
C5.7 Topics in Fluid Mechanics Michaelmas Term 2023

Problem Sheet 4: Solutions

Question 1. Rotating sphere in Stokes flow.

With x̂ = x− x0, r = |x− x0| and
Gij =

δij
r

+
x̂ix̂j

r3
,

the rotational dipole Gc is defined by

Gc
im :=

1

2
ϵmlj

∂Gij

∂x0,l

,

where

ϵmlj :=


+1 if (m, l, j) = (1, 2, 3) or (3, 1, 2) or (2, 3, 1)
−1 if (m, l, j) = (1, 3, 2) or (2, 1, 3) or (3, 2, 1)
0 if any of i, j, k are equal

Part a. We have

1

2
ϵmlj

∂

∂x0,l

Gij =
1

2
ϵmlj

∂

∂x0,l

[
δij
r

+
x̂ix̂j

r3

]
,

=
1

2
ϵmlj

[
δij

∂

∂x0,l

(
1

r

)
− 1

r3
(δijx̂j + δjlx̂i) + x̂ix̂j

∂

∂x0,l

(
1

r3

)]
,

= ϵmli
x̂l

r3
.

Part b. Thus Gc
imqm is a solution of Stokes equations for any constant vector q and it decays at

spatial infinity. With x0 the centre of the sphere, the sphere is given by r = a, where we have

a3Gc
imΩm = a3ϵimlΩm

x̂l

r3
= ϵimlΩmx̂l,

which is the velocity on a rotating sphere.
Hence

vi := a3Gc
imΩm

in a solution of the Stokes flow for a rotating sphere with radius a and angular velocity Ω and, by
uniqueness, it is the solution (with constant pressure).

Part c. One can use brute force, though that would be on the long side. The stress field of the
Stokes solution

ui =
1

8πµ
Gijgj
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be given by σij = Tijpgp, with symmetry in the indices i, j. You can show

∂Tijs

∂xj

= −δisδ(x̂),

from the momentum balance for ui, consistent with the notion that ui is the flow associated with a
point force.

Then the stress field associated with v = a3Gc ·Ω, that is

vm = a3Gc
mnΩn,

is given by

Σij = (8πµ)a3T c
ijpΩp = (8πµ)

a3

2
ϵplq

∂

∂x0,l

TijqΩp = −(8πµ)

(
a3

2
Ωp

)
ϵplq

∂

∂xl

Tijq.

Hence the sth component of the moment of the sphere due to the fluid is given by

Ms =

∫
Sphere

ϵsrixrΣijnjdS = −(8πµ)

(
a3

2
Ωp

)∫
Sphere

ϵsrixrϵplq

(
∂

∂xl

Tijq

)
njdS.

Using the divergence theorem we have

Ms = −(8πµ)

(
a3

2
Ωp

)∫
Sphere

ϵsjiϵplq

(
∂

∂xl

Tijq

)
dV = −(8πµ)

(
a3

2
Ωp

)∫
Sphere

ϵsrixrϵplq
∂

∂xj

(
∂

∂xl

Tijq

)
dV.

The first term is zero as there is an contraction between ε with antisymmetry in i, j and Tijq, with
symmetry in i, j. Commuting derivatives and noting the above relation for the derivative of Tijk we
have

Ms = (8πµ)

(
a3

2
Ωp

)∫
Sphere

ϵsrixrϵpli
∂

∂xl

(δ(x̂)) dV = −(8πµ)

(
a3

2
Ωp

)∫
Sphere

ϵsriϵpriδ(x̂)dV,

noting the additional surface integral term to deduce the final equality must be zero as the δ-function
has no support on the surface of the sphere. Finally, with ϵsriϵpri = 2δps, we have

Ms = −8πµa3Ωs,

as required.
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Question 2. Ciliary Pumping.

Detailed calculation is not necessary to deduce the expression for U . Fourier modes decouple at the
first non-trivial order the second derivatives acting on mode number n just induce a factor of n2.
Thus one can determine the contribution to U from the Fourier mode

xe − x = ϵ(−bn cos(n[x+ t]), ye = ϵcn sin(n[x+ t]) (1)

by identifying

a = −nbn, b = ncn (2)

in the example sheet result

U2 =
1

2

(
b2 + 2ab− a2

)
to obtain the contribution from this mode.

We then can consider the remaining Fourier modes without detailed calculation. The mode

xe − x = ϵan sin(n[x+ t]), ye = ϵ(−dn cos(n[x+ t]))

is simply a phase shift of the mode in equation (1). By considering a shifted time coordinate

t̄ = t+
1

ωn

π

2

we can determine the contribution from this mode by the subsitution

dn → cn, an → −bn.

followed by the identification (2). Hence we use

a = nan, b = ndn

in the example sheet result

U2 =
1

2

(
b2 + 2ab− a2

)
to obtain the contribution from this mode.

Summing all contributions, and noting U = ϵ2U2 to leading order, gives

U =
1

2
ϵ2

∞∑
n=1

n2[c2n + d2n − a2n − b2n + 2(andn − cnbn)].

We now determine power optimal strokes, defined as those maximising absolute velocity, subject
to the constraint of a fixed power consumption W using Lagrange multipliers with the above leading
order expressions. Thus we consider

L[{an, bn, cn, dn}] = U [{an, bn, cn, dn}]− λ(P [{an, bn, cn, dn}]−W ) (3)
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and the extremal conditions
∂L

∂an
=

∂L

∂bn
=

∂L

∂cn
=

∂L

∂dn
= 0. (4)

Thus
a2n + 2andn − d2n = 0 , b2n − 2bncn − c2n = 0.

and hence an = (−1±
√
2)dn and bn = (1±

√
2)cn, which yields

U = ϵ2
∞∑
n=1

n2
(
(2± 2

√
2)c2n + (2∓ 2

√
2)d2n

)
(5)

P = ϵ2
∞∑
n=1

n3
(
(4± 2

√
2)c2n + (4∓ 2

√
2)d2n

)
. (6)

Therefore the optimal stroke is achieved when an = bn = cn = dn = 0 for n ≥ 2. Without loss of
generality, we can set b1 = 0 as it is just a phase difference, and we finally have the optimal strokes
a1 = (−1±

√
2)d1.

As an extra to the question, note the extremal velocity is

U = ∓W√
2
.
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Question 3. Ciliate Motility.

Take a reference frame comoving with the swimmer oriented such that the direction of the swimmer
velocity is given by U = Uez. The non-dimensional Stokes equations are

∇2u = ∇p, ∇ · u = 0,

with

u = −Uez, as |x| → ∞, u = ϵ
dβ1

dt
sin θeθ = ϵβ̇1 sin θeθ, on r = 1,

where eθ is the unit vector in the direction of increasing spherical polar θ, where r = |x| and z = r cos θ,
x = r sin θ cosφ for instance.

Show that

u =

[
−U(t) +

Q(t)

r3

]
cos θer +

[
U(t) +

P (t)

r3

]
sin θeθ, p = Const

is a solution of the Stokes equation for Q(t) = 2P (t). To do this, you will need to consider the vector
Lapalacian of u. This is non-trivial in non-Cartesian coordinates and you may wish to consider using
a symbolic algebra package such as Mathematica:

f1[r , theta , phi ]:=(−U +Q/r∧3) ∗ Cos[theta]f1[r , theta , phi ]:=(−U +Q/r∧3) ∗ Cos[theta]f1[r , theta , phi ]:=(−U +Q/r∧3) ∗ Cos[theta]

f2[r , theta , phi ]:=(U + P/r∧3) ∗ Sin[theta]f2[r , theta , phi ]:=(U + P/r∧3) ∗ Sin[theta]f2[r , theta , phi ]:=(U + P/r∧3) ∗ Sin[theta]

FullSimplify[Laplacian[f1[r, theta, phi], {r, theta, phi}, “Spherical”]− 2 ∗ f1[r, theta, phi]/r∧2−FullSimplify[Laplacian[f1[r, theta, phi], {r, theta, phi}, “Spherical”]− 2 ∗ f1[r, theta, phi]/r∧2−FullSimplify[Laplacian[f1[r, theta, phi], {r, theta, phi}, “Spherical”]− 2 ∗ f1[r, theta, phi]/r∧2−
2/(r∧2 ∗ Sin[theta]) ∗ (f2[r, theta, phi] ∗ Cos[theta] + Sin[theta] ∗D[f2[r, theta, phi], theta])]2/(r∧2 ∗ Sin[theta]) ∗ (f2[r, theta, phi] ∗ Cos[theta] + Sin[theta] ∗D[f2[r, theta, phi], theta])]2/(r∧2 ∗ Sin[theta]) ∗ (f2[r, theta, phi] ∗ Cos[theta] + Sin[theta] ∗D[f2[r, theta, phi], theta])]

2(−2P +Q)Cos[theta]

r5

FullSimplify[Laplacian[f2[r, theta, phi], {r, theta, phi}, “Spherical”]+FullSimplify[Laplacian[f2[r, theta, phi], {r, theta, phi}, “Spherical”]+FullSimplify[Laplacian[f2[r, theta, phi], {r, theta, phi}, “Spherical”]+
2 ∗D[f1[r, theta, phi], theta]/r∧2− 1/(r∧2 ∗ Sin[theta] ∗ Sin[theta]) ∗ f2[r, theta, phi]]2 ∗D[f1[r, theta, phi], theta]/r∧2− 1/(r∧2 ∗ Sin[theta] ∗ Sin[theta]) ∗ f2[r, theta, phi]]2 ∗D[f1[r, theta, phi], theta]/r∧2− 1/(r∧2 ∗ Sin[theta] ∗ Sin[theta]) ∗ f2[r, theta, phi]]

2(2P −Q)Sin[theta]

r5

Given Q(t) = 2P (t), the above two expressions are zero and the governing equation is satisfied. One
can then read off that U(t) = 2ϵβ̇1/3 from the boundary condition, by finding Q(t) in terms of U(t)
from setting the coefficient of er to zero and then equating the coefficient of eθ to the boundary
conditions at the boundary.
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Question 4. Resistive force theory.

For the force balance with a spherical cell body of radius a, we have

0 = (Drag force on body) + (Drag force on flagellum). (7)

and et = (−1, ϵhs), en = (ϵhs, 1) and the velocity of the flagellum element is given byU = (U, V +ϵht).
Hence the drag force per unit length on the element ds is given by

f = − [CNen ·Uen + CTet ·Uet] = − [(CN − CT )en ·Uen + CTU ]

= −[(CN − CT )en ⊗ en + CTI]U

= −
[
(CN − CT )

(
ϵ2h2

s ϵhs

ϵhs 1

)
+ CTI

](
U

ϵht + V

)
= −(CN − CT )

(
ϵ2h2

sU + ϵ2hsht + ϵhsV
ϵhsU + ϵht + V

)
− CT

(
U

ϵht + V

)
Integrating over the flagellum length, s ∈ [0, L], gives

−U

(
CTL+ ϵ2(CN − CT )

∫ L

0
dsh2

s

ϵ(CN − CT )
∫ L

0
dshs

)
− V

(
ϵ(CN − CT )

∫ L

0
dshs

CNL

)
−

(
ϵ2(CN − CT )

∫ L

0
dshsht

ϵCN

∫ L

0
dsht

)

Clearly the term ϵ2(CN − CT )
∫ L

0
dsh2

s is a lower order than CTL and hence the former is dropped.

The cell body drag follows by setting h = 0 and replacing parameters dependent on geometry with
those of the cell body. Hence the cell body drag is

−U

(
Cb

TLb

0

)
− V

(
0

Cb
NLb

)
Thus, using Eqn.(7),

(Cb
TLb + CTL)U = −(CN − CT )

[
ϵ2
∫ L

0

dshsht + ϵV

∫ L

0

dshs

]
,

and

V = − 1

Cb
NLb + CNL

[
ϵCN

∫ L

0

dsht + ϵU(CN − CT )

∫ L

0

dshs

]
.

Substituting the expression for V into the expression for U we have

(Cb
TLb + CTL+O(ϵ2))U = −ϵ2(CN − CT )

[∫ L

0

dshsht −
CN

Cb
NLb + CNL

∫ L

0

dshs

∫ L

0

dsht

]
.

We can drop the O(ϵ2) on the left as it is asymptotically small relative to CTL.
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Hence we have at leading order

U = ϵ2
CT − CN

Cb
TLb + CTL

[∫ L

0

dshsht −
CN

Cb
NLb + CNL

∫ L

0

dshs

∫ L

0

dsht

]
and we recover the expression in the lecture notes provided

CN

Cb
NLb + CNL

∫ L

0
dshs

∫ L

0
dsht∫ L

0
dshsht

≪ 1.
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displacement y_0 is O() on assumption
there is no drift



Aside. No drift entails h(s,t) is such that these 
integrals remain O(1) for large time


