⊆ A. As

⋃
A′ is a closed set containing each

A ∈ A′ it contains each A for A ∈ A′ yielding
⋃
A′ ⊇

⋃
A∈A′ A.

Thus all we need to show that
⋃
A∈A′ A is closed inX. So let x ∈ X\

⋃
A∈A′ A

and find open U 3 x such that AU = {A ∈ A′ : U ∩A 6= ∅} is finite. Note that
since U is open, U ∩ A 6= ∅ ⇐⇒ U ∩ A 6= ∅ so that V = U \

⋃
A∈AU

A is an

open set containing x which is contained in X \
⋃
A∈A′ A.

Definition 8.4. Suppose X is a topological space.
X is paracompact if and only if every open cover of X has a locally finite

open refinement covering X.

Lemma 8.5. A compact space is paracompact.

Lemma 8.6. Suppose X is a paracompact topological space and C a closed
subset of X.

Then every X-open cover of C has an X-locally finite X-open refinement
covering C.

Proof. Suppose U is an X-open cover of C. Then U ∪ {X \ C} is an X-open
cover of X, so has a locally finite open refinement V covering X. We claim that
W = {V ∈ V : V ∩ C 6= ∅} is the required X-locally finite X-open refinement of
U covering C.

The only non-trivial claim is that W is a refinement of U . For this, note
that if V ∩ C 6= ∅ then V 6⊆ X \ C so there is U ∈ U with V ⊆ U .

Lemma 8.7. A closed subspace of a paracompact space is paracompact.

Proof. Suppose C is a closed subspace of a paracompact space X. Let U be a C-
open cover of C and for each U ∈ U choose X-open VU ⊆ X such that VU ∩C =
U . Then {VU : U ∈ U} is an X-open cover of C and by the previous lemma has
a X-locally finite open refinement V covering C. LetW = {V ∩ C : V ∈ V} and
check that this is the required C-locally finite C-open refinement of U covering
C.

Theorem 8.8. A paracompact regular space is normal.

Proof. Suppose X is paracompact regular and that C,D are disjoint closed
subsets of X. For c ∈ C use regularity to find open Uc such that c ∈ Uc ⊆ Uc ⊆
X \D. Then {Uc : c ∈ C} is an X-open cover of C and thus has a locally finite
open refinement V covering C. We then note that V is closure preserving and
since V refines {Uc : c ∈ C} we have

C ⊆
⋃
V ⊆

⋃
V =

⋃
V ∈V

V ⊆
⋃
c∈C

Uc ⊆ X \D

13



as required.

Definition 8.9. Suppose X is a topological space and P is a property of families
of subsets of X (e.g. ‘locally finite’).

A family A of subsets of X is σ-P if and only if there are families An, n ∈ N
of subsets of X such that each An is P and A =

⋃
nAn.

For example a family A is σ-locally finite if and only if it can be written as
a countable union of locally finite families.

Lemma 8.10. Suppose X is a regular space.
TFAE:

1. X is paracompact.

2. X has a σ-locally finite open refinement covering X.

3. every open cover of X has a locally finite refinement covering X.

4. every open cover of X has a locally finite closed refinement covering X.

Proof. Exercise (Probably).

8.2 Paracompactness and Metrizability

Theorem 8.11 (Stone’s Theorem). Suppose X is a metric space.
Then X is paracompact and in fact every open cover of X has a σ-discrete

open refinement covering X.

Proof. Suppose U is an open cover of X. Well order U by ≤ (by the well-ordering
principle).

For each U ∈ U and n ∈ ω we define

U ′ = {x ∈ U : ∀V < U x 6∈ V } ,

VU,n =
{
x ∈ U ′ : B3/2n(x) ⊆ U

}
and

WU,n =
⋃

x∈VU,n

B1/2n(x).

We claim that for each n ∈ ω,Wn = {WU,n : U ∈ U} is a discrete family of open
subsets of X refining U . The only non-trivial claim is discreteness. So assume
y1 ∈ WU1,n, y2 ∈ WU2,n with U1 6= U2 and without loss of generality U1 ≤ U2.
For each i = 1, 2 pick xi ∈ VUi,n such that yi ∈ B1/2n(x). Since x2 ∈ U ′2 we
have x2 6∈ U1 and hence d(x1, x2) ≥ 3/2n. But then by the triangle law

d(y1, y2) ≥ d(x1, x2)− d(y1, x1)− d(y2, x2) ≥ 1/2n.

Hence the B1/2n+1(x), x ∈ X witness discreteness of Wn.
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Next observe that
⋃
nWn is a cover of X: if x ∈ U ′ ⊆ U for some U ∈ U

then for sufficiently large n we have B3/2n(x) ⊆ U .
Hence

⋃
nWn is a σ-discrete open refinement of X covering X as required.

As σ-discrete certainly implies σ-locally finite, the previous lemma shows
that X must be paracompact.

It is possibly to define W ′U,n such that they form a locally finite family: we
define by recursion on n

W ′U,n =
⋃{

B1/2n(x) : x ∈ VU,n \
⋃{

W ′U1,k : k < n,U1 ∈ U
}}

.

We can then manually check that this is locally finite - see Engelking Theorem
4.4.1 for details.

Lemma 8.12. Every metric space has a σ-discrete basis.

Proof. For every n ∈ N, consider the open cover Un = {B2−n(x) : x ∈ X} and
use the previous theorem to obtain a σ-discrete open refinement Wn of Un.

Then observe that
⋃
nWn is still a basis for X (easy) and is σ-discrete.

Lemma 8.13. Suppose X is a normal space with a σ-discrete basis B =
⋃
n Bn

(where each Bn is discrete).
For every open U ⊆ X there is a continuous f : X → [0, 1] such that U =

f−1 ((0, 1]).

Proof. Let U be an open subset ofX and for each n ∈ N let Un =
⋃{

B ∈ Bn : B ⊆ U
}

.
Since B is a basis and X is regular, U =

⋃
n Un. But as each Bn is discrete and

hence locally finite, Un =
⋃{

B : B ⊆ U
}
⊆ U so that

⋃
n Un = U . Thus every

open set is a countable union of closed sets (and, by duality, every closed set is
a countable intersection of open sets).

Now apply Urysohn’s Lemma for each n ∈ N to choose continuous fn : X →
[0, 2−n] such that fn

(
Un
)
⊆ {2−n} and fn (X \ U) ⊆ {0}. By the M -test

f =
∑
n fn is continuous and f (X \ U) ⊆ {0} and f (U) ⊆ (0, 1] as claimed.

Definition 8.14. Suppose κ is any cardinal.
The hedgehog of spininess κ, Hκ is the quotient of [0, 1] × κ obtained by

identifying all the points (0, α), α ∈ κ.

Lemma 8.15. The hedgehog of spininess κ is metrizable with metric

d((x, α), (y, β)) =


y x = 0

x y = 0

|x− y| α = β

x+ y α 6= β

.

Hence a countable product of hedgehogs is metrizable.

Proof. Straightforward verification.
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Theorem 8.16. Every normal space in with a σ-discrete basis is a subspace of
a product of countably many hedgehogs and thus metrizable.

Proof. Suppose X is a normal space with a σ-discrete basis B =
⋃
n Bn where

each Bn is a discrete family of open sets and write κn = |Bn|.
By the lemma above, for each B ∈ Bn we can find a continuous fB : X →

[0, 1] such thath B = fB
−1 ((0, 1]).

Define the functions fn : X → Hκn
by

fn(x) =

{
fB(x) x ∈ B ∈ Bn
0 otherwise

.

First note that by discreteness of Bn, fn is well-defined (each x belongs to at
most one B ∈ Bn).

Next, fn is continuous: fix x ∈ X and open U 3 x such that U meets at most
one B ∈ Bn. If U meets no B ∈ Bn then fn = 0 on U and hence is continuous at
x. If U meets a unique B ∈ Bn then fn = fB on U and again fn is continuous
at x.

By definition of fn, we have Bn ⊆
{
fn
−1 ((0, 1]× {α}) : α ∈ κn

}
and hence

the family fn, n ∈ N satisfies the conditions of the Embedding Lemma (noting
that X is T1).

Thus ∆nfn : X →
∏
nHκn

is an embedding of X into the product of count-
ably many hedgehogs.

We can summarize the result of this section by:

Theorem 8.17. TFAE:

1. X is metrizable

2. X is normal and has a σ-discrete base.

3. X is a subspace of a product of countably many hedgehogs.

Examining the proofs carefully, we can do better: we can replace σ-discrete
by σ-locally finite and we can insist that each of the hedgehogs has spininess
w (X).

Finally, with a bit of work we can show that regular spaces that have a σ-
locally finite base are normal (essentially having a σ-locally finite base implies
that the space is paracompact) and hence we can replace normality in the second
condition by regularity to obtain:

Theorem 8.18 (Bing-Nagata-Smirnov Metrization Theorem). A topological
space is metrizable if and only if it is regular and has a σ-locally finite base.
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9 Filters

9.1 Abstract Filters

Definition 9.1. Suppose X is a set.
A filter on X is a set F ⊆ P (X) such that

� ∅ 6∈ F 6= ∅;

� F is closed under finite intersection;

� F is closed under supersets.

A filter U which is maximal with respect to ⊆ is called an ultrafilter.
Two collections F ,G ⊆ P (X) mesh, written F#G, if and only if ∀F ∈

F∀G ∈ G F ∩G 6= ∅. In this case we also use F#G for {F ∩G : F ∈ F , G ∈ G}.
If F and/or G consist are singletons, we may omit the curly braces, i.e. if
F = {F}, we write F#G instead of F#G.

A basis for a filter F is a collection B ⊆ F such that F = {F ⊆ X : ∃B ∈ B B ⊆ F}.
A collection C ⊆ P (X) has the finite intersection property if and only if for

every finite C′ ⊆ C we have
⋂
C′ 6= ∅.

The following lemmas are elementary:

Lemma 9.2. Suppose X is a set. A non-empty collection B ⊆ X is a filter basis
for a unique filter F on X if and only if ∅ 6∈ B and ∀A,B ∈ B∃C ∈ B C ⊆ A∩B,
in which case F = {A ⊆ X : ∃B ∈ B B ⊆ A}. We call F the filter generated by
B.

Lemma 9.3. Suppose X is a set. A non-empty collection S ⊆ X is contained
in a smallest (wrt ⊆) filter F if and only if ∅ 6∈ S and S has the finite in-
tersection property, in which case F is the filter generated by the filter basis
{
⋂
S ′ : S ′ finite ⊆ S}. We call F the filter generated by S.

Lemma 9.4. Suppose X is a set.
Two non-empty collections F ,G of subsets of X mesh if and only if there is

a filter containing both of them.

In the following we make no explicit distinction between a filter and a basis
generating it.

Lemma 9.5. Suppose X is a set, F a filter on X and G ⊆ P (X) closed under
finite intersections. If G#F then G#F is a filter basis on X (and we also use
G#F for the filter generated by this basis.

Lemma 9.6. Suppose X is a set. A filter U on X is an ultrafilter on X if and
only if for every A ⊆ X we have A ∈ U or X \A ∈ U .

Proof. Suppose U is maximal wrt ⊆ and A ⊆ X such that A 6∈ U . If U ∈ U
then U 6⊆ A so that U#(X \A). Hence (X \A)#U is a filter containing U and
by maximality the two must be equal, giving X \A ∈ U .
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Conversely, let U be a filter on X satisfying the condition and suppose G is
a strictly bigger filter on X. Then A ∈ G \U for some A ⊆ X. By the condition
X \A ∈ U ⊆ G so that (X \A) ∩A = ∅ ∈ G, a contradiction.

Lemma 9.7. Suppose X is a set. A filter U on X is an ultrafilter on X if and
only if for every A,B ⊆ X, if A ∪ B ∈ U then A ∈ U or B ∈ U if and only if
for every A,B ⊆ X, if A,B 6∈ U then A ∪B 6∈ U .

Proof. Suppose U is an ultrafilter on X and A∪B ∈ U . If A 6∈ U then X \A ∈ U
and hence U 3 (A ∪B) ∩X \A ⊆ B so that B ∈ U .

Conversely, suppose U is a filter and the condition holds. For A ⊆ X, note
that since U 3 X = A ∪ (X \A), one of A or X \A belongs to U .

The last condition is simply the contrapositive of the previous one.

Example 9.8. Suppose X is a set, x ∈ X. The following are filters on X:

� Px = {A ⊆ X : x ∈ A}, the principal filter at x (it is in fact an ultrafilter);

� cof = {X \ F : F finite ⊆ X} the cofinite (or Frechet) filter on X;

� ifX is a topological space with topology τ thenNx = {N ⊆ X : ∃U ∈ τ x ∈ U ⊆ N}
is the neighbourhood filter at x.

Theorem 9.9 (Ultrafilter Extension Lemma). Suppose X is a set. Then every
filter can be extended to an ultrafilter.

Proof (not examinable). Either well-order P (X) and construct an ultrafilter by
recursion on this well-order: given a filter F recursively define FA for A ∈ P (X)
by F#A if F#A and F#(X \A) otherwise.

Alternatively, observe that the union of an increasing chain of filters is a
filter (which is an upper bound) and apply Zorn’s Lemma.

The following fact is non-examinable: We write ZF for the axioms of set
theory without the Axiom of Choice.

Theorem 9.10. It is consistent with ZF that the only ultrafilters (on any set)
are the principal ultrafilters. In particular, it is consistent with ZF that the
cofinite filter on ω cannot be extended to an ultrafilter.

Lemma 9.11. Suppose X,Y are sets, f : X → Y is a function.
If F is a filter on X, then f (F) = {f (F ) : F ∈ F} is a filter-basis for a filter

G on X (which we also, in general, denote by f (F)) and G =
{
B ⊆ Y : f−1 (B) ∈ F

}
.

Moreover, if F is an ultrafilter on X then G is an ultrafilter on Y .

Proof. Computing f (F1) ∩ f (F2) ⊇ f (F1 ∩ F2) easily implies that f (F) is a
filter basis.

Next, if B ⊆ Y such that f−1 (B) ∈ F then f
(
f−1 (B)

)
⊆ B so that B ∈ G.

Conversely, if B ∈ G then there is F ∈ F with f (F ) ⊆ B so that F ⊆ f−1 (B)
and hence f−1 (B) ∈ F .

Finally, if F is an ultrafilter onX andB ⊆ Y then since f−1 (B)∪f−1 (Y \B) =
X one of B or Y \B belongs to G as required.
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9.2 Topological filters

Example 9.12. Suppose X is a set and a : N→ X; k 7→ ak is a sequence in X.
Writing Tn = {ak : k ≥ n} for the n-tail of (an), we have that {Tn : n ∈ N}

is a filter basis for a filter F(an) on X.
We note that if X is a metric space then an → x ∈ X if and only if Nx ⊆

F(an) since an → x means that every open U 3 x contains some tail Tn.

Definition 9.13. Suppose X is a topological space, F a filter on X and x ∈ X.
We say that F converges to x, written F → x, if and only if Nx ⊆ F .
We write limF = {x ∈ X : F → x} and abuse notation to write limF = x

for F = {x}.

Lemma 9.14. Suppose X is a topological space, F ,G are filters on X and
x ∈ X.

If F → x and F ⊆ G then G → x.

Lemma 9.15. Suppose X is a topological space, A ⊆ X and x ∈ X.
TFAE:

1. x ∈ A.

2. Nx#A.

3. There is a filter F on X containing A that converges to X.

4. There is an ultrafilter U on X containing A that converges to X.

Proof. Since
A = {x ∈ X : ∀ open U 3 x U ∩A 6= ∅}

the first two conditions are equivalent.
Equivalence of the other three conditions is then obvious (using the Ultra-

filter Extension Lemma).

Lemma 9.16. Suppose X,Y are topological space and f : X → Y is a function.
TFAE:

1. f is continuous.

2. For every filter F on X and x ∈ limF , f (x) ∈ lim f (F).

3. For every ultrafilter U on X and x ∈ limF , f (x) ∈ lim f (F).

Proof. Note that if f is continuous (at x) then f (Nx) ⊆ Nf(x). Hence if Nx ⊆ F
then f (F ) ⊇ Nf(x).

The second implication is obvious.
Finally if x ∈ A then we can find an ultrafilter U → x that contains A.

Hence f (U)→ f (x) and f (A) ∈ Uf so that x ∈ f (A).

Lemma 9.17. A topological space is Hausdorff if and only if every filter con-
verges to at most one point if and only if every ultrafilter converges to at most
one point.
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Proof. Suppose X is a topological space.
If F is a filter on X converging to two distinct points x, y ∈ X then Nx,Ny ⊆

F which impliesNx#Ny which in turn implies that any two open sets containing
x and y respectively must meet.

Conversely if X is not Hausdorff then let x, y ∈ X be distinct such that any
two open sets containing x and y meet. Then Nx#Ny and hence the generated
filter converges to x and y.

10 Compactness

10.1 Prerequisites

I assume that this material has been seen before.

Definition 10.1. Suppose X is a set.
A cover of X is a collection U of subsets of X such that

⋃
U ⊇ X.

A subcover of a cover U of X is a family V ⊆ U such that V is a cover of X.

We use adjectives to specify the kinds of sets which appear in a cover. For
example, we will use ‘open cover’ to refer to a cover consisting of open sets.

Definition 10.2. X is compact if and only if every open cover U has a finite
subcover, i.e. there is a finite V ⊆ U such that X ⊇

⋃
V.

A subset A of X is compact as a subset if and only if every X-open cover of
A has a finite subcover.

Lemma 10.3. Suppose X is a topological space.
X is compact if and only if every family of closed subsets with the f.i.p. has

non-empty intersection.

Proof. Duality together with the fact that U is a cover of X if and only if⋂
U∈U X \ U = ∅.

In view of the following lemma, we drop the distinction between ‘compact
as a subset’ and ‘compact (with respect to the subspace topology)’.

Lemma 10.4. Suppose X is a topological space and A is a subset of X.
A is compact as a subset if and only if A is compact with respect to the

subspace topology.

Proof. Suppose A is compact as a subset. Let U be an A-open cover. For each
U ∈ U choose X-open VU such that U = VU ∩ A. Then VU is an X-open cover
of X so has a finite subcover which we can write as {VUi

: i = 0, . . . , n} for some
n and Ui ∈ U . Then {Ui : i = 0, . . . , n} is the required subcover of U .

For the converse suppose A is compact with respect to the subspace topology.
Let U be an X-open cover of A. Then {U ∩A : U ∈ U} is an open (wrt the
subspace topology) cover of A and thus has a finite subcover which we can
write as {Ui ∩A : i = 0, . . . , n} for some Ui ∈ U . Then {Ui : i = 0, . . . , n} is the
required subcover of U .
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Lemma 10.5. A closed subset of a compact space is compact.

Proof. Suppose X is a compact space and C ⊆ X is closed.
Suppose U is an X-open cover of C. Then U ∪ {X \ C} is an open cover of

X and hence has a finite subcover V. We then note that V ∩ U is the required
finite subcover of U .

10.2 Compactness via ultrafilters

Lemma 10.6. A topological space is compact if and only if every ultrafilter on
X converges.

Proof. Suppose X is a topological space.

⇒: Suppose U is an ultrafilter on X that does not converge. For each x ∈ X
we can thus choose X-open Ux 3 x such that Ux 6∈ U . Then {Ux : x ∈ X} is
an open cover of X so has a finite subcover V. By finiteness X =

⋃
V 6∈ U , a

contradiction.

⇐: Suppose that every ultrafilter on X converges. Let C be a family of closed
sets with the f.i.p.. Then C generates a filter which can be extended to an
ultrafilter U converging to some x ∈ X. As each C ∈ C belongs to U we have
that x ∈ C = C for each C ∈ C and thus x ∈

⋂
C 6= ∅ as required.

Theorem 10.7 (Tychonoff’s Theorem). A product of compact spaces is com-
pact.

Proof. Suppose Xi, i ∈ I are compact spaces and let U be an ultrafilter on∏
iXi. Then Ui = πi (U) are ultrafilters on Xi and hence converge to some

xi ∈ Xi.
Let x = (xi)i∈I ∈

∏
iXi. For every i ∈ I and Xi-open Ui 3 xi we have

Ui ∈ Ui so that πi
−1 (Ui) ∈ U . Hence all subbasic open sets containing x belong

to U and thus Nx ⊆ U so that U → x as required.

10.3 Tychonoff’s Theorem implies the Axiom of Choice

This subsection is non-examinable.
Note that we employed the Axiom of Choice twice in the proof of Tychonoff’s

Theorem. First to show that compactness is equivalent to ultrafilters converging
(Ultrafilter Extension Lemma) and secondly to choose some xi ∈ limπi (U).
This second ‘choice’ is not needed in Hausdorff spaces (since then limπi (U) is
at most a singleton anyway).

To understand the proof, you need to accept (prove) that ‘finitely many
choices do not require the Axiom of Choice’.

Theorem 10.8. Tychonoff’s Theorem implies the Axiom of Choice.
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Proof. Suppose Yi, i ∈ I are non-empty sets. For each i, let Xi = Yi∪{?i} where
?i 6∈ Yi (e.g. ?i = Yi to avoid choice). The topology on Xi is {∅, Yi, {?i} , Xi}.

Clearly each Xi is compact and Yi is a closed subset of Xi. By Tychonoff’s
Theorem,

∏
iXi is compact and C =

{
πi
−1 (Yi) : i ∈ I

}
is thus a collection of

closed sets. We need to verify the f.i.p., i.e.

∀F finite ⊆ I, CF =
⋂
i∈F

πi
−1 (Yi) 6= ∅.

So fix a finite F ⊆ I and note that by induction
∏
i∈F Yi 6= ∅ (as A,B 6= ∅ → A×

B 6= ∅). Let y ∈
∏
i∈F Yi and define x ∈

∏
iXi by x = y∪{i 7→ ?i : i ∈ I \ F} ∈

CF (the ‘choice’ of y does not need the Axiom of Choice).
By compactness

⋂
C 6= ∅ and it is easy to verify that

⋂
C ⊆

∏
i Yi.

11 Compactifications

11.1 An Example

11.1.1 The Space

Let
βω = {U : U is an ultrafilter on N} .

Two ultrafilters could be considered to be similar if they contain lots of the
same subsets of N, so if for A ⊆ N, we define

A? = {U ∈ βω : A ∈ U}

the collection {A? : A ⊆ N} is a reasonable subbasis for a topology τ on βω.
Note that since the U are filters, for A,B ⊆ N,

A? ∩B? = {U ∈ βω : A,B ∈ U} = {U ∈ βω : A ∩B ∈ U} = (A ∩B)?.

Thus
B = {A? : A ⊆ N}

is in fact a basis for τ .
Also note that

βω \A? = (N \A)?

since the U are ultrafilters on N (i.e. A 6∈ U ⇐⇒ N \A ∈ U), so the basic open
sets are in fact clopen.

11.1.2 βω is Hausdorff

Next, if U ,V are distinct ultrafilters then there is A ⊆ N such that wlog A ∈
U \ V. As they are ultrafilters this gives N \A ∈ V \ U so that A? and (N \A)?

are disjoint open sets containing U and V respectively.

22



11.1.3 βω is compact

Note that the basic closed sets (complements of basic open sets) are

A? = {U ∈ βω : A 6∈ U} = (N \A)?.

Let C? =
{
Ci? : i ∈ I

}
be a collection of basic closed sets with the finite inter-

section property. As Ci? ∩ C
j
? = (Ci ∩ Cj)? we see that C =

{
Ci : i ∈ I

}
is a

family of subsets of N with the finite intersection property. Thus C is a subbasis
for a filter on N which can be extended to an ultrafilter U ⊇ C. Then U ∈

⋂
C?

showing that
⋂
C? 6= ∅.

As it is enough to consider basic open covers (and hence families of basic
closed sets with the f.i.p.) to prove that a space is compact, this gives the claim.

11.1.4 n 7→ Pn is a dense homemorphic embedding

Let β : N → βω be given by n 7→ Pn. This is a continuous (N is discrete so
every map from N is continuous) injection. By noting that

β (A) = A? ∩ β (N)

we see that β is open onto its image and hence a homeomorphic embedding.
Now let A? be a non-empty basic open subset of βω. Then A 6= ∅ and picking

n ∈ A we see that Pn ∈ A? ∩ β (N) showing that β (N) is dense as claimed.

11.1.5 Summary

We have constructed a compact Hausdorff space βω which contains (a copy
of) N as a dense subspace. The extra points we added (the elements of the
remainder βω \ β (N)) correspond to the non-converging ultrafilters on N.

11.2 General Theory of Compactifications

Definition 11.1. Suppose X is a topological space.
A compactification of X is a pair (h, Y ) such that Y is a compact Hausdorff

topological space and h : X → Y is a homeormorphic embedding such that
h (X) is dense in Y .

The remainder of a compactification (h, Y ) of X is the subspace Y \ h(X)
of Y .

We sometimes emphasize the fact that Y is Hausdorff by writing ‘Hausdorff
compactification’ instead of ‘compactification’.

Definition 11.2. Suppose X is a topological space and (h, Y ), (g, Z) are com-
pactifications of X.

We say that (g, Z) is larger than (h, Y ), written (h, Y ) ≤ (g, Z), if and only
if there is a continuous function π : Z → Y such that π ◦ g = h.

We say that (h, Y ) and (g, Z) are equivalent compactifications of X, written
(h, Y ) ∼ (g, Z) if and only if there is a homeomorphism π : Z → Y such that
π ◦ g = h.
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Lemma 11.3. Suppose X is a topological space and (h, Y ), (g, Z) are compact-
ifications of X.

If (h, Y ) ≤ (g, Z) and (g, Z) ≤ (h, Y ) then (g, Z) ∼ (h, Y ).
Thus ≤ induces a partial order on the collection of equivalence classes (wrt

∼) of compactifications of X.

Proof. Let π : Z → Y witness (h, Y ) ≤ (g, Z) and ρ : Y → Z witness (g, Z) ≤
(h, Y ). We claim that π and ρ are inverses of each other so that both are
homeomorphisms as required.

To show this, it is sufficient to show that π ◦ ρ = idY and ρ ◦π = idZ (which
will follow by symmetry).

Since g (X) is dense in Y and Y is Hausdorff, it is sufficient to show that
π ◦ ρ is the identity on g (X). But π(ρ(g(x)) = π(h(x)) = g(x) as required.

Lemma 11.4. Suppose X is a topological space and (h, Y ) and (g, Z) are com-
pactifications of X. If π : Z → Y witnesses that (h, Y ) ≤ (g, Z) then π maps
the remainder onto the remainder, i.e.

π (Z \ g (X)) = Y \ h (X) .

Proof. We first note that the image of the compact space Z under π contains
the dense subset h (X) of Y and hence must be all of Y (as compact subsets are
closed in Hausdorff spaces).

In the following we will use that if A ⊆ Z then g (X) ∩ A = g
(
g−1 (A)

)
which follows from injectivity of g

Now assume that there is z ∈ Z \ g (X) such that π(z) ∈ h (X) and fix
x ∈ X such that π(z) = h(x). Since z 6= g(x) we can find an Z-open U 3 z
such that g(x) 6∈ U . Since g (X) is dense in Z, z ∈ U ∩ g (X) 63 g(x) and
x 6∈ g−1 (U) since g is a homeomorphic embedding (i.e. if x ∈ g−1 (U) then
g(x) ∈ g (g−1 (U)) = U ∩ g (X)). Since h is a homeomorphic embedding, h(x) 6∈
h (g−1 (U))

h(X)
= h (X) ∩ h (g−1 (U))

Y
. But

h(x) = π(z) ∈ π
(
U ∩ g (X)

)
⊆ π (U ∩ g (X)) = π (g (g−1 (U))) = h (g−1 (U))

since π ◦ g = h and we have the required contradiction.

Theorem 11.5. A topological space has a Hausdorff compactification if and
only if it is Tychonoff.

Proof. If a topological space X has a Hausdorff compactification, it is a home-
omorphic to a subset of a compact Hausdorff space. But compact Hausdorff
spaces are normal, hence functionally normal (Urysohn’s Lemma) hence Ty-
chonoff and subspaces of Tychonoff spaces are Tychonoff.

Conversely if X is Tychonoff then there is a homeomorphic embedding
h : X → [0, 1]κ for some κ. Thus (h, h (X)) is a Hausdorff compactification
of X.
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Theorem 11.6. The partially ordered set of (equivalence classes of) compact-
ifications of a Tychonoff space has suprema.

Proof. Suppose (gi, Yi), i ∈ I are compactifications of X. Let ∆ = ∆igi : X →∏
i Yi be the diagonal. Since one (in fact every) gi is a homeomorphic embed-

ding, ∆ is a homeomorphic embedding. Writing S = ∆ (X) and ∆S for the map
∆ with co-domain restricted to S, we see that (∆S , S) is a compactification of
X. Clearly each πi : S → Yi witnesses that (gi, Yi) ≤ (∆S , S).

Now suppose that (h, Z) is a compactification of X such that for all i ∈
I, (gi, Yi) ≤ (h, Z) as witnessed by maps σi : Z → Yi. Then H = ∆iσi : Z →∏
i Yi is continuous and if x ∈ X then for each i ∈ I, ∆S(x)i = gi(x) =

σi(h(x)) = H(h(x))i so that ∆S = H ◦ h as required. It remains to show that
H maps Z into S: for this we note that

H (Z) = H
(
h (X)

)
⊆ H (h (X)) = ∆S (X) = S.

Hence (∆S , S) ≤ (h, Z) and thus (∆S , S) = supi(gi, Yi).

11.3 The Stone-Čech Compactification

Lemma 11.7. Suppose Y is a Hausdorff topological space.

If X is a dense subspace of Y then |Y | ≤ 22
|X|

.

Proof. Let N : Y → P (P (X)) be given by N(y) = {U ∩X : y ∈ U open ⊆ Y }.
Since X is dense in Y , each non-empty Y -open set meets X. Hence each element
of N(y) is non-empty and each N(y) is a filter basis. Since distinct points of Y
have disjoint open sets containing them, N is an injection as required.

Theorem 11.8. Suppose X is a Tychonoff topological space.
Then X has a greatest compactification, denoted by (β, βX) and called the

Stone-Čech-compactifcation of X.

Proof. By the previous lemma every equivalence class of compactifications has a

representative where the space has cardinality 22
|X|

. Choose one representative
for each equivalence class and taking the supremum over all of these represen-
tatives gives the result.

Definition 11.9. Suppose X is a topological space, (g, Y ) a compactification
of X and C a class of topological spaces.

(g, Y ) satisfies the Stone-Čech property for C with respect to C if and only if
for every Z ∈ C and every continuous f : X → Z there is a continuous F : Y → Z
such that f = F ◦ g. We say that F extends f .

Usually we drop the ‘with respect to X’ as this is clear from the context.

Theorem 11.10. Suppose X is a Tychonoff topological space.
The Stone-Čech-compactification of X is the unique compactification satis-

fying the Stone-Čech property for compact Hausdorff spaces.
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Proof. We first show uniqueness: suppose (g, Y ) and (h, Z) are compactications
for X that satisfy the Stone-Čech property for compact Hausdorff spaces. Since
(g, Y ) satisfies the Stone-Čech property for compact Hausdorff spaces there is
a continuous H : Y → Z such that h = H ◦ g. Hence (h, Z) ≤ (g, Y ). By
symmetry (g, Y ) ≤ (h, Z) and by a previous lemma (g, Y ) and (h, Z) are thus
equivalent compactifications of X.

We next show that the Stone-Čech-compactification satisfies the Stone-Čech-
property for compact Hausdorff spaces: let Z be compact Hausdorff and f : X →
Z be continuous. Since β : X → βX is an embedding, so is β∆f : X → βX ×Z
and hence (β∆f, β∆f (X)) is a compactification of X. Thus there is π : βX →
β∆f (X) with β∆f = π ◦ β. Then πZ ◦ π : βX → Z is continuous and extends
f .

Theorem 11.11. Suppose X is a topological space.
The Stone-Čech-compactification of X is the unique compactification satis-

fying the Stone-Čech property for {[0, 1]}.

Proof. It is sufficient to prove that the Stone-Čech property for {[0, 1]} implies
the Stone-Čech property for compact Hausdorff spaces.

So let (g, Y ) be a compactification of X satisfying the Stone-Čech property
for {[0, 1]}, Z a compact Haudorff space and f : X → Z a continuous map.

Since Z is normal so Tychonoff, there is a homeomorphic embedding h : Z →
[0, 1]κ for some κ. For i ∈ κ we write hi = πi ◦h and note that hi ◦f : X → [0, 1]
is continuous so that there is a continuous Fi : Y → [0, 1] with hi ◦ f = Fi ◦ g.
Thus F = ∆iFi : Y → [0, 1]κ is continuous and πi ◦ F ◦ g = hi ◦ f showing that
F extends f .

We need to check that F (Y ) ⊆ Z: for this we compute

F (Y ) = F
(
Xg
)
⊆ F (g (X)) ⊆ Z = Z

since Z is a compact subset of the Hausdorff space [0, 1]κ and hence closed in
[0, 1]κ.

11.4 The One-point Compactification

Theorem 11.12. Suppose X is a Tychonoff space.
TFAE:

1. X? = βX \ β (X) is closed in βX.

2. There is a compactification (g, Y ) of X such that Y \ g (X) is closed in Y .

3. For every compactification (g, Y ) of X, Y \ g (X) is closed in Y .

Proof. We prove (3)⇒ (2)⇒ (1)⇒ (3).

(3) ⇒ (2): Since X is Tychonoff, it has a compactification which by (3) has
the required property.
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(2) ⇒ (1): Suppose (g, Y ) is as in (2). Let π : βX → Y witness (g, Y ) ≤
(β, βX) and note that since remainders are mapped to remainders (and of course
the image of X to the image of X) we have π−1 (Y \ g (X)) = X?. As π is
continuous, the result follows.

(1)⇒ (3): Suppose (g, Y ) is a compactification of X. Let π : βX → Y witness
(g, Y ) ≤ (β, βX) and note that since remainders are mapped to remainders
(and of course the image of X to the image of X) and π is onto, we have
Y \ g (X) = π (X?). As π is continuous, it preserves compactness and since
Y is Hausdorff and compact subsets of Hausdorff spaces are closed the result
follows.

Definition 11.13. Suppose X is a non-compact Hausdorff topological space
with topology τ and ∞ 6∈ X.

The one-point (not necessarily Hausdorff) compactification of X is the set
ωX = X ∪ {∞} with topology

σ = τ ∪ {ωX \ C : C compact ⊆ X}

and dense embedding ω : X → ωX;x 7→ x.

Proof. We need to check that σ is a topology on ωX. This is straightforward
using that compact subsets of X are closed in X and the intersection of compact
sets in a Hausdorff space is compact.

We also need to check that ω is a dense embedding. Again, using that
compact subsets of X are closed in X this is straightforward. Density follows
from non-compactness of X.

Finally, we need to check that ωX is compact. So let U be an open cover.
Find U ∈ U such that∞ ∈ U so that U = ωX \C for some compact C ⊆ X. As
C is compact (both wrt τ and wrt σ since C ⊆ X) there is a finite V ⊆ U such
that

⋃
V ⊇ C. Then V ∪ {ωX \ C} is the required finite subcover of U .

Definition 11.14. Suppose X is a topological space.
X is locally compact if and only if every neighbourhood filter has a filter

basis of compact sets, i.e. for every x ∈ X and open U 3 x there is open V and
compact K such that x ∈ V ⊆ K ⊆ U .

Lemma 11.15. A compact Hausdorff space is locally compact.

Proof. Suppose X is compact Hausdorff and x ∈ U open ⊆ X.
As X is compact Hausdorff, it is regular so there is open V and compact K

such that x ∈ V ⊆ K ⊆ U ⊆ X as required.

Lemma 11.16. An open subspace of a locally compact Hausdorff space is locally
compact.

Proof. Suppose X is locally compact Hausdorff and Y is an open subspace of X.
Let x ∈ U where U is a Y -open subset of Y . As Y is open in X, U is in fact X-
open and hence there are X-open V and compact K with x ∈ V ⊆ K ⊆ U ⊆ Y .
But then V = V ∩ Y is Y -open and K = K ∩ Y is compact as required.
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Theorem 11.17. Suppose X is a Hausdorff topological space.
The one-point compactification ωX of X is Hausdorff if and only if X is

locally compact.

Proof. We note that X is open in its one-point compactification.

⇐: Let x, y ∈ ωX be distinct. If x, y ∈ X then Hausdorffness of X gives
disjoint X-open sets U 3 x, V 3 y which are ωX-open by definition of ωX. So
assume that y = ∞. By local compactness (with U = X) find X-open V and
compact K ⊆ X such that

x ∈ V ⊆ K ⊂ X.

Then V 3 x and ωX \K 3 ∞ are the required disjoint Y -open sets.

⇒: Since X is open in ωX and ωX is compact Hausdorff, X is locally compact
by the two previous lemmas.

Corollary 11.18. A locally compact Hausdorff space is Tychonoff.

Corollary 11.19. Suppose X is a Hausdorff space.
X is locally compact if and only if one (and hence all) of the three conditions

from 11.12 holds.

Theorem 11.20. Suppose X is a Tychonoff space and ∞ 6∈ X.
X is locally compact if and only if X has a smallest compactfication.
In this case, the smallest compactification is the one-point compactification.

Proof. We prove both directions separately

⇒: Suppose X is locally compact. We will show that the one-point compacti-
fication (ω, ωX) is the smallest compactification of X. So assume (g, Y ) is any
compactification of X and define

π : Y → ωX; y 7→

{
ω
(
g−1 (y)

)
, y ∈ g (X)

∞, otherwise
.

Clearly ω = π ◦ g so that we only need to verify that π is continuous. So
let U be open in ωX. If ∞ 6∈ U then U is an open subset of X and hence
π−1 (U) = g (U) is open in g (X) which is open in Y (since X is locally compact
Hausdorff). If ∞ ∈ U then U = ωX \ C for some compact subset of X. Hence
π−1 (U) = Y \ g (C) and C is compact so g (C) is compact so closed in Y .

⇐: Suppose (g, Y ) is the smallest compactification of Y . We will show that
Y \ g (X) is a singleton, giving the result. So assume for a contradiction that
there are distinct y1, y2 ∈ Y \g (X). Then Y ′ = Y \{y1, y2} is an open subset of
Y so is locally compact Hausdorff and hence has a one-point compactification
(h, Z) which is smaller than the two-point compactification (id, Y ) of Y ′ (in the
lattice of compactifications of Y ′) as witnessed by some π : Y → Z.
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Since

Z = h (Y ′) ⊆ h
(
g (X)

Y ′
)
⊆ h (g (X)) = h ◦ g (X)

we can see that (h ◦ g, Z) is a compactification of X. But then π witnesses
that (h ◦ g, Z) ≤ (g, Y ). As (g, Y ) is the smallest compactification of X it
must be equivalent to (h ◦ g, Z) and by the proof of Lemma ?? π has to be a
homeomorphism. But π maps both of y1 and y2 to ∞, a contradiction.

11.5 Čech-completeness

Definition 11.21. Suppose Z is a topological space and X ⊆ Z.
X is a Gδ-subset of Z if and only if X is a countable intersection of Z-open

sets, i.e. there are Z-open Un, n ∈ N, such that X =
⋂
n∈N Un.

X is an Fσ-subset of Z if and only if X is a countable union of Z-closed sets,
i.e. there are Z-closed Cn, n ∈ N, such that X =

⋃
n∈N Cn.

Lemma 11.22. Suppose Z is a topological space and X ⊆ Z.
X is a Gδ-subset of Z if and only if Z \X is an Fσ-subset of Z.

Proof. Dualtiy.

Definition 11.23. A topological space X is Čech-complete if and only if X is
T3.5 and βX \ β (X) is an Fσ-subset of βX.

Lemma 11.24. Suppose X is a T3.5 topological space.
TFAE:

1. X is Čech-complete.

2. For every compactification (h, Y ) of X, Y \ h(X) is an Fσ-subset of Y .

3. For some compactificaiton (h, Y ) of X, Y \ h(X) is an Fσ-subset of Y .

Proof. As for locally compact: (2) implies (3) follows since X has a compacti-
fication.

For (3) implies (1) note that if g : βX → Y witnesses (h, Y ) ≤ (β, βX)
and Y \ h (X) =

⋃
n Cn for closed Cn, then βX \ β (X) = g−1 (Y \ h (X)) =⋃

n g
−1 (Cn). Hence by continuity of g the result follows.

For (1) implies (2) note that if g : βX → Y witnesses (h, Y ) ≤ (β, βX)
and βX \ β (X) =

⋃
n Cn for closed and hence compact Cn, then Y \ h (X) =

g (
⋃
n Cn) =

⋃
n g (Cn). Hence by continuity of g, the fact that images of com-

pact sets under continuous maps are compact and the fact that compact subsets
of Hausdorff spaces are closed, the result follows.

Definition 11.25. A metric space (X, d) is complete if and only if every Cauchy
sequence in X converges.

A topological space X is completely metrizable if and only if there is a metric
d on X such that (X, d) is complete and d induces the topology on X.
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Lemma 11.26. A countable product of completely metrizable spaces is com-
pletely metrizable.

A closed subset of a completely metrizable space is completely metrizable.

Proof. Sheet 0 and standard Part A result.

Lemma 11.27. Suppose Z is a complete metric space and X is a Gδ-subset of
Z.

Then X is completely metrizable.

Proof. Let d be a complete metric on Z inducing its topology.
Let Z \X =

⋃
n Cn with Cn closed in Z. Then each dCn : X → [0,∞);x 7→

inf {d(x, c) : c ∈ Cn} is continuous and hence by the Embedding Lemma and its
Corollary D = id ∆∆ndCn

: Z → Z×[0,∞)N = P is a homeomorphic embedding
of Z and hence of X.

We now claim that D (X) = D (Z)∩Z×π[0,∞)N
−1 ((0,∞)N

)
= P1: if x ∈ D

then dCn(x) > 0 for all n ∈ N giving ⊆. On the other hand if z ∈ Z \ D and
dCn(z) > 0 then z 6∈

⋃
n Cn so z ∈ X giving ⊇.

Next, D (Z) is closed in P : Write πn : Z×[0,∞)N → [0,∞) for the projection
onto the (n+ 1)st coordinate (i.e. the map (z, r1, r2, . . . ) 7→ rn) and πZ for the
projection onto Z. Then dCn

◦ πZ and πn are continuous for each n so that

{dCn
◦ πZ = πn} = {p ∈ P : dCn

(πZ (p)) = πn(p)}

is closed (as [0,∞) is Hausdorff). Now note that

D (Z) =
⋂
n

{dCn
◦ πZ = πn} .

Hence P1 is closed in Z × (0,∞)N and the latter the completely metrizable as
(0,∞) if homeomorphic to R.

Hence X is homeomorphic to a closed subspace of a completely metrizable
space and hence completely metrizable.

Lemma 11.28. For every metric space (X, d) there is complete metric space

(Y, d̂) and a dense isometric embedding h : X → Y .

Proof. Let Y =
{

(xn) ∈ XN : (xn) is Cauchy
}
/ ∼ where (xn) ∼ (yn) ⇐⇒

d(xn, yn) → 0. Note that ∼ is indeed an equivalence relation on the set of

Cauchy sequences of X. Define d̂ ([(xn)], [(yn)]) = lim d(xn, yn), noting that this

is well defined. Check that d̂ is indeed a metric on Y and that it is complete
(this is a bit fiddly). Finally observe that h : X → Y ;h(x) = (x) where (x) is
the sequence with constant value x is an isometric embedding. Either note that
h (X) is dense or take h (X) to complete the proof.

We call (h, Y ) a completion of X (and could show that Y is unique up to
the natural definition of equivalence) and identify X with its image under h.
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Lemma 11.29. If a metrizable space X is Čech-complete then it is completely
metrizable.

Proof. Let Y be a completion of X and (β, βY ) its Stone-Čech compactifica-
tion. As X is dense in Y , β (X) will be dense in βY , so (β|X , βY ) is also a
compactification of X. Thus β (X) is a Gδ-subset of βY and hence a Gδ-subset
of β (Y ) (simply intersect the witnessing open sets with β (Y )). Hence X is a
Gδ-subset of Y and thus completely metrizable.

Lemma 11.30. If a metric space (X, d) is complete and F is a filter on X that
contains sets of arbitrarily small diameter, then F converges (to a point of X).

Proof. For each n ∈ N choose Cn ∈ F with diam (Cn) ≤ 2−n. Without loss of
generality Cn is closed and (by taking finite intersections) the Cn for a decreasing
sequence of closed sets. For each n ∈ N, we can thus choose xn ∈ Cn and observe
that if n ≤ m then xn, xm ∈ Cn so that d(xn, xm) ≤ 2−n. Hence (xn) is Cauchy
and thus converges to some x̂ ∈ X. But then x̂ ∈

⋂
Cn (since each Cn is closed

and a tail of (xm) belongs to Cn). Therefore B2−n(x) ⊇ Cn and thus F → x̂ as
required.

Lemma 11.31. If a space X is completely metrizable then it is Čech-complete.

Proof. Let d be a complete metric on X inducing the original topology on X.
Without loss of generality we may assume that d is bounded by 1 (otherwise take
min {d, 1} which will still be complete). For each x ∈ X, let dx : X → [0, 1] be
given by dx(y) = d(x, y), which is clearly continuous so extends to a continuous
function βdx : βX → [0, 1].

For each x ∈ X, let Vn,x = βdx
−1 ([0, 2−n)) and observe that X ∩ Vn,x =

B2−n(x) which has diameter ≤ 2−n+1.
For each n ∈ N we let

Un =
⋃
x∈X

Vn,x

which is open in βX and claim X =
⋂
n Un.

That X ⊆
⋂
n Un is clear.

Now let z ∈
⋂
n Un. Then X#Nz → z (by density of X in βX).

On the other hand for each n ∈ N, some X∩Vn,x ∈ X#Nz so that interpret-
ing X#Nz as a filter on X, this filter contains sets of arbitrarily small diameter
and thus converges to some x̂ ∈ X. As βX is Hausdorff, X#Nz has a unique
limit and thus z = x̂ ∈ X as required.

We summarize:

Theorem 11.32. A metrizable space X is completely metrizable if and only if
X is Čech-complete.
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11.6 The Baire Category Theorem

Theorem 11.33. Suppose X is a compact Hausdorff space.
If Un, n ∈ N is a countable family of dense open sets, then

⋂
n Un is dense.

Proof. First note that the intersection of two dense open sets is dense open: if
U1, U2 are dense open and V is non-empty open then V ∩ U1 is non-empty and
open and hence V ∩U1∩U2 is non-empty. Thus we may assume wlog (replacing
them with

⋂
k≤n Uk) that the Un are decreasing.

Now, fix a non-empty open V and inductively non-empty open Wn such that
Wn+1 ⊆ Un+1 ∩Wn with W0 ⊆ V ∩ U0. This is possible: V ∩ U0 is non-empty
by density of U0 so pick x ∈ V ∩ U0 and then use regularity of X to obtain
W0 as required. For the inductive step, having defined Wn, we note again that
Wn ∩ Un+1 is non-empty by density of Un+1 so pick x ∈Wn ∩ Un+1 and Wn+1

by regularity of X.
Now observe that⋂

n≥0

Wn ⊆
⋂
n≥0

Wn ⊆
⋂
n≥1

Wn ⊆
⋂
n≥1

Wn ⊆
⋂
n≥0

Wn

where the last ⊆ follows from W1 ⊆ W0. Thus
⋂
nWn =

⋂
nWn and the

latter is an intersection of a decreasing family of non-empty closed sets in a
compact space and hence non-empty. Finally observe that since W0 ⊆ V and⋂
nWn ⊆

⋂
n Un we have

⋂
n Un ∩ V 6= ∅ as required.

Definition 11.34. Supppose X is a topological space.
X is Baire if and only if a countable intersection of dense open sets is dense.
Dually, a countable union of closed, co-dense subsets of X is co-dense.

Theorem 11.35. A dense Gδ subset of a Baire space is Baire.

Proof. Suppose X is a dense Gδ subset of the Baire space Y . Let Vn, n ∈ N be
Y -open sets such that X =

⋂
n Vn and Wn, n ∈ N be X-dense, X-open subsets

of X. Then each Wn is Y -dense (as X is dense in Y ) and we can find Y -open
Un such that Wn = X ∩ Un. Then {Un : n ∈ N} ∪ {Vn : n ∈ N} is a countable
family of dense open sets.

Now assume that W is X-open and non-empty. Find Y -open U such that
W = X ∩ U . As Y is Baire,

∅ 6= U ∩
⋂
n

Vn ∩
⋂
n

Un = U ∩X ∩
⋂
n

Un = W ∩
⋂
n

X ∩ Un = W ∩
⋂
n

Wn

as required.

Corollary 11.36. Čech-complete Tychonoff spaces and hence completely metriz-
able spaces are Baire.

Proof. By definition a Čech-complete Tychonoff space is homeomorphic to a
dense Gδ-subset of a compact Hausdorff space.
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Corollary 11.37. Q is not a Gδ-subset of R.

Proof. Note that Q is dense in R which is completely metrizable, so Baire. If Q
were a Gδ-subset of R it would be Baire. Enumerating Q as {qn : n ∈ N} and
considering the closed co-dense sets {qn} , n ∈ N gives a contradiction.

Lemma 11.38. Suppose f : R→ R is a function.
The set of continuity of f , {x ∈ R : f is continuous at x} is a Gδ-subset of

R.

Proof. Let An = {x ∈ R : ∃δ > 0 f (Bδ(x)) ⊆ B2−n(f(x))}. Clearly the An form
a decreasing sequence of subsets of R and

⋂
nAn =

⋂
nAn+1 is the set of

continuity of f .
Now, if x ∈ An+1 and δ > 0 satisfies f (Bδ(x)) ⊆ B2−n(f(x)) then Bδ(x) ⊆

An. Thus there is an open set Vn such that An+1 ⊆ Vn ⊆ An. Thus⋂
n

An ⊆
⋂
n

An+1 ⊆
⋂
n

Vn ⊆
⋂
n

An

so the result follows.

Corollary 11.39. There is no function f : R → R whose set of continuity is
exactly Q.

11.7 A Combinatorial Theorem using βN - Not lectured

Theorem 11.40 (van der Waerden’s Theorem). If A1, . . . , An is a partition
of N = {1, 2, 3, . . .} and l ∈ N then there is k ≤ n such that Ak contains an
arithmetic partition of length l.

Proof based on work by Dona Strauss. We first will define a semi-group opera-
tion ⊕ on βN which is left-continuous, i.e. for fixed p ∈ βN the map .⊕p : βN→
βN; q 7→ q⊕p is continuous: to do so, fix n ∈ N and note that n+. : N→ N;m 7→
n + m is continuous and hence extends to a continuous map n+̂. : βN → βN.
Now fix p ∈ βN and extend the continuous map .+̂p : N → βN;n 7→ n+̂p to
.⊕p. Using limits, one can easily show that ⊕ is a semi-group operatrion (i.e. is
associative) and by construction it is left-continuous and restricts to the usual
addition on N.

We will now write + instead of ⊕.
Next, we will show that (βN,+) contains a smallest, non-empty compact

ideal K: an ideal is collection I ⊆ βN such that for all p ∈ βN, p + I ⊆ I
and I + p ⊆ I. Clearly βN is an ideal and the intersection of all ideals is a
possibly empty ideal. If I1, . . . , Ik are ideals then I1 + · · · + In ⊆

⋂n
1 Ik so

the collection of compact ideals has the finite intersection property and hence
non-empty intersection.

Finally, we will show that K contains an idempotent, i.e. some p such that
p + p = p: K is a compact sub-semi-group of (βN,+). Now, note that the
intersection of a decreasing chain of non-empty closed sub-semi-groups of K is a
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non-empty sub-semi-group, so that by Zorn’s Lemma, there is a minimal closed
sub-semi-group S of K. Let p ∈ S: then {q + p : q ∈ S} is a sub-semi-group of
S so by minimality equals S. Hence Z = {q ∈ S : q + p = p} = .⊕ p−1 ({p}) is
non-empty and closed (by continuity). It is easy to check that Z is a sub-semi-
group of S so again by minimality Z = S, giving that p+ p = p.

So, to summarize: (βN,+) is a semi-group containing a smallest ideal K
which contains an idempotent p.

Now let P = (βN)l with pointwise operation +, another semi-group which
contains Nl as a dense sub-semi-group. Let

A = {(a, a+ d, a+ 2d, . . . , a+ (l − 1)d) : a, d ∈ N} ⊆ Nl ⊆ P

and
D = {(x, . . . , x) : x ∈ N} ∪A ⊆ Nl ⊆ P.

Note that D is a sub-semi-group of P and A is an ideal in D. By taking limits
we get that D is a sub-semi-group of P and that A is an ideal in D. Clearly
p̂ = (p, . . . , p) ∈ D and letting K(D) be the smallest closed ideal of D (as above)
we get πk(K(D)) as a compact (so closed) ideal of πk(D) = πk(D) = βN and
hence p̂ ∈ K(D) ⊆ A.

To summarize, we have a p ∈ βN such that p̂ ∈ A. Now, since Np ∩ N is
an ultrafilter on N (see the third example sheet), we have some Ak ∈ Np ∩ N.

Hence Ak is a neighbourhood of p and thus Ak
l ∩A 6= emptyset. Since A ⊆ Nl

we get that Alk ∩A 6= ∅, as required.

12 Connectedness

Definition 12.1. Suppose X is a topological space.
A disconnection of X is a partition of X into two non-empty open sets (these

are then necessarily disjoint proper subsets of X which cover X and are also
closed).

A space is disconnected if and only if it admits a disconnection.
A space is connected if and only if it does not admit a disconnection.

Note that a subset of X is disconnected if and only if it is disconnected in
the subspace topology.

We need a few results from Part A:

Lemma 12.2. A space X is connected if and only if the only clopen subsets of
∅ and X.

Proof. If ∅ 6= D 6= X is clopen then D,X \D is a disconnection of X.

Lemma 12.3. A space is connected if and only if every continuous {0, 1}-valued
map is constant.
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Proof. If U, V is a disconnection, then the indicator function 1U on U is a
continuous non-constant map.

Conversely, if f : X → {0, 1} is a continuous surjection, then f−1 (0) and
f−1 (1) form a disconnection.

We will write 2 for {0, 1} (with the discrete topology).

Corollary 12.4. The one point space is connected.

Lemma 12.5. Suppose X is a topological space and A,Ai, i ∈ I are connected
subsets of X.

If ∀i ∈ I Ai ∩A 6= ∅ then A ∪
⋃
iAi is connected.

Proof. Wlog X = A ∪
⋃
iAi. Consider a continuous f : X → 2. Note that f |A

and f |Ai
(i ∈ I) are continuous and thus constant (by assumption), with values

c and ci, i ∈ I. Fix i ∈ I, a ∈ A ∩ Ai and observe that c = f(a) = ci. Hence f
is constant.

Definition 12.6. Suppose X is a topological space and x ∈ X.
The component of x (in X) is

CX(x) =
⋃
{A ⊆ X : x ∈ A and A is connected} .

The quasicomponent of x (in X) is

QX(x) =
⋂
{C ⊆ X : x ∈ C and C is clopen} .

Lemma 12.7. Suppose X is a topological space and x ∈ X.
The component of x is connected and contained in the quasicomponent of X

and the quasicomponent of x is closed in X.

Proof. Write

CX(x) = {x} ∪
⋃
{A ⊆ X : x ∈ A and A is connected}

and apply the earlier lemma to see that CX(x) is connected.
If D is clopen in X and x ∈ D then CX(x)∩D is clopen in CX(x) and non-

empty so must be all of CX(x). Hence CX(x) ⊆ D, giving CX(x) ⊆ QX(x).
Finally QX(x) is an intersection of closed sets, so closed.

Lemma 12.8. If X is compact Hausdorff, C is a family of closed subsets of X
and U is open such that

⋂
C ⊆ U then there is finite C′ ⊆ C such that

⋂
C′ ⊆ U .

Proof. Suppose C and U are as in the lemma.
Note that C ∪ {X \ U} is a family of closed subsets of X with empty inter-

section so that there is a finite subfamily C′ ∪ {X \ U} with empty intersection.
But this gives

⋂
C′ ⊆ U as required.

Theorem 12.9 (Sura-Bura Lemma). In a compact Hausdorff space, compo-
nents and quasicomponents coincide.
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Proof. Suppose X is compact Hausdorff and x ∈ X. Write Q = QX(x).
It is sufficient to show that Q is connected. So assume that A,B form a Q-

disconnection, i.e. A,B are disjoint, non-empty, Q-open and Q = A ∪B. Since
Q is X-closed, A,B are X-closed and as X is compact Hausdorff so normal,
there are disjoint X-open U, V such that A ⊆ U,B ⊆ V . Note that in particular
U ∩ V = ∅ = U ∩ V . Then

Q =
⋂
{C ⊆ X}x ∈ C clopen = A ∪B ⊆ U ∪ V

so by the preceding lemma there is a finite collection C of clopen sets containing
x such that A ∪ B ⊆ C =

⋂
C ⊆ U ∪ V . Note that C is X-clopen (as a finite

intersection of X-clopen sets).
Hence

U ∩ C ⊆ U ∩ C = U ∩ ((U ∪ V ) ∩ C) = U ∩ C

so that U ∩C and (similarly) V ∩C are X-clopen. Since these are disjoint one
of them contains x, wlog x ∈ U ∩ C. But then B ⊆ V so that B ∩ U ∩ C = ∅.
Hence B = B ∩Q ⊆ B ∩ U ∩ C = ∅, contradicting non-emptyness of B.

13 Disconnectedness

Definition 13.1. Suppose X is a topological space.
X is totally disconnected if and only if every component of X is a singleton.
X is zero-dimensional if and only if X has a basis of clopen sets.

Lemma 13.2. In a compact Hausdorff space, total disconnectedness and zero-
dimensionality are equivalent.

Proof. Suppose X is compact Hausdorff.
If X is zero-dimensional, let B be a clopen basis and for each x ∈ X let

Bx = {B ∈ B : x ∈ B}. As X is Hausdorff we have

QX(x) ⊆
⋂
Bx = {x}

and since CX(x) ⊆ QX(x) X is totally disconnected.
Conversely, assume that X is totally disconnected. We claim that

{C ⊆ X : C clopen }

is a basis for X.
Let x ∈ X and U 3 x be open. By the Sura-Bura Lemma

QX(x) = CX(x) = {x} ⊆ U

and recalling that QX is an intersection of clopen sets in the compact Hausdorff
space, there are finitely many clopen sets Cx (each containing x) with x ∈ C =⋂
Cx ⊆ U and C is clopen.
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13.1 Stone Duality - an Outline

Definition 13.3. A Boolean Algebra is a set B together with partial order ≤
such that

1. B has a maximal element 1 and a minimal element 0;

2. B has binary (and hence finitary) suprema (written a ∨ b) and infima
(written a ∧ b);

3. there is a negation operation ¬ : B → B satisfying ∀b ∈ B (¬b) ∨ b = 1
and ∀b ∈ B (¬b) ∧ b) = 0.

If B and C are Boolean Algebras, a homomorphism from B to C is a function
f : B → C preserving ∨,∧, 0, 1 and (hence) ¬.

Lemma 13.4. Suppose X is a topological space. Then BX = {A ⊆ X : A is clopen in X}
with partial order ⊆ is a Boolean Algebra with ∨ = ∪, ∧ = ∩ and ¬A = X \A.

Moreover if f : X → Y is a continuous between two topological spaces then
f? : BY → BX given by f?(A) = f−1 (A) is a Boolean Algebra homomorphism
(and compositions work).

Proof. Straightforward.

Definition 13.5. Suppose B is a Boolean Algebra. A filter F on B is a subset
of B such that

1. 0 6∈ F 6= ∅;

2. ∀a, b ∈ F a ∧ b ∈ F ;

3. ∀a ∈ F ∀b ∈ B (a ≤ b =⇒ b ∈ F).

An ultrafilter on B is a maximal filter (wrt ⊆).

Lemma 13.6. Suppose B is a Boolean Algebra and U is a filter on B.
The following are equivalent:

1. U is an ultrafilter.

2. ∀b ∈ B exactly one of b ∈ U and ¬b ∈ U .

3. ∀a, b ∈ B, if a ∨ b ∈ U then a ∈ U or b ∈ U .

Proof. As for ultrafilters on topological spaces (note that P (X) with ⊆ is a
Boolean Algebra).

Theorem 13.7. Every filter on a Boolean Algebra can be extended to an ultra-
filter.

Proof. Apply Zorn’s Lemma, noting that a union of an increasing chain of filters
is a filter.
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Lemma 13.8. Suppose B is a Boolean algebra.
Let XB = {U : U is an ultrafilter on B}.
Writing

Ub = {U ∈ XB : b ∈ U}

we have that
{Ub : b ∈ B}

is a basis for a compact Hausdorff zero-dimensional topology on X.
We call XB with this topology the Stone space of B.

Proof. As in 11.1.

Lemma 13.9. Suppose f : B → C is a Boolean Algebra homomorphism.
If U is an ultrafilter on C then

f? (U) := V = {b ∈ B : f(b) ∈ U}

is an ultrafilter on B.

Proof. Since f(0B) = 0B 6∈ U and f(1B) = 1C ∈ U we have 0B 6∈ V 6= ∅.
Next, if b1, b2 ∈ V then f(b1 ∧ b2) = f(b1) ∧ f(b2) ∈ U so that V is closed

under binary infima.
Finally if b1 ∈ V and b1 ≤ b2 ∈ B then f(b1) ≤ f(b2) so that b2 ∈ V.
Hence V is a filter.
To see that it is an ultrafilter, note that for each b ∈ B, f(¬b) = ¬f(b) and

exactly one of f(b) and ¬f(b) belongs to U .

Lemma 13.10. Suppose f : B → C is a Boolean Algebra homomorphism.
Then f? : XC → XB is a continuous map (and compositions work).

Proof. Straightforward.

Theorem 13.11 (Stone Duality). The contravariant functors X 7→ BX and
B 7→ XB defined above are ‘inverses’(up to isomorphism) of each other for the
class of compact Hausdorff zero-dimensional spaces.
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