C5.7 Topics in Fluid Mechanics Michaelmas Term 2023
Problem Sheet 1: Solutions

1. Taking the suggested dot product and using the summation convention we have that

ki / (fAt); ds = / ki (fAt); ds = — / (f AKk)t; [Scalar triple product]
C C C

= — / ni [V A (fAK)] [Stokes” Theorem]
S

= —/ni&jkaj[&kszlkm] ds
S

=— / Nikm (6:10jm — dim651)0; fi dS [Using the hint and k constant]
S
S
s s

Since k is an arbitrary vector we must, in fact, have the desired result.

Now, letting f = yn we have
—{v/ljds} = {/’y(n/\t)ds} = {/f/\tdS}
c i C i c i

= / [V - (yn) — n;0;(yn;)] dS [Using the earlier result]
s

= / {n; [yO;n; + (n;0;y = 0)] [Since «y is constant normal to S]
s

— [ 107 -n) = 007 = 0imymy/2)] a5

= / [niy(V -n) — 0] dS [Since njn; =n-n=1]
5

= /s ny(V-n) — Vy|. dS,

as required.



2. We are given that
2 hmx o

C(l + h%)3/2 -

which we multiply by h, and integrate once to obtain

Y

AL — 21+ 1272 = 302,
for some constant of integration A.
Now, as x — +o00, h = 0, h, — 0 so that A =1 and
sh?=C[1—(1+n3)2. (1)
At £ =0, h, = — cot 0 so that
1hd =21 — (1+cot?0) %] = £2(1 — sin ),

ie.
ho = +0,[2(1 — sin§)]"/?
as desired. Based on simple geometry, we expect to take the positive square root if 6 < 7/2

and the negative root if § > 7/2, though of course this depends on the chosen sign convention
for h!

The area of displaced liquid is given by

00 0 2
14
A= / h dz = / W d(h,) [Using the Laplace—Young equation]
0 —cot 6 x
—7/2 -1 : 2
= Eg/ Lng du [Letting h, = cot u|
—o 1/|sinul
= (*cosf.

The weight of liquid displaced is pgA = v cos . The vertical force provided by surface tension
acting at the contact line is also v cosf. This result is thus a special case of the generalized
Archimedes’ principle discussed in lectures.



3. A schematic sketch is shown below.
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We have the general, coordinate independent, form of the Laplace—Young equation

pgh = vk = —yV - n.
The equation of the free surface is 0 = z — h(r, ¢) and so the unit normal vector is
(—hp,—hg/r, 1)
(14 h2 +n2/r2)"*

For small deflections (linearising) we have n ~ (—h,, —hs/r, 1) so that

10 1 0%h

and we immediately have that the Laplace—Young equation takes the form

h = (2V*h

= —V?h

where £, = (7/pg)'/? is the capillary length, as usual.

>—\sh

To obtain the correct contact angle condition we take a cross-section through the interface, at
constant r, say and look along the —i direction (back towards the origin). We see immediately

from the figure above that

1
—@ = 4 cot 4.

r 0|4,
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In our derivation, we have assumed that the the meniscus slope is small, in particular, |[VA|* < 1.
Given the above boundary condition and this requirement, we also need to ensure that cot § < 1
and hence |0 — 7| < 1, as required.

Uniqueness We will first show that, if we can find a solution, it must be unique.

As usual, we proceed by contradiction assuming that there are two distinct solutions of the
problem, hy # hy both satisfying the Laplace—Young equation and the relevant boundary con-
ditions (at 0 = +a or at § = £7/4 — it doesn’t matter which). Letting w = hy — hy it is
obvious that

Viw = w/f? (2)
and
1 ow
-2 =0 3
S8l (3)

and, finally, that w — 0 far from the walls (i.e. as r — oo with ¢ # +a).

Letting S be the projection of the interface onto the (z,y) plane, which is bounded by the curve
C, we consider the integral

/wV2w dsS = / w? /6% >0 [Using (2)]
S S

= /S [V (wVw) — (Vw)?] dS

= / (n-Vw=0) ds — /(Vw)2 dS  [Using the boundary condition (3)]
c S

= /S(vw)2 ds <o, (4)

which is the contradiction we sought. Hence the solution must be unique.

Finding a solution To find a solution, it is enough to check that the solution given satisfies
the Laplace-Young equation and the boundary conditions.

Another approach is to introduce rotated coordinates (X,Y") so that the 90° wedge coincides
with the X and Y axes, i.e. we let

T-y ., _ Tty
V2 V2

Then the Laplace—Young equation for the interface shape H(X,Y) becomes

X =

Hxx + Hyy = H/éi
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with boundary conditions
Hx(X =0)=—cotf, Hy(Y =0)=—coté. (5)

and decay conditions far away from the wall.
Searching for separable solutions of the form H(X,Y) = £(X)n(Y) we find that

é‘/l 7,]// 9
L =1/
§ n /

which gives solutions of the form
H = Aexp(—aX/t) exp(—BY /L)

where 1 = o + 8%. Applying the boundary conditions (5) we find that we must combine two
solutions of this form: one with a = 1,3 = 0 and the other with a« = 0,3 = 1. We therefore
have

H =1/.cotf {e_X/ZC + e_Y/ec} .

Noting that X = (z — y)/v/2 = rsin(r/4 — ¢) and that Y = (z + y)/v/2 = rsin(¢ + 7/4) we
therefore have that

h(T, ¢> _ EC cot @ {efrsin(ﬂ'/4f¢)/éc + 6frsin(¢+7r/4)/€c} :
as required.

4. The scenario is as shown in the figure below.
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Since the liquid is static, the pressure within it is hydrostatic, i.e.

P = DPo — pgz

where the z coordinate is measured vertically upwards and py is some reference pressure (py #
patm)'



Because of surface tension, there is a pressure jump across the interface:
(p+ - p—)‘z:h(x) =k ~ fthx
= po — pgh(x) — Patm [Using hydrostatic pressure in the liquid]

from which we immediately have

ht Chy, = Z% (6)

with ¢ = ~v/pg as usual. Note that (6) is slightly different from the usual Laplace-Young
equation in that it has a source term on the RHS and the solutions of the homogeneous problems
are oscillatory rather than the usual exponential decay.

Differentiating (6) with respect to x we obtain the required third order ODE; solving either this
ODE or (6) we have solutions of the form

h(x) = A+ Bsinz/{. + C cosz//,.

The coefficients A, B, C' are to be determined from the boundary conditions

he(£xz) = £ tanf ~ +6 [Since 0 < 1]

From the first boundary condition, we have
A — Bsinxy/l. + Ccosxy/l. = A+ Bsinzg/l. + Ccoszg/l. =0

from which either B = 0 or /(. = nr.

From the second boundary condition, we have
+0.0 = Bcosxo/l. F Csinzg/l,

from which either B =0 or z/{. = (n+ 1/2)~.

For consistency between the two sets of boundary conditions, we must have B = 0 (i.e. the drop
is symmetric) and we immediately find that

h(z) = 01, [cot wo/b. — M}

sin xq /(.

For this solution, |h,| = @|sinz/¢.|/sinxzg/l. < 0/ sinxy/l. so the small slope approximation is
valid provided that § < sin /..

The area of the drop is

A:/ —h dx = 20(? [1 - %Cotxo/ﬁc} :

[
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As zy/l. — m, A — oo. This suggests that infinitely large droplets can be supported beneath
a horizontal plate. Intuitively, we expect that droplets should fall off the plate if they become
too large. The problem with our linearised analysis is that as z/¢. — 7 there are no values
of # for which our linearised analysis is self-consistent — the small-slope approximation breaks
down in this limit.

We are given that

h —— (hgee — Bo hy =0.
”{wa( ° >L

Letting h(x,t) = ho + dhy(x,t) with hy constant we find that

0=90

Ohy {h% + 36h2h,

815 3Ca (5h1,xxx — 0 Bo h1’$>:| + 0(53)

T

Examining the O(d) terms we immediately see that

Oy hd
0= E + ﬁ (hl,xmx:c — Bo hl,mﬁ) )
as required.
Letting hy = R[e?"***] we have
S [(ik)" — Bo(ik)*] = _J (k* 4+ Bo k?)
3Ca 3Ca ’

as required. Clearly o < 0 for all k£ # 0; disturbances therefore decays with time and the film
is stable to perturbations of any wavelength.

For £k = 0, 0 = 0 and so a uniform perturbation is neutrally stable — it neither grows nor
decays.

When the film is beneath (rather than above) the plate, gravity acts in the opposite direction,
Bo — —Bo and so we have ;
hg

BTN (k* — Bo k?) ,

g =



A sketch is shown below:
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We see that the surface tension term (—k*) is stabilising since it makes o more negative, while
gravity (+Bo £?) is destabilising since it acts to increase o.

The situation is unstable whenever o > 0, i.e. for

0 <k < Bo/2
The maximally unstable mode is that for which ¢ is maximised. We have
/ h3 3
k) = 4k° — 2Bo k
(k) =~ (4" — 2Bo k)

and so the maximally unstable wavelength is A = 27 /k, where k, = (Bo/2)'/2.



