
C5.7 Topics in Fluid Mechanics Michaelmas Term 2023

Problem Sheet 4

As required in this example sheet, you may use the fact that the Stokes flow equations with velocity
boundary conditions have a unique solution, up to an additive constant in the pressure. See Pozrikidis,
Ch. 1, Boundary integral and singularity methods for linearized viscous flow, CUP.

1. Section A. Rotating Sphere in Stokes Flow

With x̂ = x− x0, r = |x− x0| and

Gij =
δij
r

+
x̂ix̂j

r3
,

define the rotational dipole Gc by

Gc
im :=

1

2
ϵmlj

∂Gij

∂x0,l

,

where

ϵmlj :=


+1 if (m, l, j) = (1, 2, 3) or (3, 1, 2) or (2, 3, 1)
−1 if (m, l, j) = (1, 3, 2) or (2, 1, 3) or (3, 2, 1)
0 if any of i, j, k are equal

Gc is also known as a rotlet or couplet.

(a) Show that

Gc
im = ϵiml

x̂l

r3
.

(b) Show the solution for the Stokes flow associated with a sphere of radius a centred at x0

and rotating with angular velocity Ω is given by a3GC
imΩm.

(c) With an origin at the centre of the sphere, determine the torque exerted on the on the
sphere by the fluid.

2. Section B. Ciliary Pumping.

Blake [1] considered a more general metachronal wave which, after non-dimensionalisation, takes
the form

xe = x+ ϵ
∞∑
n=1

(an sin(n[x+ t])− bn cos(n[x+ t]), ye = ϵ
∞∑
n=1

(cn sin(n[x+ t])− dn cos(n[x+ t]).
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(a) Using the result in the lecture notes, without detailed calculation, show that at leading
non-trivial order

U =
1

2
ϵ2

∞∑
n=1

n2[c2n + d2n − a2n − b2n + 2(andn − cnbn)].

(b) Blake also found the non-dimensional power required per unit surface area of envelope at
leading non-trivial order:

P = ϵ2
∞∑
n=1

n3[c2n + d2n + a2n + b2n].

Find the metachronal wave/waves that maximises/maximise the modulus of U , the velocity
of the far field flow, for a fixed power per unit area, P .

3. Section B. Ciliate Motility. Consider a ciliate, that is a cell covered in beating cilia, which induce
movement (Fig. 1). As a simple model, suppose that the cell is spherical and that the ciliary
envelope is such that the cell radius does not deform (at least approximately). Alternatively,
this could represent the streaming velocity around a spherical Janus particle; see Fig. 1.

In particular suppose the cell moves its surface in a tangential direction such that, in the non-
dimensionalised system, the radius of the cell is r = 1 and during the deformation the polar
angle θ (such that z = r cos θ) is mapped to Θ with

Θ = θ + ϵβ1(t) sin θ.

By working in a frame comoving with the cell, show that its swimming speed is

2

3
ϵβ̇1(t).

Hint Without loss, suppose a reference frame comoving with the swimmer is oriented such that
the direction of the swimmer velocity is given by U = Uez. Write down the non-dimensional
Stokes equations and boundary conditions and show that

u =

[
−U(t) +

Q(t)

r3

]
cos θer +

[
U(t) +

P (t)

r3

]
sin θeθ, p = Const

is a solution of the Stokes equation for Q(t) = 2P (t) and an appropriate choice of P (t). Symbolic
algebra, such as the use of Mathematica, is recommended for detailed calculation.
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Figure 1: Images of the ciliate, Paramecium (Viridoparamecium) chlorelligerum. Upper Left, (a).
An image from flash photomicrography of freely motile specimen after disturbance. Scale bar, 50µm.
Upper Right, (b). A scanning electron microscope image of the dorsal side, illustrating the density
of cilia on the cell surface. From Kreutz et. al [2]. Lower (c). A schematic of a prospective self-
electrophoretic propulsion mechanism for a conducting Janus particle within an acidic environment,
whereby a slip-velocity is induced by the ion flows generated by a simultaneous catalytic oxidation
of a fuel present in the solute, A, on one side of the particle and a catalytic reduction of a fuel, B, on
the other. From Paxton et. al [3].
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4. Section B. Resistive Force theory. Throughout this question, one can work with the leading
non-trivial order of the parameter ϵ, where the flagellum location in the cell fixed frame is given
by y = ϵh(s, t).

In the lecture notes any possible movement of the cell in the y-direction was neglected. With
the movement of the cell body given by U = (U, V ) and the velocity of a flagellar element
given by (U, V + ϵht) write down a set of simultaneous equations for U, V . Hence find U and
determine conditions on h(s, t) where the neglect of V in the notes is a good approximation.

5. Section C. Resistive Force theory. Consider a planar beating filament, with the filament beating
in a co-moving reference frame described by y = ϵh(s, t). However, now we assume the filament
is no longer moving a cell body. In addition, we assume that the filament is now moving in a
background shear flow v = −γyex and it starts such that its midline is along y = 0, where the
shear velocity is zero. Determine the filament’s horizontal swimming speed up to and including
O(ϵ) in terms of its beat pattern, h(s, t), its length L, its radius a, the fluid shear rate, γ, and
the fluid viscosity µ.

You may assume that the filament does not drift in the y-direction so that its displacement in
the y-direction is always O(ϵ) and that resistive force theory generalises to give the drag force
per unit length, f , on the filament via

f = −CN(I − eTeT )(U − v)− CT (eT · (U − v))eT .

where U is the velocity of the filament, and the resistance coefficients CN , CT are independent
of v.
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