
C5.7 Topics in Fluid Mechanics Michaelmas Term 2023

Problem Sheet 2: Solutions

1. From the vertical component of the momentum equation (after applying the lubrication ap-
proximation) we have that

∂p

∂z
= −ρg

so that the pressure distribution within the drop is hydrostatic, i.e.

p = p0 + ρg [h(r, t)− z] (1)

where we have neglected the pressure jump due to surface tension and p0 is the constant atmo-
spheric pressure.

The horizontal component of the momentum equation is, in the lubrication approximation,

µ
∂2u

∂z2
=

∂p

∂r
= ρg

∂h

∂r
.

Integrating twice subject to u(z = 0) = 0 (no-slip) and uz(z = h) = 0 (no stress) we find that

u =
ρg

2µ
z(z − 2h)

∂h

∂r
,

and

ū = −ρg

3µ
h2∂h

∂r
.

At this point is acceptable to quote the general result that

∂h

∂t
+∇ · q = 0

where q = hūer is the fluid flux, though it would be reasonable to ask for this to be derived:

1

r

∂

∂r

(
r

∫ h

0

u dz

)
=

∫ h

0

1

r

∂

∂r
(ru) dz + hru(h)

= −
∫ h

0

∂w

∂z
dz + u(h)hr [Using ∇ · u = 0]

= −w(h) + w(0) + u(h)hr

= − [ht + u(h)hr] + u(h)hr Using the k.b.c. and w(0) = 0

= −ht.
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Thus we have

ht =
ρg

3µ

1

r

∂

∂r

(
rh3∂h

∂r

)
, (2)

as desired.

We are told that the volume of the drop is a given constant V and so we must have

V =

∫ a(t)

0

2πrh dr.

In scaling terms we may write volume conservation as V ∼ R2H where R is a typical radial
scale and H a typical vertical scale at time T . In scaling terms the governing pde (2) reads

H

T
∼ ρg

µ

H4

R2

from which we have
T ∼ µ

ρg
R2
(
H−3 ∼ R6/V 3

)
.

Hence the typical radial scale R at time T must scale according to

R ∼
(
ρgV 3

µ
T

)1/8

so that the radius a(t) of the droplet must scale in the same way.

To progress further we non-dimensionalize lengths using V 1/3 and time using µ/ρgV 1/3 so that
we wish to solve

ht =
1

3r

∂

∂r

(
rh3∂h

∂r

)
, (3)

subject to the volume constraint ∫ a(t)

0

rh dr = 1/(2π). (4)

Based on the scalings discussed above it is natural to seek a similarity solution of the form
h(r, t) = t−1/4Θ(η) where η = rt−1/8 and we expect the drop to occupy the region 0 ≤ η ≤ η∗
where η∗ = a(t)/t1/8 is the position of the edge of the drop; i.e. h(a(t), t) = 0.

[Note that it is better to use the above similarity ansatz than the alternative t/r8 since we take
more spatial derivatives than time derivatives. However, this alternative approach does work if
one is sufficiently careful.]
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Substituting this similarity form into (3) we have

−1

8
(2Θ + ηΘ′) =

1

3η

d

dη

(
ηΘ3Θ′) .

This may be integrated once to give

−3

8
η2Θ = ηΘ3Θ′

where the constant of integration must vanish to ensure that the solution is well-behaved as
η → 0. A further integration gives

Θ =

(
3

4

)2/3

(η2∗ − η2)1/3

where we have applied the boundary condition that Θ(η∗) = 0.

To determine the value of η∗ we return to the similarity form of (4), which reads

1

2π
=

∫ η∗

0

ηΘ dη =

(
3

4

)2/3 ∫ η∗

0

η(η2∗ − η2)1/3 dη

=

(
3

4

)2/3
3

8
η8/3∗

from which we immediately have η∗ = (210/35π3)1/8 and the result for a(t) follows.
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2. The scenario is as shown below

We would like to make use of the analysis presented in lectures. However, this was presented
in the frame of reference of the stationary plate. We propose moving into a frame of reference
defined by

z̄ = z −
∫ t

0

u(t′) dt′

with t̄ = t and h̄(z̄, t̄) = h(z, t). In this frame of reference, the plate is stationary, so that
w̄(x̄ = 0, t) = 0 and we can quote the result from lectures that

∂h̄

∂t̄
+

∂

∂z̄

[
h̄3

3Ca

(
h̄z̄z̄z̄ − Bo

)]
= 0.

To convert this back into the lab frame, we use the chain rule noting that ∂/∂z̄ = ∂/∂z and

∂

∂t̄
=

∂

∂t
+ u(t)

∂

∂z

so that
∂h

∂t
+ u(t)

∂h

∂z
+

∂

∂z

[
h3

3Ca
(hzzz − Bo)

]
= 0.

As in lecture notes, we take Bo = 1 as the definition of the horizontal length scale, i.e. R = ℓc,
so that the outer solution has

H ∼ (z − z0)
2

√
2

and z0 =
√
2.

To examine the region close to z = z0, we let z = z0 + ϵz̃ where z̃ is an inner variable. We
find that close to the apparent contact point h ∼ ϵ2z̃2/

√
2 and so it is natural to let h = ϵ2h̃.

Substituting into the lubrication equation, we find that

ϵ2
∂h̃

∂t
+ ϵu(t)

∂h̃

∂z̃
+

1

ϵ

∂

∂z̃

[
ϵ6h̃3

3Ca

(
ϵ−1h̃z̃z̃z̃ − 1

)]
= 0
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so that, upon choosing ϵ = Ca1/3 (as in lectures), we have

ϵ
∂h̃

∂t
+ u(t)

∂h̃

∂z̃
+

∂

∂z̃

[
h̃3

3

(
h̃z̃z̃z̃ − ϵ

)]
= 0. (5)

Examining the leading order (in ϵ) problem, we find that

u(t)
∂h̃

∂z̃
+

∂

∂z̃

(
h̃3

3
h̃z̃z̃z̃

)
= 0,

which integrates to give

u(t)h̃+
h̃3

3
h̃z̃z̃z̃ = f(t).

As z̃ → ∞, we expect that h̃ → h̃0, a constant and so

u(t)h̃+
h̃3

3
h̃z̃z̃z̃ = u(t)h̃0 (6)

subject to h̃ ∼ z̃2/
√
2 as z̃ → −∞.

Following the lecture notes, we let h̃ = h̃0g(ζ), z̃ = z∗ζ so that (6) becomes

g +
h̃3
0

u(t)z3∗

1
3
g3gζζζ = 1.

We choose z∗ = h̃0/u(t)
1/3 so that we obtain the Landau–Levich equation

g + 1
3
g3gζζζ = 1

with boundary conditions g → 1 as ζ → ∞ and

g ∼ h̃0

u(t)2/3
ζ2√
2

as ζ → −∞.

From the notes, we recall that the numerical solution of the Landau–Levich equation has g ∼
0.67ζ2 as ζ → −∞ and so we have

h̃0√
2u(t)2/3

= 0.67

and so h̃0 ≈ 0.95u(t)2/3, as required.
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4. We have the usual lubrication equation for the horizontal velocity, u, i.e.

µ
∂2u

∂z2
=

∂p

∂x
, (7)

while at leading order the vertical component gives

∂p

∂z
= −ρg.

Integrating the latter and taking the pressure in the atmosphere to be 0, we have

p = ρg [h(x, t)− z]− γ
∂2h

∂x2
. (8)

Integrating (7) we have that

u =
1

2µ

∂p

∂x
z2 + Az +B

where A and B are constants to be determined from the boundary conditions of the problem:

• The condition of zero shear stress at the free surface gives

∂u

∂z

∣∣∣∣
z=h

= 0 =⇒ A = − 1

µ

∂p

∂x
h.

• The slip condition u = λuz at z = 0 gives

B = λA = −λ

µ

∂p

∂x
h

and hence

u = − 1

µ

∂p

∂x

[
1
2
z2 − zh− λh

]
.

Now

ū =
1

h

∫ h

0

u dz =
1

µh

∂p

∂x

[
1
6
h3 − 1

2
h3 − λh2

]
.

= − 1

µ

∂p

∂x

[
1
3
h2 + λh

]
. (9)

From (8) we have that
∂p

∂x
= ρg

∂h

∂x
− γ

∂3h

∂x3

and so

ū =
γ

µ

(
∂3h

∂x3
− ℓ−2

c

∂h

∂x

)(
1
3
h2 + λh

)
,
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where ℓ2c = γ/ρg, as usual.

The associated thin film equation is eqn (2.27) from the notes and so we have

0 =
∂h

∂t
+

γ

µ

∂

∂x

[(
∂3h

∂x3
− ℓ−2

c

∂h

∂x

)(
1
3
h3 + λh2

)]
[It is worth emphasizing again that the general statement of conservation of mass (having
used the kinematic boundary condition) is of the form

∂h

∂t
+∇ · q = 0,

since this comes up frequently in such problems. ]

5. We return to eqn (5) of Q2 above:

ϵ
∂h̃

∂t
+ u(t)

∂h̃

∂z̃
+

∂

∂z̃

[
h̃3

3

(
h̃z̃z̃z̃ − ϵ

)]
= 0.

We wish to understand the possible dominant balances between the four terms in this equation.

We anticipate that in the far field, above the turnaround region, the many derivatives in the
third term will decay since we expect the film to tend to a constant thickness.

We rescale by letting y = γz̃ with γ ≪ 1 yet to be determined (using y just to avoid introducing
another z variable). We find that the governing pde then becomes

ϵ
∂h̃

∂t
+ u(t)γ

∂h̃

∂y
+

∂

∂y

[
h̃3

3

(
γ4h̃yyy − ϵγ

)]
= 0.

Clearly the fourth term is O(ϵγ) and so is sub-dominant to the first two terms, which are O(ϵ)
and O(γ), respectively. We also have that the third term is sub-dominant to the second, since
we chose γ ≪ 1. The only remaining terms are the first two and so, to make these balance, we
choose γ = ϵ leading to

∂h̃

∂t
+ u(t)

∂h̃

∂y
= 0, (10)

as required; note that y = z − z0.

Matching this solution back into the turnaround region (from above), we expect that h̃ =
0.948u(t)2/3 as y → 0. We therefore have that

h̃(0, t) = 0.948u(t)2/3.

We now turn to the solution of (10). We have that

et
∂h̃

∂t
+

∂h̃

∂z
= 0,
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and would like to write this as

0 =
dh̃

ds
=

∂h̃

∂t

∂t

∂s
+

∂h̃

∂z

∂z

∂s
,

using the chain rule for some s(z, t). Comparing coefficients of ∂h̃/∂t and ∂h̃/∂z we have that
∂t/∂s = et, ∂z/∂s = 1, i.e. s = −e−t + f(z) = z + g(t). We find therefore that on curves
of constant h̃ (since dh̃/∂s = 0) we must have z + e−t = a for some constant a. In turn, we
conclude that h̃ = G(a), i.e.

h̃(z, t) = G(z + e−t),

for some function G(a) to be determined.

The boundary condition h̃(0, t) = 0.948 exp(−2t/3) for t > 0 gives that

G(e−t) = 0.948 exp(−2t/3).

In general, therefore, we have

h̃(z, t) = 0.948(z + e−t)2/3, 0 < z + e−t < 1,

and hence, as t → ∞,
h̃(z, t) → 0.948z2/3, 0 < z < 1,

as required.
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