
6. HYPERBOLIC SURFACES

6.1 Models for the Hyperbolic Plane
De…nition 6.1 (a) The hyperbolic plane H is the geometric surface formed from the upper
half-plane

H = fz 2 C j Im z > 0g ,

endowed with the …rst fundamental form

dx2 + dy2

y2
.

This is the Poincaré’s half-plane model.
(b) We showed earlier (Example 3.54) that the Gaussian curvature of H equals ¡1. We also

showed in Example 4.8 that the geodesics of H are the half-lines perpendicular to the real axis
and the semicircles that meet the real axis at right angles. Note that there is a unique geodesic
between any two points of H.

(c) As E = G in the above …rst fundamental form then angles are measured in H in the
same way that they are in C.

(d) In Method 2 of Example 4.8, we showed that, given real numbers a, b, c, d such that
ad¡ bc = 1,

w(z) =
az + b

cz + d

is a bijective isometry of H.

The Möbius map

w =
z ¡ i

z + i
, z =

i(1 + w)

1¡ w
.

takes H conformally to the disc

D = fz 2 C j jzj < 1g .

If we assign a …rst fundamental form to D in such a way that the Möbius map is an isometry
then D is a second model for the hyperbolic plane known as Poincaré’s disc model. Again
we note the above …rst fundamental form can be rewritten in terms of z as

¡4 jdzj2

(z ¡ ¹z)2
.

Applying the change of variable we note that

jdzj2 =

¯
¯
¯
¯
(1¡ w) + (1 + w)

(1¡ w)2

¯
¯
¯
¯

2

jdwj2 =
4 jdwj2

j1¡ wj4
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and

(z ¡ ¹z)2 =

µ
i(1 + w)

1¡ w
+

i(1 + ¹w)

1¡ ¹w

¶2

= ¡

µ
(1 + w) (1¡ ¹w) + (1¡ w) (1 + ¹w)

(1¡ w) (1¡ ¹w)

¶2

= . ¡ 4

µ
1¡ w ¹w

(1¡ w) (1¡ ¹w)

¶2

= ¡4

¯
¯1¡ jwj2

¯
¯2

j1¡ wj4

Hence
¡4 jdzj2

(z ¡ ¹z)2
=

¡16 jdwj2

j1¡ wj4
£

j1¡ wj4

¡4
¯
¯1¡ jwj2

¯
¯2
=

4 jdwj2

¯
¯1¡ jwj2

¯
¯2
.

Proposition 6.2 (a) Poincaré’s disc model for the hyperbolic plane is the disc

D = fz 2 C j jzj < 1g

endowed with the …rst fundamental form

4 jdzj2

¯
¯1¡ jzj2

¯
¯2
.

(b) The Gaussian curvature equals ¡1 and the geodesics are the diameters and the circular arcs
that meet the unit circles in right angles. Angles are measured in D the same way they are in
H.

(c) The orientation-preserving isometries of D take the form

f(z) =
eiθ (z ¡ a)

1¡ ¹az

where jaj < 1 and θ 2 R.

Proof. (a) was proved in the discussion previous to this proposition and (b) follows as the
map w is an isometry and conformal map from H to D which preserves curvature, geodesics
and angles.

To prove (c) we …rst need to show that the circle jzj = 1 maps to itself; if jzj = 1 then

jf(z)j =

¯
¯
¯
¯
eiθ (z ¡ a)

1¡ ¹az

¯
¯
¯
¯ =

¯
¯
¯
¯
¹z(z ¡ a)

1¡ ¹az

¯
¯
¯
¯ =

¯
¯
¯
¯
1¡ a¹z

1¡ ¹az

¯
¯
¯
¯ = 1.

And as f(a) = 0 then f maps D bijectively onto D. Also f is orientation-preserving as it is
holomorphic. Further

jdf j =

¯
¯
¯
¯
(1¡ ¹az) + ¹a (z ¡ a)

(1¡ ¹az)2

¯
¯
¯
¯ jdzj =

¯
¯
¯
¯
¯

1¡ jaj2

(1¡ ¹az)2

¯
¯
¯
¯
¯
jdzj
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and then

4 jdf j2

¯
¯1¡ jf(z)j2

¯
¯2

= 4 jdzj2

¯
¯
¯
¯
¯

1¡ jaj2

(1¡ ¹az)2

¯
¯
¯
¯
¯

2 ¯
¯
¯
¯
¯
1¡

¯
¯
¯
¯
z ¡ a

1¡ ¹az

¯
¯
¯
¯

2
¯
¯
¯
¯
¯

¡2

= 4 jdzj2

¯
¯
¯
¯
¯

1¡ jaj2

(1¡ ¹az)2

¯
¯
¯
¯
¯

2 ¯
¯
¯
¯
¯

(1¡ ¹az)2

j1¡ ¹azj2 ¡ jz ¡ aj2

¯
¯
¯
¯
¯

2

=
4 jdzj2

¡
1¡ jaj2

¢2

(1 + a¹az¹z ¡ z¹z ¡ a¹a)2

=
4 jdzj2

¡
1¡ jaj2

¢2

¡
1¡ jaj2

¢2 ¡
1¡ jzj2

¢2

=
4 jdzj2

¯
¯1¡ jzj2

¯
¯2
,

showing f is an isometry of D. Further these are all the isometries of D. Given an isometry
g of D then, by setting a = g(0) and choosing θ appropriately, we note f¡1 ± g is an isometry
which sends 0 to 0 and the interval (0, 1) to itself. For orientation, distance and angles to be
preserved, it follows that f¡1 ± g is the identity and hence g = f.

Example 6.3 (a) Let 0 < r < 1. Find the distance in D between 0 and r as measured along
the real axis.

(b) Find the distance in D between a, b 2 D.
(c) Deduce a formula for the distance in H between p, q 2 H.

Solution. (a) The distance between 0 and r equals

Z r

0

2dx

1¡ x2
=

Z r

0

µ
1

1¡ x
+

1

1 + x

¶

dx

=

·

log

µ
1 + x

1¡ x

¶¸r

0

= log

µ
1 + r

1¡ r

¶

= 2 tanh¡1 r.

(b) Given points a, b 2 D then the Möbius map

eiθ (z ¡ a)

1¡ ¹az

is an isometry of D which takes a to 0 and for an appropriate choice of θ takes b to the positive
real axis. Hence the distance between a and b equals

dD(a, b) = 2 tanh
¡1

¯
¯
¯
¯
b ¡ a

1¡ ¹ab

¯
¯
¯
¯ ,
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as measured along the geodesic between them.
(c) Recall that the map (z ¡ i) /(z + i) is an isometry between H and D. So given p, q 2 H the
distance between them equals

dH(p.q) = dD

µ
p ¡ i

p+ i
,
q ¡ i

q + i

¶

= 2 tanh¡1

¯
¯
¯
¯
¯
¯

³
q¡i
q+i

´
¡

³
p¡i
p+i

´

1¡
³
¹p+i
¹p¡i

´³
q¡i
q+i

´

¯
¯
¯
¯
¯
¯

= 2 tanh¡1
¯
¯
¯
¯
(¹p ¡ i) ((q ¡ i) (p+ i)¡ (p ¡ i) (q + i))

(p+ i) ((q + i) (¹p ¡ i)¡ (¹p+ i) (q ¡ i))

¯
¯
¯
¯

= 2 tanh¡1
¯
¯
¯
¯
¡2ip+ 2iq

2i¹p ¡ 2iq

¯
¯
¯
¯

= 2 tanh¡1
¯
¯
¯
¯
q ¡ p

q ¡ ¹p

¯
¯
¯
¯ .

Remark 6.4 Poincare’s models for the hyperbolic plane date to 1882. There were other models
for the hyperbolic plane, most notably one due to Eugenio Beltrami (1868) and Felix Klein
(1871). This model again uses the open unit disc, the geodesics are the line segments in the
disc, but the model is not conformal with both distance and angle being measured in a non-
Euclidean fashion.

6.2 Hyperbolic geometry and trigonometry
We have yet to show that the hyperbolic distance function dD is a metric. Certainly dD (z,w) > 0
and dD (z, w) = 0 if and only if z = w. Also symmetry follows as for z, w 2 D then jw ¡ zj =
jz ¡ wj and j1¡ ¹zwj = j1¡ ¹wzj as they are conjugates of one another. As there is an isometry
of D taking any of a triangle’s vertices to 0, the triangle inequality follows from:

Proposition 6.5 For z, w 2 D,

dD(z, w) 6 dD(0, z) + dD(0, w),

with equality if and only if z/w is real and negative.

This is turn will follow from:

Proposition 6.6 (Hyperbolic cosine rule) Consider a hyperbolic triangle with vertices 0, z, w.
Write

a = dD(0, z), b = dD(0, w), c = dD(z, w)

and angle C at 0. Then

cosh c = cosh a cosh b¡ sinh a sinh b cosC.
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Note that if the approximations coshx ¼ 1 + x2/2 and sinh x ¼ x apply then the hyperbolic
cosine rule approximates to

c2 = a2 + b2 ¡ 2ab cosC

which is the usual Euclidean cosine rule.

Proof. (Of the triangle inequality) This follows from the cosine rule as cosC > ¡1 so that

cosh c 6 cosh a cosh b+ sinh a sinh b

= cosh (a+ b) .

As cosh is strictly increasing for non-negative arguments then

c 6 a+ b.

Further we only have equality when cosC = ¡1 and C = π in which case w/z is real and
negative.

Proof. (Of the cosine rule) Without loss of generality we may assume that z is positive. Then

z = tanh
dD(0, z)

2
, w = eiC tanh

dD(0, w)

2
.

By the hyperbolic tangent half-angle formulae (the hyperbolic ‘t-formulae’) then

cosh dD(0, z) =
1 + z2

1¡ z2
, cosh dD(0, w) =

1 + jwj2

1¡ jwj2
,

and by de…nition

tanh
1

2
dD(z,w) =

¯
¯
¯
¯
w ¡ z

1¡ zw

¯
¯
¯
¯ .

So

cosh dD(a, b) =
j1¡ zwj2 + jw ¡ zj2

j1¡ zwj2 ¡ jw ¡ zj2

=
(1 + z2)

¡
1 + jwj2

¢
¡ 2 (zw + z ¹w)

(1¡ z2)
¡
1¡ jwj2

¢

=

µ
1 + z2

1¡ z2

¶Ã
1 + jwj2

1¡ jwj2

!

¡

µ
2z

1¡ z2

¶µ
2 jwj

1¡ jwj2

¶µ
w + ¹w

2 jwj

¶

= cosh a cosh b ¡ sinh a sinh b cosC,

recalling

sinh a =
2z

1¡ z2
, sinh b =

2 jwj

1¡ jwj2
, cos argw =

Rew

jwj
.

HYPERBOLIC GEOMETRY AND TRIGONOMETRY 79



Remark 6.7 (Dual hyperbolic cosine rule) As with spherical geometry, there is a second
‘dual’ cosine rule which has no equivalent in Euclidean geometry. In the hyperbolic case this
reads as

cosC = ¡ cosA cosB + sinA sinB cosh c.

Proposition 6.8 (Hyperbolic sine rule) For a hyperbolic triangle in D with angles A,B,C
and sides a, b, c then

sinA

sinh a
=
sinB

sinh b
=
sinC

sinh c
.

Solution. This is Sheet 3, Part C, Exercise 1.

Example 6.9 In D a circle of radius R has area 4π sinh2 (R/2) and circumfernece 2π sinhR.
Note that, for small values of R, these formulae approximate to πR2 and 2πR.

Solution. The circle of radius R, centred on the origin in D, corresponds to the circle jzj =
tanh(R/2). So its interior has area equalling

ZZ

jzj6 tanh(R/2)

p
EG ¡ F 2 dx dy

=

Z tanh(R/2)

0

Z 2π

0

4

(1¡ r2)2
r dr dθ

= 2π

·
2

1¡ r2

¸tanh(R/2)

0

= 4π

µ

cosh2
µ
R

2

¶

¡ 1

¶

= 4π sinh2
µ
R

2

¶

.

The circle can be parameterized as x = tanh(R/2) cos t and y = tanh(R/2) sin t, so it has
circumference

Z 2π

t=0

p
E _x2 +G _y2 dt

= tanh(R/2)

Z 2π

t=0

2

1¡ tanh2(R/2)
dt

=
4π tanh(R/2)

sech2(R/2)

= 4π sinh

µ
R

2

¶

cosh

µ
R

2

¶

= 2π sinhR.
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Remark 6.10 It follows that a circle in D is a Euclidean circle – this is because isometries of
D are Möbius maps which send circles to circles. However the centre of a hyperbolic circle will
not in general coincide with the Euclidean centre. Further it is also now clear, that through
three non-collinear points there need not be a circle in D. For example the points 0, 1¡ ε and
i(1¡ ε) are not collinear – as they lie on two di¤erent diameters – but any hyperbolic (and so
Euclidean) circle passing through these three points will not entirely lie in D.

Theorem 6.11 (Lambert’s Formula) Given a triangle T in D, bounded by geodesics, its
area equals

π ¡ α ¡ β ¡ γ

where α, β, γ are the three angles.

Proof. The local Gauss-Bonnet theorem states
Z

γ

kg ds +

ZZ

R

K dA+
nX

i=1

αi = 2π.

As kg = 0 on a geodesic, and recalling that K = ¡1, we …nd

0¡ A+ (π ¡ α) + (π ¡ β) + (π ¡ γ) = 2π

which rearranges to the required result. Note that the maximal area π can be achieved by
having all three vertices on the boundary of D. Such a triangle is called triasymptotic.

Proposition 6.12 (The angle of parallelism) Let l be a line in D and P be a point at
distance d > 0 from l. This distance d is measured along a perpendicular from P to a point O
on l. Then a line through P will meet l if the angle the line makes with OP is less than

¦(d) = sin¡1 sech d.

¦(d) is known as the angle of parallelism.

Figure 6.1 – the angle of parallelism

Proof. Without loss of generality we can take l to be the real axis and P to be on the positive
imaginary axis, so represented by the complex number tanh(d/2). The point O is then the
origin. Say that a second line passes through P, making an angle θ, and intersects l at the
point Q. By the sine rule

sin θ =
sinh dD (O,Q)

sinh dD (P,Q)
.

HYPERBOLIC GEOMETRY AND TRIGONOMETRY 81



And by the hyperbolic cosine rule we have

cosh dD (P,Q) = cosh dD (O,Q) cosh d.

Eliminating dD (O,Q) we …nd

sin θ =
1

sinh dD (P,Q)

s

cosh2 dD (P,Q)

cosh2 d
¡ 1

=

q

coth2 dD (P,Q) sech
2d ¡ cosech2dD (P,Q).

Now as dD (P,Q) ! 1 then coth2 dD (P,Q) ! 1 and cosechdD (P,Q) ! 0. So the limiting case
for when we can solve for θ is when

sin θ = sechd.

This θ is the required formula for the angle of parallelism.

6.3 Compact Hyperbolic Surfaces
As commented earlier, a closed geometric surface with constant curvature K = ¡1 is necessarily
a torus with genus g > 1. This is a consequence of the global Gauss-Bonnet theorem. It is
not hard to appreciate how such a surface might be made from a polygon. The canonical
identi…cation space for such a torus is a 4g-gon with edges identi…ed as

a1a2a
¡1
1 a¡12 ¢ ¢ ¢ a2g¡1a2ga

¡1
2g¡1a

¡1
2g .

When forming a topological surface the edges are identi…ed by homeomorphisms and nothing
further needs to be required. However, to create a hyperbolic surface we need to begin with a
polygon that is already a geometric surface with boundary – so we take a regular polygon from
the hyperbolic plane – and then the identi…cations need to be made using isometries. Further,
the internal angles of the polygon, that are identi…ed as the same vertex, need to add up to a
whole angle.

Example 6.13 Consider a regular octagon in D, such as the one sketched as in Figure 6.2.

Figure 6.2 – an identi…ed octagon from D
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For any d in the range 0 < d 6 1 such an octagon can be constructed which has the vertices
at hyperbolic distance d from the origin. Recall for a regular hyperbolic octagon

¡area of octagon =

ZZ

R

K dA = 8β ¡ 6π,

where β is the common internal angle. As d ! 0 then β ! 3π/4 and when d ! 1 then
β ! 0. For any such octagon, a topological surface can be formed by identifying the eight edges
as depicted and the eight vertices are then all identi…ed to the same vertex. However to form
a geometric surface we need to identify the edges with isometries and need β = π/4 so that the
internal angles sum to a whole angle. But this is possible for a unique choice of d as β is a
decreasing function of d.

For this particular choice of d, the global Gauss-Bonnet theorem tells us that

¡4π = 2πχ(X) =

ZZ

X

K dA = ¡area of X.

So the surface’s area equals 4π. More generally, for g > 1, a regular 2g-gon can be identi…ed to
form a hyperbolic surface of genus g.

Example 6.14 Find the distance of the vertices from the origin of the octagon in Figure 6.2
and the complex numbers representing those vertices.

Solution. We have noted that the internal angles of the octagon are π/4, so the octagon can
be naturally divided into 8 isosceles triangles with angles A = π/4, B = C = π/8. The equal
length sides are then b and c. The dual hyperbolic cosine rule states

cosC = ¡ cosA cosB + sinA sinB cosh c

and so

cosh c =
cos π

8
+ cos π

4
cos π

8

sin π
4
sin π

8

= cot
³π

8

´µ
1 + cos (π/4)

sin (π/4)

¶

.

Noting cot (π/8) = 1 +
p
2 and sin (π/4) = cos (π/4) = 1/

p
2 we then have

cosh c =
³
1 +

p
2
´2

.

The right-most vertex is then at z = tanh (c/2) . By the hyperbolic tangent half-angle formulae
we have

1 + z2

1¡ z2
=

³
1 +

p
2
´2

.

Solving for z we …nd z = 2¡1/4. Thus the vertices of the octagon are 2¡1/4ωk where ω = eiπ/4

and 0 6 k 6 7.

Example 6.15 (A non-orientable hyperbolic surface) We can create a hyperbolic surface
X, that is homeomorphic to a torus of genus 3, by identifying the edges of a regular dodecagon
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in D, centred on the origin, in the canonical way. X can then be embedded in R3 – as a
smooth surface – and in such a way that is symmetric about the origin. The antipodal map
σ(x, y, z) = (¡x,¡y,¡z) is a self-inverse di¤eomorphism of X with X/hσi being non-orientable
– for example, a symmetric band within the torus would become a Möbius band. But X/hσi can
be endowed with the hyperbolic structure that X has. Speci…cally X/hσi is the sphere with four
cross-caps.

Example 6.16 (Pseudosphere) The tractoid is a hyperbolic surface, but not a complete one
as its geodesics cannot be extended inde…nitely. Omitting one meridian, it is isometric to the
semi-in…nite strip (0, 2π)£ (1,1) and we see that the geodesic x = π cannot be extended. The
completion of the tractoid is the pseudosphere H/¡ where ¡ is the group of isometries generated
by z 7! z + 2π. (See Figure 6.3.)

Figure 6.3 – the pseudosphere

The pseudosphere is complete but not compact.

The subject of hyperbolic surfaces is treated in detail in Stillwell. I include here just some
of the key theorems.

Theorem 6.17 (Killing-Hopf theorem) (Stillwell, p.111) Each complete, connected hyper-
bolic surface is of the form H/¡ where ¡ is a discontinuous group of isometries of H which acts
freely on H.

To say that ¡ is discontinuous means that no orbit (of ¡’s action) has a limit point.
To say that ¡ acts freely means that if g.x = x for g 2 ¡ and x 2 H then g is the identity.

De…nition 6.18 Given a free, discontinuous action of ¡ on H then a fundamental region
R µ H for the action is a region of H which contains a representative of each orbit such that
the interior of R contains at most one element of an orbit. Thus H/¡ is represented by R with
some identi…cations on its boundary.

Theorem 6.19 (Stillwell, p.123) A hyperbolic surface is formed from a hyperbolic polygon
provided

(i) the edges are pairwise identi…ed with isometries and
(ii) the sum of the internal angles, around vertices that are identi…ed together, equals a

whole angle.
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Theorem 6.20 (Stillwell, p.130) For any compact hyperbolic surface H/¡ there is a polygonal
fundamental region for ¡.

Theorem 6.21 (Poincaré, 1882 – Stillwell p.180) A compact polygon P, satisfying the edge
and angle conditions (i) and (ii) above, is a fundamental region for the group ¡ generated by
the edge-pairing transformations of P.

Example 6.22 Find the edge-pairing isometry which identi…es the edge a1 with a¡11 as in
Figure 6.2,

Solution. Recall that the orientation-preserving isometries of D take the form

f(z) = eiθ
z ¡ a

1¡ ¹az

where a 2 D and 0 6 θ < 2π. The vertices of the octagon are αωk where α = 2¡1/4 and
ω = eiπ/4. The map

f1(z) =
z ¡ αi

1 + αiz

takes the rear of edge a1 to the origin and the front of the edge to

αω ¡ αi

1 + αiαω
= α

Ã
1+ip
2

¡ i

(1 + i) /2

!

=
α

p
2

³
1 + (1¡

p
2)i

´
(1¡ i)

=
α

p
2

³³
2¡

p
2
´

¡
p
2i

´

= α
³³p

2¡ 1
´

¡ i
´

which has argument

tan¡1
µ

¡1
p
2¡ 1

¶

= ¡ tan¡1
³p
2 + 1

´
= ¡

3π

8
.

Thus the function g1(z) = e3πi/8f1(z) takes a1 to the positive real axis from 0. We can argue
the same to …nd a function g2(z) which takes the rear of a¡11 to the origin with image along the
positive real axis (details omitted). The edge-pairing isometry we are seeking is then g¡12 ± g1.
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