Problem Sheet 1: Solutions

1. Taking the suggested dot product and using the summation convention we have that

$$
\begin{array}{rlrl}
k_{i} \int_{C}(\mathbf{f} \wedge \mathbf{t})_{i} \mathrm{~d} s & =\int_{C} k_{i}(\mathbf{f} \wedge \mathbf{t})_{i} \mathrm{~d} s=-\int_{C}(\mathbf{f} \wedge \mathbf{k})_{i} t_{i} & & \text { [Scalar triple product] } \\
& =-\int_{S} n_{i}[\nabla \wedge(\mathbf{f} \wedge \mathbf{k})]_{i} & & \text { [Stokes' Theorem] } \\
& =-\int_{S} n_{i} \varepsilon_{i j k} \partial_{j}\left[\varepsilon_{k l m} f_{l} k_{m}\right] \mathrm{d} S & \\
& =-\int_{S} n_{i} k_{m}\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \partial_{j} f_{l} \mathrm{~d} S & & \text { [Using the hint and } \mathbf{k} \text { constant] } \\
& =-\int_{S} n_{i}\left(k_{j} \partial_{j} f_{i}-k_{i} \partial_{j} f_{j}\right) \mathrm{d} S & \\
& =k_{i} \int_{S} n_{i} \partial_{j} f_{j} \mathrm{~d} S-k_{i} \int_{S} n_{j} \partial_{i} f_{j} \mathrm{~d} S & & \text { [letting } i \leftrightarrow j]
\end{array}
$$

Since \mathbf{k} is an arbitrary vector we must, in fact, have the desired result.
Now, letting $\mathbf{f}=\gamma \mathbf{n}$ we have

$$
\begin{array}{rlrl}
-\left[\gamma \int_{C} \boldsymbol{\nu} \mathrm{~d} s\right]_{i} & =\left[\int_{C} \gamma(\mathbf{n} \wedge \mathbf{t}) \mathrm{d} s\right]_{i}=\left[\int_{C} \mathbf{f} \wedge \mathbf{t} \mathrm{~d} S\right]_{i} & & \\
& =\int_{S}\left[n_{i} \nabla \cdot(\gamma \mathbf{n})-n_{j} \partial_{i}\left(\gamma n_{j}\right)\right] \mathrm{d} S & & \text { [Using the earlier result] } \\
& =\int_{S}\left\{n_{i}\left[\gamma \partial_{j} n_{j}+\left(n_{j} \partial_{j} \gamma=0\right)\right]\right. & & \text { [Since } \gamma \text { is constant normal to } S] \\
& \left.-n_{j}\left(n_{j} \partial_{i} \gamma+\gamma \partial_{i} n_{j}\right)\right\} \mathrm{d} S & & \\
& =\int_{S}\left[n_{i} \gamma(\nabla \cdot \mathbf{n})-\partial_{i} \gamma-\gamma \partial_{i}\left(n_{j} n_{j} / 2\right)\right] \mathrm{d} S & \\
& =\int_{S}\left[n_{i} \gamma(\nabla \cdot \mathbf{n})-\partial_{i} \gamma\right] \mathrm{d} S & & \\
& =\int_{S}[\mathbf{n} \gamma(\nabla \cdot \mathbf{n})-\nabla \gamma]_{i} \mathrm{~d} S, & &
\end{array}
$$

as required.
2. We are given that

$$
\ell_{c}^{2} \frac{h_{x x}}{\left(1+h_{x}^{2}\right)^{3 / 2}}=h,
$$

which we multiply by h_{x} and integrate once to obtain

$$
A \ell_{c}^{2}-\ell_{c}^{2}\left(1+h_{x}^{2}\right)^{-1 / 2}=\frac{1}{2} h^{2},
$$

for some constant of integration A.
Now, as $x \rightarrow+\infty, h \rightarrow 0, h_{x} \rightarrow 0$ so that $A=1$ and

$$
\begin{equation*}
\frac{1}{2} h^{2}=\ell_{c}^{2}\left[1-\left(1+h_{x}^{2}\right)^{-1 / 2}\right] . \tag{1}
\end{equation*}
$$

At $x=0, h_{x}=-\cot \theta$ so that

$$
\frac{1}{2} h_{0}^{2}=\ell_{c}^{2}\left[1-\left(1+\cot ^{2} \theta\right)^{-1 / 2}\right]=\ell_{c}^{2}(1-\sin \theta),
$$

i.e.

$$
h_{0}= \pm \ell_{c}[2(1-\sin \theta)]^{1 / 2},
$$

as desired. Based on simple geometry, we expect to take the positive square root if $\theta<\pi / 2$ and the negative root if $\theta>\pi / 2$, though of course this depends on the chosen sign convention for h !

The area of displaced liquid is given by

$$
\begin{aligned}
A & =\int_{0}^{\infty} h \mathrm{~d} x=\int_{-\cot \theta}^{0} \frac{\ell_{c}^{2}}{\left(1+h_{x}^{2}\right)^{3 / 2}} \mathrm{~d}\left(h_{x}\right) & & \text { [Using the Laplace-Young equation] } \\
& =\ell_{c}^{2} \int_{-\theta}^{-\pi / 2} \frac{-1 / \sin ^{2} u}{1 /|\sin u|^{3}} \mathrm{~d} u & & \\
& =\ell_{c}^{2} \cos \theta & &
\end{aligned}
$$

The weight of liquid displaced is $\rho g A=\gamma \cos \theta$. The vertical force provided by surface tension acting at the contact line is also $\gamma \cos \theta$. This result is thus a special case of the generalized Archimedes' principle discussed in lectures.
3. A schematic sketch is shown below.

We have the general, coordinate independent, form of the Laplace-Young equation

$$
\rho g h=\gamma \kappa=-\gamma \nabla \cdot \mathbf{n} .
$$

The equation of the free surface is $0=z-h(r, \phi)$ and so the unit normal vector is

$$
\mathbf{n}=\frac{\left(-h_{r},-h_{\phi} / r, 1\right)}{\left(1+h_{r}^{2}+h_{\phi}^{2} / r^{2}\right)^{1 / 2}}
$$

For small deflections (linearising) we have $\mathbf{n} \approx\left(-h_{r},-h_{\phi} / r, 1\right)$ so that

$$
\nabla \cdot \mathbf{n}=-\frac{1}{r} \frac{\partial}{\partial r}\left(r h_{r}\right)-\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \phi^{2}}=-\nabla^{2} h
$$

and we immediately have that the Laplace-Young equation takes the form

$$
h=\ell_{c}^{2} \nabla^{2} h
$$

where $\ell_{c}=(\gamma / \rho g)^{1 / 2}$ is the capillary length, as usual.

To obtain the correct contact angle condition we take a cross-section through the interface, at constant r, say and look along the $-\mathbf{i}$ direction (back towards the origin). We see immediately from the figure above that

$$
\left.\frac{1}{r} \frac{\partial h}{\partial \phi}\right|_{\phi= \pm \alpha}= \pm \cot \theta
$$

In our derivation, we have assumed that the the meniscus slope is small, in particular, $|\nabla h|^{2} \ll 1$. Given the above boundary condition and this requirement, we also need to ensure that $\cot \theta \ll 1$ and hence $\left|\theta-\frac{\pi}{2}\right| \ll 1$, as required.

Uniqueness We will first show that, if we can find a solution, it must be unique.
As usual, we proceed by contradiction assuming that there are two distinct solutions of the problem, $h_{1} \neq h_{2}$ both satisfying the Laplace-Young equation and the relevant boundary conditions (at $\theta= \pm \alpha$ or at $\theta= \pm \pi / 4$ - it doesn't matter which). Letting $w=h_{2}-h_{1}$ it is obvious that

$$
\begin{equation*}
\nabla^{2} w=w / \ell_{c}^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{1}{r} \frac{\partial w}{\partial \phi}\right|_{\phi= \pm \alpha}=0 \tag{3}
\end{equation*}
$$

and, finally, that $w \rightarrow 0$ far from the walls (i.e. as $r \rightarrow \infty$ with $\phi \neq \pm \alpha$).
Letting S be the projection of the interface onto the (x, y) plane, which is bounded by the curve C, we consider the integral

$$
\begin{align*}
\int_{S} w \nabla^{2} w \mathrm{~d} S & =\int_{S} w^{2} / \ell_{c}^{2} \geq 0 \\
& =\int_{S}\left[\nabla \cdot(w \nabla w)-(\nabla w)^{2}\right] \mathrm{d} S \\
& =\int_{C}(\mathbf{n} \cdot \nabla w=0) \mathrm{d} s-\int_{S}(\nabla w)^{2} \mathrm{~d} S \quad \text { [Using (2)] } \\
& =-\int_{S}(\nabla w)^{2} \mathrm{~d} S \leq 0 \tag{4}
\end{align*}
$$

which is the contradiction we sought. Hence the solution must be unique.

Finding a solution To find a solution, it is enough to check that the solution given satisfies the Laplace-Young equation and the boundary conditions.
Another approach is to introduce rotated coordinates (X, Y) so that the 90° wedge coincides with the X and Y axes, i.e. we let

$$
X=\frac{x-y}{\sqrt{2}}, \quad Y=\frac{x+y}{\sqrt{2}}
$$

Then the Laplace-Young equation for the interface shape $H(X, Y)$ becomes

$$
H_{X X}+H_{Y Y}=H / \ell_{c}^{2}
$$

with boundary conditions

$$
\begin{equation*}
H_{X}(X=0)=-\cot \theta, \quad H_{Y}(Y=0)=-\cot \theta \tag{5}
\end{equation*}
$$

and decay conditions far away from the wall.
Searching for separable solutions of the form $H(X, Y)=\xi(X) \eta(Y)$ we find that

$$
\frac{\xi^{\prime \prime}}{\xi}+\frac{\eta^{\prime \prime}}{\eta}=1 / \ell_{c}^{2}
$$

which gives solutions of the form

$$
H=A \exp \left(-\alpha X / \ell_{c}\right) \exp \left(-\beta Y / \ell_{c}\right)
$$

where $1=\alpha^{2}+\beta^{2}$. Applying the boundary conditions (5) we find that we must combine two solutions of this form: one with $\alpha=1, \beta=0$ and the other with $\alpha=0, \beta=1$. We therefore have

$$
H=\ell_{c} \cot \theta\left\{e^{-X / \ell_{c}}+e^{-Y / \ell_{c}}\right\} .
$$

Noting that $X=(x-y) / \sqrt{2}=r \sin (\pi / 4-\phi)$ and that $Y=(x+y) / \sqrt{2}=r \sin (\phi+\pi / 4)$ we therefore have that

$$
h(r, \phi)=\ell_{c} \cot \theta\left\{e^{-r \sin (\pi / 4-\phi) / \ell_{c}}+e^{-r \sin (\phi+\pi / 4) / \ell_{c}}\right\},
$$

as required.
4. The scenario is as shown in the figure below.

Since the liquid is static, the pressure within it is hydrostatic, i.e.

$$
p=p_{0}-\rho g z
$$

where the z coordinate is measured vertically upwards and p_{0} is some reference pressure $\left(p_{0} \neq\right.$ $p_{\text {atm }}$).

Because of surface tension, there is a pressure jump across the interface:

$$
\left.\left(p_{+}-p_{-}\right)\right|_{z=h(x)}=\gamma \kappa \approx \gamma h_{x x}
$$

$$
=p_{0}-\rho g h(x)-p_{\text {atm }} \quad[\text { Using hydrostatic pressure in the liquid }]
$$

from which we immediately have

$$
\begin{equation*}
h+\ell_{c}^{2} h_{x x}=\frac{p_{0}-p_{\mathrm{atm}}}{\rho g} \tag{6}
\end{equation*}
$$

with $\ell_{c}^{2}=\gamma / \rho g$ as usual. Note that (6) is slightly different from the usual Laplace-Young equation in that it has a source term on the RHS and the solutions of the homogeneous problems are oscillatory rather than the usual exponential decay.
Differentiating (6) with respect to x we obtain the required third order ODE; solving either this ODE or (6) we have solutions of the form

$$
h(x)=A+B \sin x / \ell_{c}+C \cos x / \ell_{c} .
$$

The coefficients A, B, C are to be determined from the boundary conditions

$$
\begin{aligned}
h\left(\pm x_{0}\right) & =0 \\
h_{x}\left(\pm x_{0}\right) & = \pm \tan \theta \approx \pm \theta \quad \quad[\text { Since } \theta \ll 1]
\end{aligned}
$$

From the first boundary condition, we have

$$
A-B \sin x_{0} / \ell_{c}+C \cos x_{0} / \ell_{c}=A+B \sin x_{0} / \ell_{c}+C \cos x_{0} / \ell_{c}=0
$$

from which either $B=0$ or $x_{0} / \ell_{c}=n \pi$.
From the second boundary condition, we have

$$
\pm \ell_{c} \theta=B \cos x_{0} / \ell_{c} \mp C \sin x_{0} / \ell_{c}
$$

from which either $B=0$ or $x_{0} / \ell_{c}=(n+1 / 2) \pi$.
For consistency between the two sets of boundary conditions, we must have $B=0$ (i.e. the drop is symmetric) and we immediately find that

$$
h(x)=\theta \ell_{c}\left[\cot x_{0} / \ell_{c}-\frac{\cos x / \ell_{c}}{\sin x_{0} / \ell_{c}}\right]
$$

For this solution, $\left|h_{x}\right|=\theta\left|\sin x / \ell_{c}\right| / \sin x_{0} / \ell_{c} \leq \theta / \sin x_{0} / \ell_{c}$ so the small slope approximation is valid provided that $\theta \ll \sin x_{0} / \ell_{c}$.
The area of the drop is

$$
A=\int_{-x_{0}}^{x_{0}}-h \mathrm{~d} x=2 \theta \ell_{c}^{2}\left[1-\frac{x_{0}}{\ell_{c}} \cot x_{0} / \ell_{c}\right] .
$$

As $x_{0} / \ell_{c} \rightarrow \pi, A \rightarrow \infty$. This suggests that infinitely large droplets can be supported beneath a horizontal plate. Intuitively, we expect that droplets should fall off the plate if they become too large. The problem with our linearised analysis is that as $x_{0} / \ell_{c} \rightarrow \pi$ there are no values of θ for which our linearised analysis is self-consistent - the small-slope approximation breaks down in this limit.

5 We are given that

$$
h_{t}+\left[\frac{h^{3}}{3 \mathrm{Ca}}\left(h_{x x x}-\mathrm{Bo} h_{x}\right)\right]_{x}=0 .
$$

Letting $h(x, t)=h_{0}+\delta h_{1}(x, t)$ with h_{0} constant we find that

$$
0=\delta \frac{\partial h_{1}}{\partial t}+\left[\frac{h_{0}^{3}+3 \delta h_{0}^{2} h_{1}}{3 \mathrm{Ca}}\left(\delta h_{1, x x x}-\delta \text { Bo } h_{1, x}\right)\right]_{x}+O\left(\delta^{3}\right)
$$

Examining the $O(\delta)$ terms we immediately see that

$$
0=\frac{\partial h_{1}}{\partial t}+\frac{h_{0}^{3}}{3 \mathrm{Ca}}\left(h_{1, x x x x}-\text { Bo } h_{1, x x}\right),
$$

as required.
Letting $h_{1}=\Re\left[e^{\sigma t+i k x}\right]$ we have

$$
\sigma=-\frac{h_{0}^{3}}{3 \mathrm{Ca}}\left[(i k)^{4}-\mathrm{Bo}(i k)^{2}\right]=-\frac{h_{0}^{3}}{3 \mathrm{Ca}}\left(k^{4}+\mathrm{Bo} k^{2}\right),
$$

as required. Clearly $\sigma<0$ for all $k \neq 0$; disturbances therefore decays with time and the film is stable to perturbations of any wavelength.
For $k=0, \sigma=0$ and so a uniform perturbation is neutrally stable - it neither grows nor decays.
When the film is beneath (rather than above) the plate, gravity acts in the opposite direction, Bo $\rightarrow-$ Bo and so we have

$$
\sigma=-\frac{h_{0}^{3}}{3 \mathrm{Ca}}\left(k^{4}-\text { Bo } k^{2}\right),
$$

A sketch is shown below:

We see that the surface tension term $\left(-k^{4}\right)$ is stabilising since it makes σ more negative, while gravity $\left(+\mathrm{Bo} k^{2}\right)$ is destabilising since it acts to increase σ.
The situation is unstable whenever $\sigma>0$, i.e. for

$$
0<k<\mathrm{Bo}^{1 / 2}
$$

The maximally unstable mode is that for which σ is maximised. We have

$$
\sigma^{\prime}(k)=-\frac{h_{0}^{3}}{3 \mathrm{Ca}}\left(4 k^{3}-2 \mathrm{Bo} k\right)
$$

and so the maximally unstable wavelength is $\lambda=2 \pi / k_{*}$ where $k_{*}=(\mathrm{Bo} / 2)^{1 / 2}$.

