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Introduction

Communication theory is a relatively young subject. It played an important role in the rise of the current
information/digital/computer age and still motivates much research. Every time you make a phone call,
store a file on your computer, query an internet search engine, watch a DVD, stream a movie, listen
to a CD or mp3 file, etc., algorithms run that are based on topics we discuss in this course. However,
independent of such applications, the underlying mathematical objects arise naturally as soon as one
starts to think about “information”, its representation and how to transfer and store information. In
fact, a large part of the course deals with two fundamental questions:

(1) How much information is contained in a signal/data/message? (source coding)

(2) What are the limits to information transfer over a channel that is subject to noisy perturbations?
(channel coding)

To answers to above questions requires us to develop new mathematical concepts. These concepts also give
new interpretations of important results in probability theory. Moreover, they are intimately connected
to

• Physics: Thermodynamics, Statistical mechanics, Quantum theory,

• Computer Science: Kolmogorov complexity, etc.

• Statistics and Machine learning,

• Large deviation theory,

• Economics, finance, gambling.

Textbook and Literature. For most parts of the course we follow the classic textbook

• Cover, T. and Thomas, J. (2012). Elements of information theory. John Wiley & Sons.

Another excellent book is

• MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge University
Press,
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which has a more informal approach but many applications and is freely available on David MacKay’s
old webpage2. A concise treatment, focused on the theory is

• Csiszar, Körner (2011). Information Theory: Coding Theorems for Discrete Memoryless Systems.
Cambridge University Press.

2https://www.infererence.phy.cam.ac.uk/mackay/itila/



Chapter 1

Entropy, Divergence and Mutual
Information

We will use a probability space (Ω, F ,P) to describe the randomness, on which we define random variables,
which are functions from (Ω, F) to (R, B(R)). We will often omit these notations and only talk about
random variables. Furthermore, we will focus on discrete random variables which take values in a discrete
subset X ⊂ R, whose distributions can be described by their probability mass functions (pmf), e.g., for
a random variable X, its pmf is p(x) = P(X = x) for x ∈ X .

1.1 Definitions

1.1.1 Entropy

Definition 1.1. The entropy Hb(X) in base b of a discrete random variable X is defined as

Hb(X) = −
∑
x∈X

P(X = x) logb P(X = x), (1.1.1)

where we use the convention that 0 × logb(0) = 0. For b = 2 we usually write H(X) instead H2(X), and
write log(q) instead log2(q).

Some remarks on this concept:

• The notation H(X) is somewhat misleading since the entropy only depends on the pmf of the
random variable X, i.e., for two different random variables X and X̂ with the same pmf, their
entropies are the same. However, this notation is standard in the literature and the choice of P is
usually unambigious in our applications. We also use the notation H(PX) or H(pX) for the entropy
of X, where PX = P ◦ X−1 is the distribution of X and pX(x) = P(X = x) is the pmf of X.

• We can write1 H(X) = −E[log(p(X))] where p(·) = pX(·) is the pmf of X.
1Attention: one often uses X as an index for the pmf, i.e. pX(x) = P(X = x). In this case the entropy is written
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• The choice of base 2 for the logarithm is common (due to computers using two states) but not
essential. Since log(x) = logb(x) = loga(x)

loga(b) , we have Hb(X) = 1
loga(b) Ha(X).

• The unit of entropy in base 2 is called a bit, in base e nat, in base 256 a byte. Unless otherwise
stated, we will take logarithms to base 2.

One way (among many!) to motivate above definition, is to think of H(X) as a measure of the average
uncertainty we have about the value of X: the less certain we are, the bigger H(X). To see this, we first
derive a function s(A) to measure the “surprise” of observing the event {X ∈ A} for a set A ⊂ X . It
seems to natural to demand that

(1) s(A) depends continuously on P(X ∈ A),

(2) s(A) is decreasing in P(X ∈ A),

(3) s(A ∩ B) = s(A) + s(B) whenever P(X ∈ A ∩ B) = P(X ∈ A)P(X ∈ B), i.e., the surprise about
the occurrence of two independent events {X ∈ A}, {X ∈ B} is the sum of the surprises of each of
these events.

Using that P(X ∈ A ∩ B) = P(X ∈ A)P(X ∈ B), it follows that s(A) = − log(P(A)) fulfills these
properties and is the unique function with these properties (up to choice of a multiplicative constant and
base of the logarithm, this is a result of Cauchy – see Cauchy’s functional equation). In some books,
s(A) is also called the Shannon information content of the outcome A. Hence, we can regard the entropy
H(X) as the “average surprise” over the events {X = x} for x ∈ X . We will encounter other motivations
for the definition of H(X) later (e.g. as a compression bound, as number of yes-no-questions to determine
a value, etc).

Example 1.2. If X = {H, T} and P(X = H) = p, then

H(X) = −p log(p) − (1 − p) log(1 − p). (1.1.2)

If p ∈ {0, 1}, then H(X) = 0. Differentiating in p shows that the entropy as a function of p increases on
(0, 0.5) and decreasing on (0.5, 1). Hence, the entropy is maximised if p = 0.5 with H(X) = log(2) = 1
bits.

Example 1.3. If X is a 2-dim vector in the form (X1, X2) with Xi ∈ Xi for i = 1, 2, then

H(X) = H(X1, X2) = −
∑

x1∈X1,x2∈X2

pX1,X2(x1, x2) log(pX1,X2(x1, x2). (1.1.3)

If additionally, X1 and X2 are independent, i.e., pX1,X2(x1, x2) = pX1(x1)pX2(x2), then

H(X) = H(X1) + H(X2). (1.1.4)

If X1 and X2 are independent and identically distributed (i.i.d.), then

H(X) = 2H(X1) = 2H(X2). (1.1.5)

as H(X) = −E[log(pX(X))] = −
∑

x∈X pX(x) log(pX(x)) but we emphasise that pX : X 7→ [0, 1] is a function and not
random (does not depend on ω ∈ Ω)! A better notation would be to enumerate r.v. values xi with i ∈ N and to denote the
pmf of X with pi = P(X = xi), though this is less standard.
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Now assume, X models a coin flip as in Example 1.2, i.e. X takes values in X = {H, T}. Given knowledge
about p, we want store the results of a sequence of n independent coin flips. One extreme case is p ∈ {0, 1},
in which case we need H(X) = 0 bits, the other extreme is p = 0.5 in which it is at least intuitive that
we need n bits. This hints at another interpretation of entropy , namely as a storage/compression bound
of information. We make this connection rigorous later in the course.

1.1.2 Divergence

Definition 1.4. Let p and q be pmfs on X . We call

D(p∥q) =
∑
x∈X

p(x) log
(

p(x)
q(x)

)
(1.1.1)

the divergence between p and q and set by convention 0× log(0) = 0 and D(p∥q) = ∞ if ∃x ∈ X such that
q(x) = 0, p(x) > 0. (Divergence is also known as information divergence, Kullback–Leibler divergence,
relative entropy).

Note that, given X ∼ p (which means the pmf of X is p),

D(p∥q) = E
[
log
(

p(X)
q(X)

)]
= E

[
log
(

1
q(X)

)]
− E

[
log
(

1
p(X)

)]
= E

[
log
(

1
q(X)

)]
− H(X).

In Example 1.2 we hinted at entropy as a measure for storage cost and from this perspective we can
think of divergence as the cost we incur if we use the distribution q to encode a random variable X with
distribution p. Further, note that while we will show below that divergence is always non-negative it is
not a metric: in general it is not symmetric and can take the value ∞. These properties are actually
useful and desirable as the following example shows.

Example 1.5. (Asymmetry and infinite values are useful). Let X = {0, 1} and p(0) = 0.5, q(0) = 1.
We are given independent samples from one of these two distributions but we do not know which one.
If we observe 0000001, we can immediately infer that p is the underlying pmf. On the other hand, if we
observe 0000000 it is likely that the sample comes from q but we cannot exclude that it comes from p.
This is reflected in the divergence since D(p∥q) = ∞ but D(q∥p) = 1.

Example 1.6. If q is a uniform distribution, then it is clear that the relative entropy

D(p∥q) = log(|X |) − H(X).

1.1.3 Mutual information

Definition 1.7. Let X, Y be discrete random variables taking values in X and Y respectively. The mutual
information I(X; Y ) between X and Y is defined as

I(X; Y ) =
∑
x∈X

∑
y∈Y

P(X = x, Y = y) log
(

P(X = x, Y = y)
P(X = x)P(Y = y)

)
.
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Some movitations:

• Denote with pX,Y , pX , pY the pmfs of (X, Y ), X and Y . Then

I(X; Y ) = D(pX,Y ∥pXpY ).

Hence, we can regard the mutual information as a measure on how much dependence there is
between two random variables.

• Unlike covariance Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])], the mutual information I(X; Y ) takes
into account higher order dependence (not just second order dependence).

• It is obvious that I(X; Y ) = I(Y ; X).

• Another way to think about mutual information is in terms of entropies

I(X; Y ) = E
[
log
(

pX,Y (X, Y )
pX(X)pY (Y )

)]
= E[log(pX,Y (X, Y )) − log(pX(X) − log(pY (Y ))]

= H(X) + H(Y ) − H(X, Y ).

1.1.4 Conditional entropy/divergence/mutual information

Often we are given additional knowledge by knowing the outcome of another random variable. This
motivates to generalise the concepts of entropy, divergence and information by conditioning on this extra
information.

Definition 1.8. Let X, Y be discrete random variables taking values in X . The conditional entropy of
Y given X is defined as

H(Y |X) = −
∑
x∈X

∑
y∈X

P(X = x, Y = y) log
(
P(Y = y|X = x)

)
= −

∑
x∈X

∑
y∈X

P(X = x, Y = y) log
(P(Y = y, X = x)

P(X = x)

)
.

In analogy to entropy, it holds that

H(Y |X) = −
∑
x∈X

P(X = x)
∑
y∈X

P(Y = y|X = x) log
(
P(Y = y|X = x)

)
= −

∑
x∈X

P(X = x)E[log(pY |X=x(Y )]

= −E[log(pY |X(Y )].

An intuitive way to think about H(X|Y ) is as the average surprise we have about Y after having observed
X (e.g. if Y = X there’s no surprise).

By rearranging and Bayes’ rule, we have the ‘chain rule’ of conditional entropy

H(X|Y ) = H(X, Y ) − H(Y ).

Definition 1.9. Let pX be a pmf on a discrete space X , and p(·|x) and q(·|x) be two ( onditional on the
parameter x) pmfs on X for any x ∈ X . The divergence between p(·|X) and q(·|X) conditioned on pX
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(also known as conditional divergence, conditional Kullback-Leibler divergence, condition relative entropy)
is defined as

D(pY |X∥qY |X | pX) =
∑
x∈X

pX(x)D(pY1|X=x∥qY2|X=x)

where random variables X, Y, Y1, Y2 are all constructed, such that pY |X(y|x) = p(y|x) = pY1|X(y|x),
qY |X(y|x) = q(y|x) = pY2|X(y|x).

We could also give a version of the definition in terms of random variables.

Definition 1.10. Let X and Y1, Y2 be discrete random variables taking values in X , and the joint pmf
of (X, Yi) is pX,Yi

. The divergence between pY1 and pY2 conditioned on X is defined as

D(pY1|X∥pY2|X) =
∑
x∈X

pX(x)D(pY1|X=x∥pY2|X=x)

and can be written

D(pY |X∥qY |X | pX) = E[D(pY1|X(·|X)∥pY2|X(·|X))].

Notice that in the notation D(pY |X∥qY |X |pX), pY |X refers to the given conditional pmf p(·|x) and qY |X

refers to q(·|x), and random variables X and Y are not essential. From p(·|x), q(·|x) and pX , we can
construct random variable X, Y1, Y2, such that pY1|X(y|x) = p(y|x) and pY2|X(y|x) = q(y|x).

Definition 1.11. Let X, Y, Z be discrete random variables taking values in X . The conditional mutual
information I(X; Y |Z) (conditioned on Z) between X and Y is defined as

I(X; Y |Z) := H(X|Z) − H(X|Y, Z).

Again, we can write this as I(X; Y |Z) = E
[
log
(

pX,Y |Z (X,Y )
pX|Z (X)pY |Z (Y )

)]
, by which we can see that I(X; Y |Z) =

I(Y ; X|Z).

In the same way we regard mutual information as measure of dependence, we can regard conditional
mutual information as a measure of dependence of two r.v.’s (X, Y ) conditional on knowing another
random variable (Z).

1.2 Basic properties and inequalities

We prove some basic properties of entropy, divergence and mutual information. We prepare this with
two elementary but important inequalities

Lemma 1.12. (Gibbs’ inequality) Let p and q be pmfs on X . Then

−
∑
x∈X

p(x) log(p(x)) ≤ −
∑
x∈X

p(x) log(q(x))

and the equality holds if and only if (iff) p = q.
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Proof. Denote X a r.v. following the pmf p. Adding
∑

x∈X p(x) log(p(x)) on both sides, we estimate the
right hand side

∑
x∈X

p(x) log
(

p(x)
q(x)

)
= E

[
− log

(
q(X)
p(X)

)]
≥ − log

(
E
[

q(X)
p(X)

])
= − log

(∑
x∈X

p(x)q(x)
p(x)

)
= − log(1) = 0.

where the inequality follows by Jensen’s inequality applied to f(x) = −log(x) (a strictly convex function).
Note that by Jensen’s equality holds iff q(x)

p(x) is constant.

Put differently, Gibbs’ inequality tells us that the minimiser of the map

q 7→ −E[log(q(X))]

is the pmf pX and the minimum is H(X).

Lemma 1.13. (Log sum inequality) Let a1, · · · , an; b1, · · · , bn are all nonnegative. Then

n∑
i=1

ai log
(

ai

bi

)
≥

(
n∑

i=1
ai

)
log
(∑n

i=1 ai∑n
i=1 bi

)

with equality holds iff ai

bi
is constant.

1.2.1 Divergence properties

Theorem 1.14. (Divergence properties). Let (X, Y ) and (X̂, Ŷ ) be 2-dimensional discrete random vari-
ables taking values in X × Y. Then

(1) (Information inequality) D(pX∥pX̂) ≥ 0 with equality iff pX = pX̂ .

(2) (Chain rule) D(pX,Y ∥pX̂,Ŷ ) = D(pY |X∥ pŶ |X̂ | pX) + D(pX∥pX̂).

(3) D(pX,Y ∥pX̂,Ŷ ) ≥ D(pX∥pX̂).

(4) D(pY |X∥pŶ |X̂ | pX) = D(pXpY |X∥pXpŶ |X̂).

(5) (Convexity) For pmfs p1, p2, q1, q2, we have D(λp1 + (1 − λ)p2∥λq1 + (1 − λ)q2) ≤ λD(p1∥q1) + (1 −
λ)D(p2∥q2) for ∀ λ ∈ [0, 1].
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Proof. Point (1) follows from Gibbs’ inequality; Point (2) follows from

D(pX,Y ∥pX̂,Ŷ ) =
∑

x∈X ,y∈Y
pX,Y (x, y) log

(
pX,Y (x, y)
pX̂,Ŷ (x, y)

)

=
∑

x∈X ,y∈Y
pX,Y (x, y) log

(
pX(x)pY |X(y|x)
pX̂(x)pŶ |X̂(y|x)

)

=
∑

x∈X ,y∈Y
pX,Y (x, y) log

(
pY |X(y|x)
pŶ |X̂(y|x)

)
+

∑
x∈X ,y∈Y

pX,Y (x, y) log
(

pX(x)
pX̂(x)

)

=
∑
x∈X

pX(x)
∑
y∈Y

pY |X(y|x) log
(

pY |X(y|x)
pŶ |X̂(y|x)

)
+ D(pX∥pX̂)

=
∑
x∈X

pX(x)D(pY |X∥pŶ |X̂) + D(pX∥pX̂)

= D(pY |X∥pŶ |X̂) |pX) + D(pX∥pX̂).

With Point (2), and the fact D(p1∥p2|p) ≥ 0 for any pmf’s p1, p2, q, we have Point (3).

Point 4 follows since

D(pY |X∥pŶ |X̂ | pX) =
∑
x∈X

pX(x)
∑
y∈Y

pY |X(y|x) log
(

pY |X(y|x)
pŶ |X̂(y|x)

)

= E

[
log
(

pY |X(Y |X)
pŶ |X̂(Y |X)

)]

= E

[
log
(

pX(X)pY |X(Y |X)
pX(X)pŶ |X̂(Y |X)

)]
= D(pXpY |X ∥ pXpŶ |X̂).

For Point (5), we just need to apply Lemma 1.13 to

(λp1 + (1 − λ)p2) log
(

λp1 + (1 − λ)p2

λq1 + (1 − λ)q2

)
,

and sum over x ∈ X .

1.2.2 Mutual information properties

Theorem 1.15. (Mutual Information properties).

(1) I(X; Y ) ≥ 0 with equality iff X⊥Y (i.e. X and Y are independent)

(2) I(X; Y ) = I(Y ; X) = H(X) − H(X|Y ) = H(Y ) − H(Y |X).

(3) (Information chain rule)

I(X1, ·, Xn; Y ) =
n∑

i=1
I(Xi; Y | Xi−1, · · · , X1).
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(4) (Data-processing inequality) If2 (X⊥Z) | Y , then

I(X; Y ) ≥ I(X; Z).

(5) Let f : Y 7→ Z. Then I(X; Y ) ≥ I(X; f(Y )).

Proof. Point (1) follows since I(X; Y ) = D(pX,Y ∥pXpY ) ≥ 0 by the information inequality in Theorem
1.14.

The first equality in Point (2) follows from the definition of mutual information. The others follow since

I(X; Y ) = E
[
log
(

pX,Y (X, Y )
pX(X)pY (Y )

)]
= H(X) + H(Y ) − H(X, Y ),

and

H(X, Y ) = −
∑

x∈X ,y∈Y
P(X = x, Y = y) log(P(Y = y, X = x))

= −
∑

x∈X ,y∈Y
P(X = x, Y = y)[log(P(Y = y|X = x)) + log(P(X = x))]

= H(Y |X) + H(X).

Notice that the last equality can be easily extended to

H(X1, · · · , Xn) = H(Xn|Xn−1, · · · , X1) + H(Xn−1, · · · , X1) =
n∑

i=1
H(Xi|Xi−1, · · · , X1).

with the notation H(X1|X0) = H(X1). Furthermore, we can have the conditional version

H(X1, · · · , Xn | Y ) =
n∑

i=1
H(Xi|Xi−1, · · · , X1, Y ).

Point (3) follows since

I(X1, · · · , Xn; Y ) = H(X1, · · · , Xn) − H(X1, · · · Xn | Y )

=
n∑

i=1
{H(Xi|Xi−1, · · · , X1) − H(Xi|Xi−1, · · · , X1, Y )}

=
n∑

i=1
I(Xi; Y | Xi−1 · · · , X1),

where the last line follows directly by definition of conditional entropy. For Point (4) we use the chain rule
(3) to write I(Y, Z; X) = I(Y ; X)+I(Z; X|Y ) = I(Y ; X). On the other hand, I(Y, Z; X) = I(Z, Y ; X) =
I(Z; X) + I(Y ; X|Z) ≥ I(Z; X), so I(X; Y ) ≥ I(X; Z).

Finally, Point (5) follows from the data-processing inequality in Point (4) by taking Z = f(Y ).
2Recall that X and Z are conditionally independent given Z (denoted as (X⊥Z) | Y ) if p(X,Z)|Y (x, z|y) =

pX|Y (x|y)pZ|Y (z|y). This is equivalent to (X, Y, Z) is a Markovian process with 3 time spots, which can be described
by pX,Y,Z(x, y, z) = p(x)p(y|z)p(z|y).
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Remark 1.16.

• Point (2) applied with X = Y shows I(X; X) = H(X) which explains why entropy is sometimes
referred to as self-information.

• Point (2) motivates I(X; Y ) as a measure of the reduction in uncertainty that knowing either
variable gives about the other.

• Despite its simple form and proof, the data processing inequality in Point (5) formalises the intuitive
but fundamental concept: post-processing cannot increase information; e.g., if Z is a r.v. that
depends only on Y , then Z can not contain more information about X than Y .

• Recall from Statistics that an estimator T (X) for a parameter θ ∈ Θ is called sufficient if conditional
on T (X), the distribution of X does not depend on θ. This is equivalent to I(θ; X) = I(θ; T (X))
under all distributions in {pθ : θ ∈ Θ}.

1.2.3 Entropy properties

Theorem 1.17. (Entropy properties). Let X, Y be discrete random variables taking values in X . Write
|X | for the number of elements in X .

(1) 0 ≤ H(X) ≤ log(|X |). The upper bound is attained iff X is uniformly distributed on X, the lower
bound is attained iff X is constant with probability 1.

(2) 0 ≤ H(X|Y ) ≤ H(X) and H(X|Y ) = H(X) iff X and Y are independent, H(X|Y ) = 0 iff.
X = f(Y ) for some function f .

(3) (Chain rule) H(X1, · · · , Xn) =
∑n

i=1 H(Xi|Xi−1, · · · , X1) ≤
∑n

i=1 H(Xi) with equality iff the Xi

are independent.

(4) For f : X 7→ Y, H(f(X)) ≤ H(X) with equality iff f is injective (or one-to-one).

(5) Let X and Y be i.i.d., then
P(X = Y ) ≥ 2−H(X)

with equality iff they are uniformly distributed.

(6) H(X) is concave in pX .

Proof. For Point (1), the lower bound follows by definition of entropy; for the upper bound, we apply
Gibbs’ inequality with q(x) = |X |−1 to get

H(X) ≤ −
∑
x∈X

p(x) log(q(x)) = log(|X |).

Since equality holds in Gibbs’ inequality iff pX = q, it follows that X must be uniformly distributed to
attain the upper bound. Similarly, since each term in the sum is zero iff p(x) = 0 or p(x) = 1 and there
can be just one x with p(x) = 1, which shows that X must be constant to have zero entropy.
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For Point (2), we use that 0 ≤ I(X; Y ) = H(X) − H(X|Y ) by Theorem 1.15 so both bounds follow. The
upper bound is attained iff X, Y are independent. For the lower bound, note that by definition

H(X|Y ) =
∑
y∈Y

pY (y)H(X|Y = y),

where H(X|Y = y) = −
∑

x∈X pX|Y (x|y) log(pX|Y (x|y)). Hence, H(X|Y ) = 0 iff H(X|Y = y) = 0 for
all y in the support of Y . But by Point(1) this only happens if P(X = x|Y = y) = 1 for some constant
x = f(y). This implies that X = f(Y ).

Point (3) follows as in the proof of the Point (3) in Theorem 1.15, and the fact that H(Xi|Xi−1, · · · , X1) =
H(Xi) iff Xi and Xi−1, · · · , X1 are independent.

Point (4) follows since
H(X, f(X)) = H(X) + H(f(X)|X) = H(X)

and
H(X, f(X)) = H(f(X), X) = H(f(X)) + H(X|f(X)) ≥ H(f(X)).

So H(f(X)) ≤ H(X), and the equality holds iff H(X|f(X)) = 0, which is equivalent to that f is injective.

Point (5) follows from Jensen’s inequality,

2−H(X) = 2E[log(pX (X))] ≤ E[2log(pX (X))] = E[pX(X)] =
∑
x∈X

pX(x)pX(x) = P(X = Y ).

Point(6) follows from g(x) = −x log x is a concave function over x ∈ (0, 1).

Remark 1.18.

• Point (1) is especially intuitive if we think of entropy as the average surprise we have about X.

• Point (2) formalises “more information is better”.

• Point (4) shows that entropy is invariant under relabelling of observations.

1.3 Fano’s inequality

A common situation is that we use an observation of a random variable Y to infer the value of a random
variable X. If P(X ̸= Y ) = 0, then H(X|Y ) = 0 by Point (2) in Theorem 1.17. We expect that if
P(X ̸= Y ) is small, then H(X|Y ) should be small. Fano’s inequality makes this precise.

Theorem 1.19. (Fano’s inequality, 1966). Let X, Y be discrete random variables taking values in X .
Then

H(X|Y ) ≤ H(1X ̸=Y ) + P(X ̸= Y ) log(|X | − 1).

Alternatively we can interpret Fano’s inequality as giving a lower bounds on the error probability P(X|Y )
and this is how we will apply to get bounds on information transmission over noisy channels.
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Proof. Set Z = 1X ̸=Y and note that H(Z|X, Y ) = 0. Now

H(X|Y ) = H(X|Y ) + H(Z|X, Y )

= H(X, Z|Y )

= H(Z|Y ) + H(X|Y, Z)

≤ H(Z) + H(X|Y, Z)

= H(Z) +
∑
y∈X

[P(Y = y, Z = 0)H(X|Y = y, Z = 0) + P (Y = y, Z = 1)H(X|Y = y, Z = 1)].

Now {Y = y, Z = 0} implies {X = y}, hence H(X|Y = y, Z = 0) = 0. On the other hand, {Y = y, Z = 1}
implies that {X ∈ X \{y}} which contains |X | − 1 elements. Therefore,

H(X|Y = y, Z = 1) ≤ log(|X | − 1).

It follows that

H(X|Y ) ≤ H(Z) +
∑
y∈X

P(Y = y, Z = 1)H(X|Y = y, Z = 1)

≤ H(Z) + P(Z = 1) log(|X | − 1).

Corollary 1.20. H(X|Y ) ≤ 1 + P(X ̸= Y ) log(|X | − 1).
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Chapter 2

Typical Sequences

Given a discrete distribution, what can we infer about one sample from this distribution? Not much! An
elementary but far reaching insight of Shannon is that this changes drastically if we deal with sequences
of observations and that the entropy H(X1, · · · , Xn) measures the average storage cost of sequences of
length n.

Example 2.1. Denote by X a discrete r.v. with state space X = {0, 1} and X1, · · · , Xn, i.i.d. copies of
X. A sequence (x1, · · · , xn) ∈ {0, 1}n occurs with probability

P((X1, · · · , Xn) = (x1, · · · , xn)) = pz(x1,··· ,xn)qo(x1,··· ,xn), (2.0.1)

where p = P(X = 0), q = 1 − p and z(x1, · · · , xn) =
∑

i 1xi=0, o(x1, · · · , xn) =
∑

i 1xi=1. Now for
a “typical sequence” (x1, · · · , xn), we can approximate the numbers of 0’s and 1’s by z(x1, · · · , xn) ≈
E[z(X1, · · · , Xn))] = np and o(x1, · · · , xn) ≈ E[o(X1, · · · , Xn))] = nq. Hence,

P((X1, · · · , Xn) = (x1, · · · , xn)) ≈ pnpqnq.

Taking the logarithm on both sides of these approximiation, we get

− log(P((X1, · · · , Xn) = (x1, · · · , xn))) ≈ −np log(p) − nq log(q) = nH(X).

Thus for a “typical sequence” (x1, · · · , xn) ∈ {0, 1}n,

P((X1, · · · , Xn) = (x1, · · · , xn)) ∼ 2−nH(X).

Therefore the set of typical sequences of length n consists of approximately 2nH(X) elements, each occur-
ring with approximate probability 2−nH(X). Finally, note that 2nH(X) ≤ 2n, and this difference can be
very large.

Above informal calculation suggests to partition X n in two sets,

• “typical sequences” and

• “atypical sequences”.

19
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The set of “typical sequences” forms a potentially relatively small subset of X n, that however carries most
of the probability mass and its elements occur with approximately the same probability. This elementary
but fundamental insight is due to Shannon and has important consequences for coding.

In the rest of this section, we extend and make above informal discussion rigorous.

2.1 Weak typicality and the asymptotic equipartition property
(AEP)

Theorem 2.2. (Weak AEP 1) Let X be a discrete random variable. Then

− 1
n

log(pX1,···Xn
(X1, · · · Xn)) in prob.−→ H(X) as n → +∞. (2.1.1)

Proof. By independence, − log(pX1,···Xn
(X1, · · · Xn)) = −

∑n
i=1 log(pX(Xi)) and E[− log(pX(Xi))] =

H(X). The result follows from the (weak) law of large numbers.

Theorem 2.2 suggests the following definition of “typical sequences”.

Definition 2.3. For any n ∈ N, any ε > 0, we call

T ε
n :=

{
(x1, · · · , xn) ∈ X n :

∣∣∣∣− 1
n

log(pX1,···Xn
(x1, · · · xn)) − H(X)

∣∣∣∣ ≤ ε

}
the set of (weakly) typical sequences of length n of the random variable X (with error ε).

Theorem 2.4. (Weak AEP 2). For all ε > 0, there exists an n0 ∈ N such that for every n > n0,

(1) pX1,···Xn
(x1, · · · xn) ∈ [2−n(H(X)+ε), 2−n(H(X)−ε)] for any (x1, · · · , xn) ∈ T ε

n ;

(2) P((X1, · · · , Xn) ∈ T ε
n ) ≥ 1 − ε;

(3) |T ε
n | ∈ [(1 − ε)2n(H(X)−ε), 2n(H(X)+ε)].

Moreover, for Point (1) one can take n0 = 0.

Proof. Point (1) follows directly from Definition 2.3 for n0 = 0. Point (2) follows by Theorem 2.2, since
for every ε > 0,

P((X1, · · · , Xn) /∈ T ε
n ) = P (|log pX1,··· ,Xn(X1, · · · , Xn) − H(X)| > ε) ,

which converges to 0 as n → +∞.

For the upper bound in Point (3), observe that

1 =
∑

(x1,··· ,xn)∈X n

pX1,··· ,Xn(x1, · · · , xn)

≥
∑

(x1,··· ,xn)∈T ε
n

pX1,··· ,Xn(x1, · · · , xn)

≥
∑

(x1,··· ,xn)∈T ε
n

2−n(H(X)+ε).
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For the lower bound, we know by Point (2) that the probability P((X1, · · · , Xn) ∈ T ε
n ) converges to 1, so

for n large enough,

1 − ε ≤ P((X1, · · · , Xn) ∈ T ε
n ) ≤

∑
(x1,··· ,xn)∈T ε

n

2−n(H(X)−ε) = 2−n(H(X)−ε)|T ε
n |,

and then we get the lower bound.

Remark 2.5.
• When n is large, above suggests to think of (X1, · · · , Xn) as being drawn uniformly from T ε

n with
probability 2−nH(X).

• Theorem 2.4 does not imply that most sequences are elements of T ε
n : T ε

n has rather small cardinality
compared to X n since

|T ε
n |

|X n|
≈ 2nH(X)

2n log(|X |) = 2−n(log(|X |)−H(X)),

and the last ratio converges to 0 when n → +∞ unless H(X) = log(|X |), which holds iff X is
uniformly distributed by Theorem 1.17. However, T ε

n carries most of the probability mass, as
shown in Point (2) in Theorem 2.4.

• Theorem 2.4 allows to prove a property for typical sequences and then conclude that this property
holds for random sequences (X1, · · · , Xn) with high probability.

• The most likely sequence x∗ = argmaxxP((X1, · · · , Xn) = x) is in general not an element of T ε
n . For

example, take X = {0, 1} and P(X = 1) = 0.9, then (1, · · · , 1) is the most likely sequence but not
typical since − 1

n log(pX1,··· ,Xn
(1, ..., 1) = − log(0.9)) ≈ 0.11 is not close to H(X) = −0.1 log(0.1) −

0.9 log(0.9) ≈ 0.46. Note that as n → +∞, the probability of every sequence, thus also the most
likely sequence, tends to 0.

2.2 Source coding with block codes

We receive sequence in set X (e.g. a sequence of letter from the english alphabet) and we want to store
this message, e.g. on our computer so using a sequence of 0’s and 1’s.

Definition 2.6. For a finite set A, denote with A∗ the set of finite sequences in A. For a = a1 · · · an ∈ A∗

with all ai ∈ A, we call |a| = n the length of the sequence a ∈ A∗.

That is, to encode X , we look for a map c : X −→ A∗ that allows to recover any sequence in X from the
associated sequence in A∗. If we have knowledge about the distribution of the sequence in X we can try
to minimise the expected storage cost (e.g. A = {0, 1} the number of bits on our computer needed to
store this message). Using the AEP we associate short codewords with sequences in the typical set, and
long codewords with the remaining atypical sequence. This gives a bound on the expected length of the
encoded sequence by the entropy.

Theorem 2.7. (Source coding 1, Shannon’s first theorem). Let X be discrete random variable with state
space X . For every ε > 0, there exists an integer n, and a map

c : X n −→ {0, 1}∗
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such that

(1) the map ∪k≥0X nk −→ {0, 1}∗ given by (x1, · · · , xk) 7→ c(x1) · · · c(xk) ∈ {0, 1}∗ is injective;

(2) 1
nE[|c(X1, · · · , Xn)|] ≤ H(X) + ε.

Proof. For some ε0 > 0, we split X n into the disjoint sets T ε0
n and X n\T ε0

n , and order the elements
in T ε0

n and X n\T ε0
n (in some arbitrary order; e.g. lexicographic). By the AEP, there are at most

2n(H(X)+ε0) elements in T ε0
n , hence we can associate with every element of T ε0

n a string consisting of
l1 := ⌈n(H(X) + ε0)⌉ bits1; similarly we associate with every element of X n\T ε0

n a unique string of
l2 = ⌈n log(|X |)⌉ bits. Now define c(x1, · · · , xn) as these strings with length l1 resp. l2 bits, prefixed by
a 0 if (x1, · · · , xn) is in T ε0

n , and prefixed by 1 otherwise. Clearly, this is injective (hence a bijection on
its image) and the prefix 0 or 1 indicates how many bits follow. This block code has expected length

E[|c(X1, · · · , Xn)|]

=
∑

x∈T ε0
n

p(x)(l1 + 1) +
∑

x/∈T ε0
n

p(x)(l2 + 1)

≤
∑

x∈T ε0
n

p(x)(n(H(X) + ε0) + 2) +
∑

x/∈T ε0
n

p(x)(n log(|X |) + 2))

≤ P((X1, · · · , Xn) ∈ T ε0
n )(n(H(X) + ϵ0) + 2) + P((X1, · · · , Xn) /∈ T ε0

n )(n log(|X |) + 2)

≤ n(H(X) + ε0) + 2 + ε0n log(|X |)

= n(H(X) + ε1)

with ε1 := ε0(1 + log(|X |)) + 2
n . For a given ε > 0, we first choose ε0 small enough such that ε0(1 +

log(|X |)) < ε/2, and then n sufficiently large such that 2
n ≤ ε/2.

Shannon’s first theorem shows that we encode sequence X1, · · · , Xn using on average no more than
nH(X). Put it differently: on average we need H(X) bits to encode one symbol from this sequence. We
will prove later that above bound is sharp. Hence, this leads to another, more operational interpretation
of entropy of a random variable, namely as a compression bound of messages that are generated by
sampling from a distribution.

2.3 Non i.i.d. source coding (not examinable)

Of course, the assumption that the sequence is generated by i.i.d. draws from the same distribution is not
realistic (e.g. sentence seen as sequences of letters, etc). However, this assumption can be significantly
weakened and this is the content of the Shannon–McMillan–Breiman Theorem2:

Theorem 2.8. (Shannon–McMillan–Breiman). Let X1, X2, · · · be an ergodic and stationary sequence
of random variables in a finite state space X . Then

− 1
n

log(pX1,··· ,Xn
(X1, · · · , Xn)) in prob.−→ H̄, as n → +∞,

where H̄ := limn→+∞
1
n H(X1, · · · , Xn).

1here ⌈x⌉ means the lowest integer no less than x.
2The version here is due to Breiman, there are many extension (a.s. convergence, non-stationary, etc); see [1] for reference
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(A sequence is stationary if Xi, · · · , Xi+n has the same law for all i. Loosely speaking, a sequence is
ergodic if the time average over one realisaition equals the expectation. The class of of stationary and
ergodic processes is large and covers many important processes). One can then modify Theorem 2.4 and
adapt Shannon’s block coding argument of Theorem 2.7.

2.4 Strong typicality

Above relies on the idea that we associate with sequences that appear often short codewords, and with
rare sequence long codewords. Hence, we would ask if there are sets with smaller cardinality than T ε

n

that still carry most of the pmf.

Definition 2.9. Denote with Sε
n the smallest subset of X n such that

P((X1, · · · , Xn) ∈ Sε
n) ≥ 1 − ε.

We can construct this set by ordering sequences by their probability and adding them until the probability
mass is greater or equal 1 − ε.

Proposition 2.10. Let (εn)n be a strictly positive sequence such that limn→+∞ εn = 0. Then

lim
n→+∞

{
lim

m→+∞

1
m

log
(

|Sεn
m |

|T εn
m |

)}
= 0.

Proof (Sketch). Observe |T ε
m| is larger than |Sε

m|, with small error. Now show that Sε
m and T ε

m overlap
apart from a set with probability ≤ 2ε. The elements of T ε

m have probabilities bounded above by
2−m(H−ε), so the probability of Sε

m ∩ T ε
m is bounded above by |Sε

m ∩ T ε
m|2−m(H−ε). Therefore, by the

weak AEP 2,
1 − 2ε ≤ |Sε|2−m(H−ε) ≤ |Sε|

|T ε|
1

1 − ε
.

Rearranging shows the limit.

In other words, the set of strong and weak typical sequences have the same number of elements up to first
order in the exponent. Hence, we do not gain by working with strong typical sequences instead of weak
typical sequences although its construction appears at first sight to be more efficient than that of T ε

n .
Nevertheless, one could argue that the definition of Sε

n is simpler and that we should have derived the
source coding Theorem, Theorem 2.7, directly using Sε

n instead of T ε
n . However, note that the proof relies

on counting the elements of the set of “typical sequences”: using T ε
n this is trivial due to the “uniform

distribution” elements in T ε
n , but this is much harder for Sε

n and only Proposition 2.10 tells us the answer.
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Chapter 3

Optimal Codes

We have used the AEP to construct a block code that compresses messages generated by i.i.d. samples
from a random variable X. In this section we want to use symbol codes to compress, that is to associate
with every element of X a sequence of bits (or more generally, a sequence of elements in a given set).

3.1 Symbol codes and Kraft–McMillan

Definition 3.1. For a finite set X , denote with X ∗ the set of finite sequences (also called strings) in X .

For x = x1 · · · xn ∈ X ∗ with xi ∈ X for all i = 1, · · · , n, we call |x| = n the length of the sequence x ∈ X ∗.

Given two finite sets X and Y, we call a function c : X −→ Y∗ a symbol code, and call c(x) ∈ Y∗ the
codeword of x ∈ X . In this context, Y is called a d-ary if |Y| = d.

Since we need to recover the original sequence x1 · · · xn ∈ X ∗ given c(x1) · · · c(xn) ∈ Y∗, we need to
restrict attention to codes c that are injective. However, this is not sufficient
Example 3.2. Let X = {1, · · · , 6} and c(x) be the binary expansion, i.e. the source code is a binary
code with codewords {1, 10, 11, 100, 101, 110}. In general, we can not recover the original sequence, e.g.
110 might correspond to x1 = 6 or x1x2 = 12.

Ideally, we are looking for a code that allows to recover the original message, and it is easy to decode in
practice and compresses the original message as much as possible. To make all this rigorous, we define
different classes of codes.

Definition 3.3. Let c : X −→ Y∗ be a symbol code. We denote with c∗ : X ∗ −→ Y∗ the extension of c

to X ∗ by c∗(x1 · · · xn) = c(x1) · · · c(xn). We say that c is

(1) unambiguous (or nonsingular) if c is injective, so every x ∈ X maps to a different element of Y∗,

(2) uniquely decodable if c∗ is injective, so every sequence of characters in X maps to a different element
of Y∗ (without needing to separate characters!)

(3) a prefix code (or instantaneous code), if no codeword of c is the prefix of another codeword of c.
That is, there does not exist x1 ∈ X , x2 ∈ X such that c(x1)y = c(x2) for some y ∈ Y∗.

25
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Clearly,
{ prefix codes} ⊂ { uniquely decodable codes } ⊂ { unambigiuous codes}.

In general it is not easy to check if a given code is unique decodable; moreover, even if a code is uniquely
decodable it can be very difficult/computationally expensive to decode.

Example 3.4. Take X = {A, B, C, D}, Y = {0, 1}. Then c(A) = 0, c(B) = 01, c(C) = 011, c(D) = 111 is
uniquely decodable although this not completely trivial to see. Note that describing a decoding algorithm
is not easy either. For example, what leads to the string 011 111 01? What about 011 111 11?

On the other hand, prefix codes are easy to decode. A surprising result is that we can restrict attention
to the design of prefix codes without increasing the length of code words.

Theorem 3.5. (1) Let c : X −→ Y∗ be uniquely decodable and set lx = |c(x)|. Then∑
x∈X

|Y|−lx ≤ 1. (3.1.1)

(2) Conversely, given (lx)x∈X ⊂ N and a finite set Y such that (3.1.1) holds, there exists a prefix code
c : X −→ Y∗ such that |c(x)| = lx for ∀x ∈ X .

Proof. Set d = |Y| and lmax = maxx∈X |c(x)|. We consider the source strings of length n, and obtain(∑
x∈X

d−lx

)n

=
∑

x1,x2,...,xn∈X
d−lx1 d−lx1 · · · d−lxn

=
∑

x1,x2,...,xn∈X
d(−

∑n

i=1
lxi

).

If we collect together output strings of length k =
∑n

i=1 lxi for each k, and write a(k) for the number of
source sequences (of any length) mapping to codewords of length k, then we have(∑

x∈X
d−lx

)n

≤
nlmax∑
k=1

a(k)d−k.

As there are dk strings in Y of length k, unique decodability and the pigeonhole principle implies a(k) ≤ dk,
hence

∑
x∈X d−lx ≤ (nlmax)1/n. Letting n → +∞ shows the result.

Let (lx)x∈X be a set of integers that fulfils (3.1.1) and set Y. By relabelling, identify X as the set
{1, · · · , |X |} ⊂ N and assume l1 ≤ l2 ≤ · · · ≤ l|X |. Define rm :=

∑m−1
i=1 |Y|−li for any m ≤ |X |, which

satisfies rm ≤ 1 by the assumption. Define c(m) as the first lm digits in the |Y|-ary expansion1 of the
real number rm ∈ [0, 1), that is c(m) := y1 · · · ylm

, where

rm =
∑
i≥1

yi|Y|−i.

This must be a prefix code: if not, there exists m, n with m < n, and c(m) a prefix of c(n) and therefore
the first lm digits of rm and rn in the |Y|-ary expansion coincide which in turn implies rn − rm < |Y|−lm ;
on the other hand, by the very definition of rm and rn we have rn − rm =

∑n−1
i=m |Y|−li ≥ |Y|−lm , which

is a contradiction.
1With the usual convention that an infinite number of zeros appears, e.g. with d = 2, 1

2 has the expansion 2−1 and not∑+∞
i=2 2−i.



3.2. OPTIMAL CODES 27

Remark 3.6. The inequality (3.1.1) is called the Kraft–McMillan inequality. Under the stronger assump-
tion that p is a prefix code in Point (1), the above Theorem 3.5 has a nice proof using trees; Kraft showed
above theorem under this extra assumption. Theorem 3.5 as stated above is due to McMillan (based on
Kraft’s work). Yet another proof of Point (1) can be given using the “probabilistic method” which we
will encounter again.

Corollary 3.7. For any uniquely decodable code there exists a prefix code with the same codeword lengths.

3.2 Optimal codes

So far, we have not made any assumptions on how the messages that we want to encode are generated.
We now study the case, when the messages are generated by independent samples from a discrete random
variable X and our goal is to minimise the average codeword length.

Definition 3.8. We call a symbol code c : X −→ Y∗ optimal for a random variable X with pmf p on X
and a finite set Y, if it minimises E[|c′(X)|] among all uniquely decodable codes c′ : X −→ Y∗.

In view of Kraft–McMillan inequality, given a set Y a code c : X −→ Y∗ is optimal if it solves the
constraint minimisation problem

Minimise
∑

x∈X p(x)lx
s.t.

∑
x:p(x)>0 d−lx ≤ 1 and (lx)x∈X ⊂ N.

(3.2.1)

This is an integer programming problem, and such problems are in general (computationally) hard to
solve. To get an idea about what to expect, let us first neglect the integer constraint lx ∈ N and
assume

∑
d−lx = 1. This in turn is a simple optimisation problem that can for example be solved using

Lagrangian multipliers, i.e. differentiating

∑
x∈X

p(x)lx − λ

(∑
x∈X

d−lx − 1
)

after lx and setting the derivative to 0 gives lx = − logd(p(x)) and it remains to verify that this is
indeed a minimum. This would give (still ignoring the integer constraint) an expected length E[|c(X)|] =
−
∑

p(x) logd(p(x)) = Hd(X). Instead of using Lagrange multipliers we make this rigorous using a direct
argument involving just basic properties of entropy and divergence from Chapter 1.

Theorem 3.9. (Source coding for symbol codes). Let X be a random variable taking values in a finite
set X and c a uniquely decodable, d-ary source code. Then

Hd(X) ≤ E[|c(X)|],

and the equality holds iff |c(x)| = − logd(P(X = x)).
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Proof. Set lx := c(x) and q(x) = d−lx∑
x∈X

d−lx
, we have,

E[|c(X)|] − Hd(X) =
∑
x∈X

p(x)lx +
∑
x∈X

p(x) logd(p(x))

= −
∑
x∈X

p(x) logd(d−lx) +
∑
x∈X

p(x) logd(p(x))

= −
∑
x∈X

p(x) logd

(
q(x)

∑
x′∈X

d−lx′

)
+
∑
x∈X

p(x) logd(p(x))

= −
∑
x∈X

p(x) logd

(∑
x′∈X

d−lx′

)
+
∑
x∈X

p(x) logd

(
p(x)
q(x)

)

= − logb

(∑
x′∈X

d−lx′

)
+ Dd(p∥ q)

≥ 0,

where used that by Kraft–McMillan’s inequality (3.1.1)
∑

x′∈X d−lx′ ≤ 1 and that divergence is non-
negative. Note that the equality holds iff

∑
x′∈X d−lx′ = 1 and D(p∥ q) = 0. Since D(p∥ q) = 0 implies

p = q, the result follows by definition of q.

Proposition 3.10. Let X be a random variable taking values in a finite set X and Y a d-ary set. There
exists an optimal code c∗ and

Hd(X) ≤ E[|c∗(X)|] < Hd(X) + 1. (3.2.2)

Proof. Set lx := ⌈− logd(p(x))⌉ and note that
∑

x∈X d−lx ≤
∑

x∈X d−(− logd(p(x))) =
∑

x∈X p(x) = 1.
Hence, by Theorem 3.5, there exists a (not necessarily optimal) prefix code c with word lengths (lx)x∈X .
Now by definition

− logd(p(x)) ≤ lx < − logd(p(x)) + 1,

so conclude by multiplying this inequality with p(x) and taking summing over x ∈ X to get (3.2.2). There
are countably many prefix codes with expected length less than a given finite number, so we can sort
them by expected length and take a code that achieves the minimum. The optimal code can only have
an expected length less or equal to that of c.

This proposition and its proof give us the Shannon’s code.

3.3 Approaching the lower bound by block codes

If c is an optimal code we are only guaranteed that

Hd(X) ≤ E[|c(X)|] < Hd(X) + 1.

The overhead of 1 is negligible if X has high entropy but it can be the dominating term for low entropies.
By encoding sequences, we get arbitrary close to the lower bound: if we apply Proposition 3.10 to the
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X n-valued random variable (X1, · · · , Xn) with Xi being i.i.d. copies of X, then the code cn : X n −→ Y∗

satisfies E[|cn(X1, · · · , Xn)|] < Hd(X1, · · · , Xn) + 1. But Hd(X1, · · · , Xn) = nH(X), hence

1
n
E[|cn(X1, · · · , Xn)|] < Hd(X) + 1

n
→ Hd(X) as n → +∞.

Put differently, one needs at least Hd(X) symbols to encode one symbol in the source and this bound is
attainable (at asymptotically using block codes).

3.4 Shannon’s code

In view of Theorem 3.9, a natural approach to construct a code is to assign with x ∈ X a codeword
of length ⌈− log(pX(x))⌉. Shannon gave an explicit algorithm that does this in his seminal 1948 paper:
given a pmf p on X = {1, · · · , m}, pi = p(xi), and a finite set Y

(1) Order the probabilities pi decreasingly and assume (by relabelling) that p1 ≥ · · · ≥ pm,

(2) Define cS(xr) as the first lr := ⌈− log|Y|(pr)⌉ digits in the |Y|-ary expansion of the real number∑r−1
i=1 pi.

The above construction is the so-called Shannon code cS . Following the proof of Theorem 3.5, one
verifies that this is indeed a prefix code. As in Proposition 3.10, we also see that H|Y|(X) ≤ E[|cS(X)|] <

H|Y|(X) + 1. However,

• the Shannon code is in general not optimal,

• ordering a set of cardinality k needs O(k log(k)) computational steps. This gets prohibitively
expensive when combined with above block coding trick where we need to order |X |n probabilities
if we use blocks of length n; for example, already for uppercase English letters X = {A, B, · · · , Z},
using blocks of length n = 100, |X |100 = 26100 would require to order and store(!) a set that
contains more elements than there are particles in the universe.

The Shannon code depends highly on the distribution of X. In practice, we usually have to infer the
underlying probability distribution and work in a two step approach: firstly, read the whole message to
infer the distribution; secondly, use the estimated pmf p to construct a code. The first step leads to
errors, hence we need to ask how robust Shannon codes are.

Proposition 3.11. Let p and q be pmf’s on X and X ∼ p and Y a finite set of cardinality |Y| = d. If
we denote with cq : X −→ Y∗ a Shannon code for the distribution q, then

Hd(X) + Dd(p∥q) ≤ E[|cq(X)|] < Hd(X) + Dd(p∥q) + 1.
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Proof. We have

E[|cq(X)|] =
∑
x∈X

p(x)⌈− logd(q(x))⌉

<
∑
x∈X

p(x)(− logd(q(x)) + 1)

=
∑
x∈X

p(x)
(

logd

(
p(x)
q(x)

1
p(x)

)
+ 1
)

=
∑
x∈X

p(x)
(

logd

(
p(x)
q(x)

))
+
∑
x∈X

p(x) logd

(
1

p(x)

)
+ 1

= Dd(p∥q) + Hd(X) + 1.

Since the lower bound is attained iff ⌈− logd(q(x))⌉ = − logd(q(x)) the lower bound follows similarly.

3.5 Fano’s code [not examinable]

Fano suggested a different construction that is also very simple to implement. Given a pmf p on X =
{1, · · · , m} with X ∼ p and pi = p(xi), and a finite set Y with d = |Y|, Fano gave an explicit construction
for a d-ary prefix code. In the case of a binary encoding the construction is as follows:

(1) Order the symbols by their probability decreasingly, and assume (by relabelling) that p1 ≥ · · · ≥ pm;

(2) Find r that minimises |
∑

i≤r pi −
∑

i>r pi| and split X into two groups X0 := {xi : i ≤ r} and
X1 := {xi : i > r};

(3) Define the first digit of the codewords for X0 as 0 and for X1 as 1,

(4) Repeat Steps (2) and (3) recursively until we can not split anymore.

Above construction leads to the so-called Fano-code (also called Shannon–Fano code) cF : X −→ Y∗. As
for the Shannon code, it can be shown that E[|cF (X)|] ≤ Hd(X) + 2, that the Fano code is a prefix code
and that in general the Fano code is not optimal.

3.6 Huffman codes: optimal and a simple construction

Huffman was a student of Fano and realised that prefix codes corresponds to certain graphs, called rooted
trees and that previous constructions such as Fano’s code builds a tree starting at its root. As Huffman
showed in 1952, by starting instead at the leaves of the tree, one gets a very simple algorithm that turns
out to produce an optimal code!

Definition 3.12. A undirected graph (V, E) is a tuple consisting of a set V and a set of two-element
subsets of E. We call elements of V vertices and elements of E edges. For v ∈ V we denote with deg(v)
the number of edges that contain v and call deg(v) the degree of v. We call a graph d-ary if the maximal
degree of its vertices is d.
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We now define a subset of the set of graphs.

Definition 3.13. The set of rooted trees T is a subset of all graphs and defined recursively as:

(1) The graph τ consisting of a single vertex r is a rooted tree. We call r the root and the leaf of τ .

(2) If τi ∈ T for i = 1, · · · , n, then the graph τ formed by starting with a new vertex r and adding edges
to each of the roots of τ1, · · · , τn is also a rooted tree. We call r the root of τ and we call the leaves
of τ1, · · · , τn the leaves of τ .

We can think of the set of prefix codes as the set of rooted trees: identify the codewords with leaves,
the empty message with the root node and labelling the edges by letters that are in the codeword at the
leave it ends up.

Lemma 3.14. There is a bijection from the set of d-ary prefix codes to the set of d-ary rooted trees.

As remarked in Section 3.2, to find a prefix code with minimal expected length we have to deal with a
integer programming problem. Surprisingly, there exists a simple algorithm that construct the prefix code
of shortest expected length for a given distribution in linear complexity. This the so-called Huffman code:
we construct a rooted tree starting from the nodes of the least likely letters. For brevity of presentation,
we describe only the binary Huffman code in detail: fix a pmf p on X = {1, · · · , m} and a random variable
X ∼ p, and assume (by relabelling) that p1 ≥ · · · ≥ pm with pi := p(xi). Then

(1) Associate with the two least likely symbols, two leaves that are joined into a vertex,

(2) Build a new distribution on m−1 symbols p, where p′
1 = p1, · · · , p′

m−2 = pm−2 and p′
m−1 := pm−1 +

pm (i.e. symbols m−1 and m are merged into one new symbol with probability p′
m−1 = pm−1 +pm),

and relabel the resulted pmf by non-increasing order.

(3) Repeat above two steps of merging the two least likely symbols until we have a rooted tree.

Note that

• The algorithm can be seen as construction the codetree bottom up: Step 2 amounts to joining two
leaves with a new node.

• Above algorithm terminates in |X | − 1 steps and once we have build the rooted tree the code
assignment is done by assigning 0 or 1 to the branches. Hence the complexity is O(|X |) if we are
given a sorted pmf p; if we need to sort the pmf then the complexity of construction the Huffman
code is O(|X | log |X |).

• If two symbols have same probability at every iteration, the resulting Huffman code may not be
unique. However, they have the same expected length/

• In the d-ary case, the construction is analogous: we merge d nodes at every step. It may happen
that we need to introduce dummy variables since there might not be enough nodes to merge d

nodes. See [1] for details.
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Proposition 3.15. Let X , Y be finite sets and p a pmf on X with a random variable X ∼ p. The
Huffman code c : X −→ Y∗ for p is optimal, i.e. if c′ is another uniquely decodable code c′ : X −→ Y∗

then
E[|c(X)|] ≤ E[|c′(X)|].

We prepare the proof with a Lemma about general properties of a certain optimal prefix code. In itself
it is not an important code but it is a useful tool to prove optimality of other codes (such as Huffman as
we will see in the proof Proposition 3.15).

Lemma 3.16. Let p be a pmf on X = {x1, · · · , xm} and assume wlog that p1 ≥ · · · ≥ pm for pi := p(xi).
Then an optimal prefix code exists, any optimal prefix code satisfies

(1) pj > pk implies |c(xj)| ≤ |c(xk)|,

(2) there are two longest codewords with the same length,

(3) two of the longest codewords differ only in the last digit.

We call c with these properties a canonical code for the pmf p.

Proof. The existence of an optimal prefix code is easy, since the set of prefix codes is well-ordered by
expected length. Therefore, there exists a (not necessarily unique) optimal code.

For Point (1), fix an optimal code c and consider the code c′ given by interchanging the codewords of c

for xj and xk for some j, k with j < k resp. pk < pj . Then

0 ≤
∑

i

pi|c′(xi)| −
∑

i

pi|c(xi)|

= pj |c(xk)| + pk|c(xj)| − pj |c(xj)| − pk|c(xk)|

= (pj − pk)(|c(xk)| − |c(xj)|).

Hence |c(xk)| ≥ |c(xj)|.

For Point (2), assume the contrary and remove the last digit from the longest codeword. This would still
give a prefix code and this new prefix code would have strictly smaller expected length. Hence, the two
longest codewords must have the same expected length.

For Point (3), identify a prefix code with a rooted tree. A codeword of maximum length must have a
sibling (a leaf connecting to same vertex; otherwise, we could remove the last digit and get a prefix code
of shorter expected length).

We now use this to prove that the Huffman code is optimal.

Proof of Proposition 3.15. Fix a pmf p with p1 ≥ · · · ≥ pm on m symbols. Denote with p′ the pmf on m−1
symbols given by merging the lowest probabilities, p′

i = pi for i ∈ {1, · · · , m − 2} and p′
m−1 = pm−1 + pm.

Let cp be the canonical optimal code for p. Define cp′ as the code for p′ given by merging the leaves for
pm−1 and pm in the rooted tree representing cp (by Lemma 3.16, pm−1, pm are siblings so this is possible).
Then the difference in expected lengths is

L(cp) − L(cp′
) = pm−1l + pml − p′

m−1(l − 1) (3.6.1)

= pm−1 + pm. (3.6.2)



3.7. ELIAS’ CODE 33

where l denotes the codeword lengths of symbols m − 1 and m under cp. On the other hand, let ep′ be
any optimal (prefix) code for p′. We again represent it as a rooted tree and define ep by replacing the
leaf for p′

m−1 with a rooted tree consisting of two leaves pm and pm−1. Then

L(ep) − L(ep′
) = pm−1 + pm. (3.6.3)

Substracting (3.6.1) from (3.6.3) yields

(L(ep) − L(cp)) + (L(cp′
) − L(ep′

)) = 0.

By assumption, cp and ep′ are optimal, hence both terms are non-negative so both must equal 0. We
conclude that L(ep) = L(cp), hence ep is an optimal code for p. The above shows, that expanding any
optimal code e′ for p′ leads to an optimal code ep for p. Now note that the Huffman code is constructed
by a repeated application of such an expansion. Further, for m = 2 the Huffman code is clearly optimal,
hence the result follows by induction on m. □

The Huffman code has a simple construction and is optimal. It is used in mainstream compression formats
(such as gzip, jpeg, mp3, png, etc). However, it is not the final answer to source coding.

• Not every optimal code is Huffman; e.g. is optimal but not Huffman (since c can be obtained by

p(x) 0.3 0.3 0.2 0.2
c(x) 00 10 01 11

permutating leaves of same length of the Huffman code for p).

• Huffman (and all the other prefix codes we have discussed so far, except Elias’ code) requires
(ordering) knowledge of p. Further, optimality was defined for messages that are drawn by i.i.d.
samples. When compressing text (source symbols are english letters) this does not apply since e.g.
the probability of sampling e is much higher if the previous two letters were “th” compared with
say “xy”.

• Optimality just guarantees Hd(X) ≤ E[|c(X)|] < Hd(X) + 1. This is a good bound if Hd(X) is
large but for small entropies the term +1 on the right hand side is dominant. One can again use the
block coding trick discussed in Section 3.3 to encode sequences of length n to reduce the overhead
to 1/n bits but this again leads to a combinatorial explosion since we need to sort |X |n probabilty
masses.

3.7 Elias’ code

Given a pmf p on X = {1, · · · , m} with pi = p(xi) and X ∼ p, and a set Y of cardinality d. Associate the
symbol xr with the real number

∑
i<r pi+ pr

2 . In particular, the number associated with xr differs from the
number associated with any other source symbol xj by at least pr/2, and in (at most) the ⌈− logd(pr)⌉+1
digit in its d-ary expansion. Using this observation, we define the Elias code (also Shannon–Fano–Elias
code) cE(xr) as the first ⌈− logd(pr)⌉ + 1 digits in the d-ary expansion of the associated real number.
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As above, one can show that Hd(X) + 1 ≤ E[|cE(X)|] < Hd(X) + 2. Although it is less efficient than
above codes, this construction has the big advantage that we do not need to order the elements of X by
their probabilities. It also leads to the more general ‘arithmetic codes’, which can achieve efficiency.

3.8 Arithmetic codes

Arithmetic codes are another class of block codes, which have a simple construction, and give (asymptot-
ically) optimal compression. The aim is to split up the interval [0, 1] into sections associated with each
codeword. We assume X = {1, ..., m} and Y = {1, .., d}, and write F (x) =

∑
k≤x px for the cumulative

probability function. We then associate each codeword x with the interval [F (x − 1), F (x)), note that
this interval has length px. Elias’ code reduces this interval to its midpoint and encodes that value with
a length ⌈− logd(pr)⌉ + 1 codeword, which gives a prefix code uniquely identifying each interval.

Arithmetic coding goes further, by repeating this with blocks, using a lexicographic order. We could
simply list all blocks and apply the above method, but there is a simpler recursive interpretation. In
order to encode a block x1x2, we first identify the initial section [F (x1 − 1), F (x1)). We now use this
interval in the place of [0, 1] above. If our source symbols are independent, this gives the interval[

F (x1 − 1) + F (x2 − 1)
(
F (x1) − F (x1 − 1)

)
, F (x1 − 1) + F (x2)

(
F (x1) − F (x1 − 1)

))
.

If our source symbols are not independent (for example, if they come from a Markov chain), then we can
replace F (x2) by the corresponding conditional cumulative distribution function.

Decoding an arithmetic code is conceptually easy – we simply identify the interval, and find the codeword
that corresponds to it. In practice, various tricks are used to avoid problems with variable-precision
arithmetic, and so a good implementation is not completely straightforward.

Advantages of arithmetic coding is that it is a prefix code within blocks – you can extract the first
character early, as you only need to identify that your message is in the interval [F (x1 − 1), F (x1)).
However, codeword length is ‘not wasted’, as it gets used in the encoding of the subsequent character.
For independent source symbols, we also do not need to store a codebook, as it can easily be reconstructed
given the single-symbol probabilities and ordering. We can also use it to encode arbitrarily long messages,
rather than blocks of fixed length (but to do this, we need to include an ‘end of message’ symbol in our
source alphabet, or know the length of our original message, otherwise our codeword implicitly ends with
an infinite string of x1s).

You can also order the blocks in a convenient way, so that similar messages are close together (which
gives the encoded message an interpretation as getting closer to the meaning of the source), or are far
apart (so that errors in communication should be easily determined by context).

To prove optimality of arithmetic codes for independent symbols, we have the following result.

Theorem 3.17. Let X1, ..., Xn be iid random variables from an alphabet X , with pmf p. Then the
arithmetic code based on n blocks has average codeword length bounded by H(X1, ..., Xn) + 2, and hence
per-character average codeword length at most H(X) + 2/n.

Proof. A particular source block x1x2...xn will occur, due to independence, with probability
∏

i≤n p(xi),
which is (by construction), the length of the interval it is associated with. This interval will contain a
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point with codeword length at most⌈
− log

(∏
i≤n

p(xi)
)⌉

+ 1 ≤ − log
(∏

i≤n

p(xi)
)

+ 2.

The average block codeword length is then bounded by

−
∑

x1,...,xn

(∏
i≤n

p(xi)
)

log
(∏

i≤n

p(xi)
)

+ 2 = H(X1, ..., Xn) + 2 = nH(X) + 2

and dividing by n gives the per-character length.

A key advantage of arithmetic coding is its flexibility – at each stage you can change the probabilities.
This means we can use Arithmetic coding to build optimal codes for Markov chains (where the probability
depends on the preceeding character) or in an adaptive way, where we change the probability distribution
at each stage depending on the characters we have observed.

3.9 Block Arithmetic Codes (not examinable)

An extension of arithmetic coding allows us to build codes with variable-sized inputs, and fixed sized
outputs. This is useful as it means that errors can only affect the current block, and cannot have long-run
impact on the coded message.

We will focus on binary BACs (Bonocelet, 1993), with X = {1, ..., m}. If our output is of length d, then
we know there are 2d output messages available. Our aim is to find a set of input strings W ⊂ X ∗ such
that |W| = K ≤ 2d, and which is proper (no element of W is a prefix of another element of W) and
complete (every string in X ∗ has a prefix in W). If we can do this with K = 2d, then every output
codeword is used.

We will build our code by splitting our K output words into m groups of codewords {K1, ..., Km}, one
corresponding to each input letter. For each Kj , if |Kj | ≥ m, we can split it further, to get the next
input letter, and so on. Essentially, this builds a rooted m-ary tree with K leaves, representing the input
messages.

Due to the recursive decomposition, if N(K) is the average number of symbols encoded using Kl code-
words, and pl is the probability of each input letter, then assuming iid input we have

N(K) = 1 +
m∑

l=1
plN(Kl).

Alternatively, observing that each of our w ∈ W has probability p(w) := pw1pw2 ...pw|w| of being observed
as the start of the string, an easy rearrangement shows

N(K) =
K∑

i=1
|wi|p(wi)

(using superscripts to indicate that these are different words, not different letters in a fixed word).

The main difficulty is to construct K ≤ 2d, or equivalently {Kl}. It would be possible to do this
recursively, building up from small sets, but for large m this is prohibitively complex. A good heuristic,



36 CHAPTER 3. OPTIMAL CODES

inspired by Arithmetic codes, is to try and make Kl ≈ plK, but we also want to make sure Kl ≥ 1, and
avoid 1 < Kl < m (as this wastes codewords). This is done by the following recursive algorithm, with
Kl = 1 + Ll(m − 1). This takes a given L = ⌊(K − 1)/(m − 1)⌋, and determines a good decomposition
{L1, ..., Lm}. We can initialize this with K = 2d and iterate.

1. Sort probabilities into increasing order p1 ≤ p2 ≤ ... ≤ pm

2. Fix initial values q = 1, L̃ = L

3. For each i ≤ m (in order)

(a) Compute p̃i = pi/q

(b) Calculate an approximate interval width:

Li = max
{

0,
⌊
p̃iL̃i + (p̃(2 − i) − 1)

m − 1 + 1
2

⌋}
(c) To account for codewords used at this stage, set L̃ to L̃ − Ll, and q to q − pi.

For K large enough, this gives an approximation error |Kl − plK| ≤ m, and
∑

Kl = K. One can then
show that

log K

N(K) ≤ H(X) + c

N(K)
ß for some constant c, similarly to arithmetic and Huffman codes – we get close to the limiting per-
character rate.

As with arithmetic coding, one does not need to store the full codebook – it can be reconstructed on-the-
fly given the probabilities, as the construction is deterministic and recursive. One can also modify the
probabilities based on the preceeding character, allowing efficient coding of Markov chain sources.

A related variable-to-fixed length code is given by the Tunstall code, which defines a codebook recursively
by splitting the highest probability codeword into m pieces, until no more splits are possible and the
codebook is full. This is conceptually similar to the Fano code.



Chapter 4

Channel Coding: Shannon’s Second
Theorem

In Chapter 2 we studied how much information is contained in sequences and used this to derived
codes to store such sequences. In many real-world situations we are confronted with the problem of
transmitting information from one place to another, typically through a medium that is subject to noise
and perturbations.

4.1 Discrete memoryless channels

Definition 4.1. A discrete memoryless channel (DMC) is a triple (X , M, Y) consisting of

• a finite set X , called the input alphabet,

• a finite set Y, called the output alphabet,

• a stochastic1 |X | × |Y|-matrix M , called the emission matrix.

We say that a pair of random variables X, Y defined on some probability space (Ω, F ,P) realises the DMC,
if the conditional distribution of Y given X equals M , i.e. M =

(
pY |X(y|x)

)
x∈X ,y∈Y .

Example 4.2. X = {0, 1}, Y = {a, b, c, d, e} and M =
(

0.2 0 0.5 0 0.3
0 0.2 0 0.8 0

)
.

Above is an example of a lossless channel: knowing the output Y allows to uniquely identify the input
X (e.g. output is b or d iff the input is 1). More generally, we call (X , M, Y) a lossless channel if we can
divide Y into disjoint sets Y1, · · · , Y|X| such that

P(Y ∈ Yi|X = xi) = 1 for ∀ 1 ≤ i ≤ |X |.

For a lossless channel (X , M, Y), similar to Point (2) in Theorem 1.17, we have H(X|Y ) = 0 (since
X = f(Y ) for f(y) = xi1y∈Yi , i.e., X is a deterministic function of Y ).

1A stochastic matrix is a matrix with non-negative entries and the sum of entries in each row equals 1.

37
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Another extreme is a channel that is completely useless for transmitting information, i.e. the output Y

contains no information about the input X. This means X and Y are independent, which is (again by
Point (2) in Theorem 1.17) equivalent to H(X|Y ) = H(X).

Here are some important examples of DMCs.

Example 4.3. Let q ∈ [0, 1].

(1) Binary symmetric channel: X = Y = {0, 1} and the stochastic matrix is given as

X \ Y 0 1
0 1 − q q

1 q 1 − q

(2) Binary erasure channel: X = {0, 1}, Y = {0, 1, ?} and the stochastic matrix is given as

X \ Y 0 ? 1
0 1 − q q 0
1 0 q 1 − q

(3) Noisy typewriter: X = Y = {A, · · · , Z} and the stochastic matrix is given as

X \ Y A B C D · · · · · · Y Z
A 1/3 1/3 0 0 · · · · · · 0 1/3
B 1/3 1/3 1/3 0 · · · · · · 0 0
...

. . . . . . . . . . . .
Y 0 0 0 · · · 0 1/3 1/3 1/3
Z 1/3 0 0 · · · 0 0 1/3 1/3

4.2 Channel capacity

We want to measure how much our uncertainty about the input X is reduced by knowing the output Y .
We have seen that a lossless channel H(X|Y ) = 0 and a useless channel H(X|Y ) = H(X). Motivated by
this, an intuitive measure for the quality of a channel is

H(X) − H(X|Y ) = I(X; Y ).

A DMC only specifies the distribution of the output conditional on the input, that is, pY |X . To use the
channel for information transmission, we have freedom to choose the distribution of the input. For each
input distribution, pX , we have the corresponding output distribution

pY (y) =
∑

x

pY |X(y|x)pX(x)
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and joint distribution p(x, y) = pY |X(y|x)pX(x).

This motivates the definition of channel capacity.

Definition 4.4. Let (X , M, Y) be a DMC. We call C := sup I(X; Y ) the channel capacity of DMC
(X , M, Y), where the supremum is taken over all input distributions pX .

From I(X; Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X), it follows that

0 ≤ C ≤ min{log(|X |), log(|Y|)}.

To ensure the channel capacity is well-defined, we have the following proposition.

Proposition 4.5. For fixed pY |X , the map pX → I(X; Y ) is concave. Conversely, for fixed pX , the map
pY |X → I(X; Y ) is convex.

Proof. For the first statement, recall I(X; Y ) = H(Y ) − H(Y |X). Given pY |X , we know pY and H(Y |X)
are linear functions of pX . We also know H(Y ) is concave in pY , so H(Y ) is concave in pX , and I(X; Y )
is concave in pX

For the second statement, recall I(X; Y ) = D(pX,Y ∥pX ∗ pY ). Given pX , pX,Y is linear in pY |X , so is
pX ∗pY . By Point (5) in Theorem 1.14, we know D(p∥q) is convex in (p, q). So I(X; Y ) is convex in pY |X

for any fixed pX .

Below we calculate the capacity of some simple channels.

Example 4.6. For the binary symmetric channel specified in Example 4.3.(1), we have a transmission
error with probability q. To calculate its capacity, we need to estimate I(X; Y ).

I(X; Y ) = H(Y ) − H(Y |X)

= H(Y ) −
∑
x∈X

p(x)H(Y |X = x)

= H(Y ) −
∑
x∈X

p(x)H(q)

≤ 1 − H(q),

where H(q) = −q log(q) − (1 − q) log(1 − q) is the entropy of the pmf (q, 1 − q) (Bernoulii distribution).
Note that if Y is uniform, P(Y = 0) = P(Y = 1) = 1/2 , then H(Y ) = 1 and above is an equality. Since

pY (0) = (1 − q)pX(0) + qpX(1)

pY (1) = qpX(0) + (1 − q)pX(1),

we know that P(Y = 0) = 1/2 is equivalent to P(X = 0) = 1/2 by the symmetry between the roles of X

and Y . Hence the maximum is C = 1 − H(q), which is attained iff P(X = 0) = 1/2.

Example 4.7. In Example 4.3.(2), a binary erasure channel is specified by X = {0, 1} and Y = {0, e, 1},
where e can be interpreted as an error occurred in the transmission, and the stochastic matrix M given
as

The binary channel erases a fraction of q bits that are transmitted and the receiver knows if which
bits have been erased. Hence, we can only hope to recover 1 − q bits in proportion. Now as before
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X \ Y 0 ? 1
0 1 − q q 0
1 0 q 1 − q

I(X; Y ) = H(Y ) − H(Y |X) = H(Y ) − H(q) with H(q) the same as in the previous example. Set
π = P(X = 1), then pY (0) = (1 − π)(1 − q), pY (e) = (1 − π)q + πq = q, pY (1) = π(1 − q), so

H(Y ) = −(1 − π)(1 − q) log((1 − π)(1 − q)) − q log(q) − π(1 − q) log(π(1 − q))

= −(1 − π)(1 − q) log(1 − π) − (1 − π)(1 − q) log(1 − q)

−q log(q)

−π(1 − q) log(π) − π(1 − q) log(1 − q)

= H(q) + (1 − q)H(π).

Now
I(X; Y ) = H(q) + (1 − q)H(π) − H(q) = (1 − q)H(π)

and therefore the capacity is C = 1 − q achieved with π = P(X = 1) = 1/2.

4.3 Channel codes, rates and errors

We want to use the channel to reliably transmit a message from a given set of possible messages. We are
allowed to use the channel several times. Hence, we are looking for a map that transforms the message
into a sequence symbols in X (encoding), we then send this sequence through the channel and upon
receiving the corresponding sequence symbols in Y, transforms this back to a message (decoding) with a
small probability of error. Note that this is not the same meaning of X as in the previous sections (where
we had X as the space of original messages).

Definition 4.8. Fix m, n ≥ 1. A (m, n)-channel code for a DMC (X , M, Y) is a tuple (c, d) consisting
of

• a map c : {1, · · · , m} −→ X n, called the encoder,

• a map d : Yn −→ {1, · · · , m}, called the decoder.

We call {1, · · · , m} the message set, c(i) the codeword for message i ∈ {1, · · · , m} and the collection
{c(i) : i = 1, · · · , m} the codebook.

That is to say, a (m, n) channel transmits one out of m messages by using the channel n times.

Definition 4.9. Let (X , M, Y) be a DMC. We call ρ(c, d) := 1
n log|X |(m) the rate of the (m, n)-code

(c, d).

Definition 4.10. Let (c, d) be a (m, n)-channel code for a DMC (X , M, Y). Set

εi = P(d(Y) ̸= i | c(i) = X) for i = 1, · · · , m,
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where X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn) with {(Xi, Yi)}i=1,··· ,n consisting of i.i.d. copies of
random variables (X, Y ) that realise the DMC. We say that the channel code has

(1) a maximal probability of error εmax := maxi∈{1,··· ,m} εi,

(2) an arithmetic error ε̄ := 1
m

∑m
i=1 εi.

Remark 4.11. For applications we clearly care about εmax and a priori it is not clear that ε̄ is a useful
quantity to consider. Note that ε̄ ≤ εmax and that ε̄ is the expectation of the error εi, if an element i is
chosen uniformly at random. It turns out that good estimates on ε̄ imply good estimates on εmax and
that bounds on ε̄ are easy to establish (we are going to use this in the proof of the noisy channel coding
theorem).

Already a simple repetition code (represent the message i in its |X |-ary expansion and transmit each
digit multiple times) can achieve an arbitrary small error for the cost of a vanishing rate. We therefore
need to understand the tradeoff between the error probability εmax (which we want to make small) and
the rate R (which we want to keep large). That is, we ask what points in (εmax, R)-plane can be reached
by channel codes (with a sufficiently large n)? Before Shannon, a common belief was that that as εmax

goes to 0 so does the rate. A big surprise was Shannon’s noisy channel coding theorem, that showed that
any rate below channel capacity can be achieved!

4.4 Shannon’s second theorem: noisy channel coding

Definition 4.12. A rate R > 0 is achievable for a DMC (X , M, Y), if for any ε > 0 there exists
sufficiently large m, n and a (m, n)-channel code (c, d) with

ρ(c, d) > R − ε and εmax < ε,

where εmax denotes the maximal error of (c, d).

In other words, a rate R is achievable if there exists a sequence of codes whose rates approach R and whose
maximal errors approach zero. A priori it is by no means obvious that a message may be transmitted
over a DMC at a given rate with as small probability of error as desired! Shannon’s result not only
shows that this is possible but also shows that the set of rates that can be achieved is exactly those that
are bounded by the channel capacity C. We already saw that the channel capacity can be explicitly
computed for some important channels. All these are reasons why Theorem 4.13 is considered a (maybe
even the) major result of communication theory.

Theorem 4.13. (Shannon’s second theorem: noisy channel coding). Let (X , M, Y) be a DMC with
capacity C. Then a rate R > 0 is achievable iff R ≤ C.

An analogy that is often used is to compare a channel to a water pipe. If we pump water through a pipe
above its capacity, then the pipe will burst and water will be lost. Similarly, if information flows through
a channel at rate higher than channel capacity, the error is strictly bounded away from zero which means
we lose information.

To be concise, we take d = |X | = 2 in the rest of this section, so log|X | will be replaced by log.
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Let us first give an informal “proof” of Shannon’s channel coding theorem. The idea is to use a “typical
set decoder”: define a decoder by partitioning Yn into disjoint subsets Y1, · · · , Ym of Yn, and associate
each set with an input sequence x1, · · · , xm ∈ X n. That is upon a receiving a sequence y ∈ Yn, if we
find an i such that y ∈ Yi, then we decode it as message i. How can find a partition that is efficient
and robust to the noise in the channel? The key insight is similar to source coding: sequences can be
divided into a set of typical sequences that carries most of the probability mass. There are approximately
2nH(Y ) typical output sequences. Similarly, to a given typical input sequence x correspond approximately
2nH(Y |X) output sequences that are likely (i.e. y’s such that (x, y) is typical wrt to pX,Y ). But for two
different typical input sequences, these subsets of Yn might overlap. To account for this we restrict
ourselves further to a subset of typical input sequences such that the corresponding sets of typical output
sequences do not overlap (but still cover nearly all of) Yn. There are at most

2nH(Y )

2nH(Y |X) = 2n(H(Y )−H(Y |X)) = 2nI(X;Y )

such typical input sequences. Hence, there are at most 2nI(X;Y ) codewords which gives a rate of
log(2nI(X;Y ))

n = I(X; Y ) ≤ C bits per channel use. This shows (very heuristically) why we can expect
to achieve any rate R ≤ C.

Definition 4.14. Let (X, Y ) be a X × Y-valued random variable with pmf pX,Y . For n ∈ N and ε > 0,
set X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) with entries i.i.d. copies of X, Y , and

J (n)
ε =

{
(x, y) ∈ X n × Yn : max

(∣∣∣∣− log(pX,Y(x, y))
n

− H(X, Y )
∣∣∣∣ , ∣∣∣∣− log(pX(x))

n
− H(X)

∣∣∣∣ ,∣∣∣∣− log(pY(y))
n

− H(Y )
∣∣∣∣
)

< ε

}
.

We call J (n)
ε the set of jointly typical sequences of length n and tolerance ε.

Theorem 4.15. (Joint AEP). Let X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) with entries i.i.d. copies of
X, Y . Then

(1) limn→+∞ P((X, Y) ∈ J (n)
ε ) = 1;

(2) |J (n)
ε | ≤ 2n(H(X,Y )+ε);

(3) If X ′ and Y ′ are independent, and X and Y have the same margins as X ′ and Y ′ respectively, i.e.,
(X ′, Y ′) ∼ pXpY . Construct X′ and Y′ similarly based on (X ′, Y ′), then ∃ n0 such that ∀ n ≥ n0,
we have,

(1 − ε)2−n(I(X;Y )+3ε) ≤ P
(

(X′, Y′) ∈ J (n)
ε

)
≤ 2−n(I(X;Y )−3ε),

where the upper bound holds for all n ≥ 1.

Proof. Point (1) follows by independence and weak law of large numbers: log(p(X1,··· ,Xn))
n =

∑n

i=1
log(p(Xi))

n →
H(X), hence, for any ϵ′ > 0,

P
(∣∣∣∣− log(pX(X1, · · · , Xn))

n
− H(X)

∣∣∣∣ ≥ ε

)
<

ε′

3 for all n ≥ n1
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for some integer n1, and similarly

P
(∣∣∣∣− log(pY (Y1, · · · , Yn))

n
− H(Y )

∣∣∣∣ ≥ ε

)
<

ε′

3 for all n ≥ n2,

P
(∣∣∣∣− log(pX,Y (X1, · · · , Xn, Y1, · · · , Yn))

n
− H(X, Y )

∣∣∣∣ ≥ ε

)
<

ε′

3 for all n ≥ n3.

for some integers n2, n3. Taking n ≥ max(n1, n2, n3) then ϵ′ → 0 shows the result.

Point (2) follows since

1 =
∑

X n×Yn

pX,Y (x, y) ≥
∑
J (n)

ε

pX,Y (x, y) ≥ |J (n)
ε |2−n(H(X,Y )+ε),

and therefore |J (n)
ε | ≤ 2n(H(X,Y )+ε).

Point (3): for the upper bound,

P
(

(X ′, Y ′) ∈ J (n)
ε

)
=

∑
J (n)

ε

pX(x)pY (y)

≤ 2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε)

= 2−n(I(X;Y )−3ε).

For the lower bound, we have for large enough n that P
(

(X, Y ) ∈ J (n)
ε

)
≥ 1 − ε, hence

1 − ε ≤
∑
J (n)

ε

pX,Y (x, y) ≤
∣∣∣J (n)

ε

∣∣∣ 2−n(H(X,Y )−ε),

and we get
∣∣∣J (n)

ε

∣∣∣ ≥ (1 − ε)2n(H(X,Y )−ε). Using this, we get similar to above,

P
(

(X ′, Y ′) ∈ J (n)
ε

)
=

∑
J (n)

ε

pX(x)pY (y)

≥ (1 − ε)2n(H(X,Y )−ε)2−n(H(X)+ε)2−n(H(Y )+ε)

= (1 − ε)2−n(I(X,Y )+3ε).

We now use the above to give a rigorous proof of Shannon’s channel coding theorem.

Proof of Theorem 4.13. For a given pmf p on X and integers m, n, let J (n)
ε be the jointly typical set of

pX,Y = pY |XpX . We generate a random (m, n)-channel code as follows:

(1) Generate m random codewords in X n, by sampling independently from Πn
i=1pX(xi);

(2) For each message i ∈ {1, · · · , m}, define its encoding by sampling uniformly from this set of random
codewords;

(3) Define the decoder as a typical-set decoder: upon receiving Y, check if there exists a unique element
X in the set of random codewords such that (X, Y) ∈ J (n)

ε/6 . In this case, decode as the message
that was in step (2) associated with the codeword X. If this is not the case (there does not exists
such a codeword or it is not unique) the decoder outputs m.
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Denote this random (m, n)-channel code with (C, D). Now,

(1) Sample from the channel code (C, D);

(2) Sample a message W uniformly from {1, · · · , m};

(3) Send the sequence X = C(W ) through the channel;

(4) Decode the channel output using D, denote the decoded message with Ŵ .

For any ε > 0, applied with m = 2n(R−2ε/3)+1, the random (m, n)-channel code (C, D) has rate R− 2
3 ε+ 1

n .
By Lemma 4.18 (coming soon), for any ε > 0 we can choose pX and n large enough such that

P(W ̸= Ŵ ) <
ε

2 .

By conditioning

P(W ̸= Ŵ ) =
∑
(c,d)

P(W ̸= Ŵ |(C, D) = (c, d))P((C, D) = (c, d)) <
ε

2 ,

it follows that there must exist at least one channel code (c∗, d∗) such that

P(W ̸= Ŵ |(C, D) = (c∗, d∗)) <
ε

2 .

Recall that W was sampled uniformly and the arithmetic error is the expected error over all messages if
the input is uniformly distributed. Hence, above inequality can be restated as ε̄ < ε

2 , where ε̄ denotes the
arithmetic error of (c∗, d∗). Thus we have shown the existence of a (m, n)-channel code, rate R + 1

n − 2
3 ε

and arithmetic error ε̄ < ε
2 . Further,

ε̄ = 1
m

m∑
i=1

εi <
ε

2 ,

or equivalently,
∑m

i=1 εi < m
2 ε (here εi denotes the probability of an error in decoding message i using

channel code (c∗, d∗)). Now sort the codewords by their error probabilities εi. Each of the probabilities in
the better half of the m codewords must be less than ε since otherwise the sum over the other half would
be at least m

2 ε which contradicts
∑m

i=1 εi < m
2 ε. Therefore throwing away the worse half the codewords

modifies (c∗, d∗) into into a ( m
2 , n)-channel code with rate ρ(c∗, d∗) = R − 2

3 ε > R − ε and εmax < ε as
required.

For the optimality, we fix ε > 0 and assume for sufficiently large n there exists a (m, n) channel code
with

log(m)
n

> R − ε and εmax < ε. (4.4.1)

Let W be a random variable that is uniformly distributed on the messages {1, · · · , m} and as above,
denote with the Ŵ the decoded message. Then

log(m) = H(W )

= H(W |Ŵ ) + I(W ; Ŵ )

≤ H(W |Ŵ ) + I(X; Y )

≤ H(W |Ŵ ) +
n∑

i=1
I(Xi; Yi)

≤ H(W |Ŵ ) + nC

< 1 + ε̄ log(m) + nC, (4.4.2)
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where the first inequality uses that I(W ; Ŵ ) ≤ I(X; Y ) by the data processing inequality, the second
inequality follows since I(X; Y ) ≤

∑n
i=1 I(Xi; Yi), and the third inequality is just the definition of channel

capacity. The last inequality is Fano’s inequality. Using ε ≤ εmax < ε and rearranging above inequality
gives

log(m)
n

<
C + 1/n

1 − ε
.

Using the assumption (4.4.1), this implies R − ε < C+1/n
1−ε . By sending n → +∞ and ε → 0 we conclude

R ≤ C. □

Remark 4.16. Above proof even gives an asymptotic bound on the arithmetic error ε̄ for a code (c, d)
with rate ρ(c, d) > C. Rearranging the estimate (4.2) implies

ε̄ ≥ 1 − 1 + nC

log(m) = 1 − C + 1/n
1
n log(m)

. (4.4.3)

For large n, the right hand side is well approximated by 1 − C
1
n log(m) = 1 − C

ρ(c,d) .

Remark 4.17. The bound (4.4.3) implies a strictly positive arithmetic error for n big enough if the rate
is bigger than C. To see this, assume by contradiction that the arithmetic error equals 0 for some n0.
Then we could transform this into a new (mk, kn0)-channel code by concatenating k codewords. But this
channel has the same rate. Hence choosing k large enough contradicts the estimate (4.4.3). This is often
called the weak converse of the channel coding theorem. There also exists a strong converse (which do
not prove) which shows that ε̄ → 1 as n → +∞ if log(m)

n ≥ C + ε for some ε > 0.

Lemma 4.18. Let W, Ŵ be defined as in the proof of Theorem 4.13. Then P(W ̸= Ŵ ) → 0 as n → +∞.

Proof. [not examinable] . Denote with Ei the event that the random codeword for i and the channel
output are jointly typical (in J

(n)
ε/6). By construction of the random code, εi is the same for all messages

i = 1, · · · , m, hence εmax = ε1 (both errors are expectations over the draw of the codewords). By the
union bound for probabilities

εmax = ε1 = P(Ŵ ̸= 1|W = 1) = P (Ec
1 ∪ (∪m

i=2Ei) | W = 1) ≤ P(Ec
1 | W = 1) +

m∑
i=2

P(Ei|W = 1).

By joint typicality, P(Ec
1|W = 1) < ε

6 and P(Ei|W = 1) ≤ 2−n(I(X;Y )−3ε/6) = 2−n(I(X;Y )−ε/2) for n large
enough. Hence,

εmax ≤ ε

6 +
m∑

i=2
2−n(I(X;Y )−ε/2)

= ε

6 + m2−n(I(X;Y )−ε/2)

= ε

6 + 2−nε/62−n(I(X;Y )−R)+1

≤ ε/2

for large enough n (such that ε
3 ≥ 21−nε/6) and R ≤ I(X; Y ).

4.5 Channel codes

How to find a good channel code?
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• If n is fixed we could try to search all possible codebooks. There are |X |n codewords and ap-
proximately |X |mn injective codes. If the rate of the code is assumed to be close to C then m is
approximately |X |nC , hence we need to search over approximately |X |n|X |nC , which is computa-
tionally infeasible.

• We could try to use a randomly generated channel code as in above proof. Above argument shows
that is likely to be a good channel code for large n. Unfortunately, such a code is difficult to use in
practice:

– there are 2nR+1 codewords, i.e. to encode a message we need to store a table that grows
exponentially with n;

– the decoder needs to decide which of the 2nR+1 messages was transmitted, which again takes
an exponential amount of time.

In fact, it took a long time after Shannon’s proof of the existence of codes achieving rate C to find useful
constructions. Breakthroughs are ’72 Justesen, ’93 Berrou et al, and ’97 MacKay and Neal. The unifying
idea of all these codes it introduce some redundancy such that a perturbed message can still be recovered.
There are two big classes of codes used nowadays:

(1) block codes: to encode a block of information into a codeword but there is no dependence on past
information. Examples include Hamming codes, Reed–Muller/Solomon codes, BCH codes, etc;

(2) convolutional codes: they are more complicated since they use dependicy on the past inputs.

The search for optimal and practical codes is still an active area of research. In general this is a complicated
topic that requires lots of algebra.

4.6 Block linear codes

Hamming created a family of error correcting codes which perform well in many situations, which are
a particular example of block-linear codes. Better codes exist, but their construction is typically very
complicated.

The key idea of a linear error correcting code is to think of codewords in |X |n as points in a space.
Assuming |X | = 2, the space we work in is the n-dimensional vector space over the finite field F2

(i.e. {0, 1} with addition and multiplication modulo 2). Our codewords can be directly interpreted as
points in this space – for example (1, 1, 0) is a vector in F3

2 corresponding to the codeword 110.

If we can position our codewords in space such that every codeword is distance d from another codeword
(where distance is defined by the number of differences in the two codewords, the Hamming distance),
then less than ⌊d/2⌋ errors in transmission will not prevent us decoding our message – we simply chose
the closest codeword. We write |x − x′| for the Hamming distance, and |x| for the ‘weight’ of a codeword
(the number of nonzero terms in it).

Suppose that for some k < n we have at most 2k codewords, which we can write as vectors in s ∈ Fk
2

(e.g. by ordering them and taking their dyadic expansions as codewords, or by applying a Block Arithmetic
Code). We will build new codewords w in Fn

2 by the linear multiplication w = sG, where G is the
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‘generator matrix’ of the code (a n × k matrix with values in Fn
2 ). This places all our codewords on a

k dimensional subspace of the n dimensional space (but as our field is finite, intuition is not always our
friend here). We say G is of standard form if G = [Ik|P ] for some k × (n − k) dimensional matrix P .
We say the space C = {w = sG; s ∈ Fk

2} is the space of codewords. Given this construction, a generator
matrix can be modified using the standard Gaussian elimination operations without changing the space
of codewords.

We say a k×n matrix H is a (parity) check matrix for G if the kernel of H is C. In other words, wH⊤ = 0
for all codewords w, or equivalently GH⊤ is the k × k zero matrix. If G is in standard form, the matrix
H = [P ⊤|In−k] is a parity check matrix for G. By the rank-nullity theorem, we can easily check that a
vector in Fn

2 is a codeword if and only if wH⊤ = 0.

Example 4.19. Take n = 3, k = 2, with G =
[

1 0 1
0 1 1

]
and H = [1, 1, 1]. Then we see that every

codeword satisfies wH⊤ = w1 + w2 + w3 = 0. The final element of the codeword has the interpretation
of being a check of the parity of the sum of the previous elements.

By linearity, we can now compute the minimal distance d between codewords:

d = min
w,w′∈C

|w − w′| = min
s,s′∈Fk

2

|sG − s′G| = min
ŝ=s−s′∈Fk

2

|ŝG| = min
ŵ∈C

|ŵ|.

In other words, the minimal distance is the same as the minimal weight of all codewords.

Proposition 4.20. The minimal distance between codewords is equal to the minimal number of linearly
dependent columns in a check matrix H.

Proof. We know that Hw⊤ = 0 for all codewords. Writing Hw⊤ =
∑

i wihi, for hi the columns of H, we
see that the minimal codeword weight is at least the number of linearly dependent columns. Conversely,
taking a minimal linearly dependent set, with coefficients ci, we know 0 =

∑
i cihi, so ci corresponds to

a codeword with weight equal to the minimal number of linearly dependent columns.

With this result, the technique to follow is clear – we choose a P of appropriate dimension, to maximize
the number of linearly independent columns in H.

Definition 4.21. We say an error correcting code satisfying the description above is a [n, k, d]2 code,
with generator matrix G and parity check matrix H (which do not need to be in standard form).

Proposition 4.22. (Singleton–Joshi–Komamiya bound) For any [n, k, d]2 code, we have d ≤ n − k + 1.

Proof. By construction, there are are at most 2k codewords in our space. However, given the minimal
distance between codewords is d, we can remove the first d − 1 entries of each codeword, and still have all
codewords distinct. The resulting codes are of length n − d + 1, from which it follows that 2k ≤ 2n−d+1.
Rearrangment gives the result.

There are various constructions of these codes. Hamming gives one possible construction:

Definition 4.23. For n = 2m − 1, k = n − m and d = 3, let H be the matrix with columns given by all
pairwise linearly independent vectors in Fk

2 . This gives the ‘Hamming code’.
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Example 4.24. For m = 3, we get Hamming’s [7, 4, 3]2 code (which can correct a single error), with

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 , H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1



The Hamming code is used extensively, for example it is the basis of error correction within many RAM
circuits.

Other related codes can be built by modifying the Hamming construction slightly:

Example 4.25. Adding an additional parity bit (a column of 1’s to H) defines the extended Hamming
code (which has the additional property it can detect but not correct two errors). A corresponding G can
be found by solving GH⊤ = 0. With m = 3, this is a [8, 4, 4] code. By applying row operations to H and
G, these can be shown to have the equivalent standard form G = [I4|1 − I4] and H = [1 − I4|I4], where
1 denotes a matrix of 1s.

Example 4.26. If H is the parity check matrix of a code, we obtain the dual code by taking the (non-
standard) generator G̃ = H. Taking the dual of the extended Hamming code defines the (augmented)
Walsh–Hadamard code, which is a [2k, k + 1, 2k−1]2 code. Alternative constructions, based on Hadamard
matrices, are typically preferred. These codes are used in CDMA (code-division multi access) stan-
dards, such as 3G, to allow multiple users to communicate over the same channel, as the codewords are
orthogonal, so each user can send their codeword without interfering with others.

Example 4.27. Hsiao (1970) gives a variation on the Hamming construction, which forces the check
matrix H to have only odd number of entries in each column. For larger codes, this can be shown to
improve computational efficiency.

Example 4.28. Polar codes, and the closely related Reed–Muller codes (which are [2m,
∑

i≤r

(
m
i

)
, 2m−r]2

codes constructed using polynomials in finite fields), are the basis for the error correction in the 5G mobile
standard.



Chapter 5

Noisy Channels with non-iid input

It is natural to ask whether one can combine Shannon’s two theorems: given a signal such as digitised
speech, the obvious approach is to first apply symbol coding (Theorem 2.7) for compression, and then
apply channel coding (Theorem 4.13) to send this compressed signal through our channel. Two questions
arise: firstly, is this two-stage approach optimal? An alternative is to directly feed the digitised signal
into channel coding without an extra compression layer before. Secondly, the channel input will not be
an i.i.d. sequence. This is a case that needs discussion even without the first stage.

5.1 Channel coding with non-iid input

We first address the second question by showing that the notion of entropy extends to sequences of
(possibly dependent) random variables. We use this in the next section to answer the first question of
optimality.

Definition 5.1. A discrete stochastic process is a sequence X = (Xi)i≥1 of discrete random variables.
We say that a stochastic process is stationary if

P(X1 = x1, · · · , Xn = xn) = P(X1+j = x1, · · · , Xn+j = xn)

for all integers n, j and x1, · · · , xn ∈ X.

A special case is a stochastic process with Xi i.i.d., but much more complicated statistical dependencies
can occur between the Xi.

Definition 5.2. The entropy rate of a stochastic process X = (Xi)i is defined as

H(X) = lim
n→+∞

1
n

H(X1, · · · , Xn),

whenever this limit exists.

Obviously, if Xi are i.i.d., then the entropy rate exists and H(X) = limn→+∞
1
n (H(X1)+ · · ·+H(Xn)) =

H(X1). However, for the case when Xi are independent but not identically distributed the above limit

49
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does not necessarily exists. For example, the binary variables Xi with

P(Xi = 1) = 0.5 for log(log(i)) ∈ (2k, 2k + 1] and P(Xi = 1) = 0 for log(log(i)) ∈ (2k + 1, 2k + 2]

where k can be any number in {0, 1, 2, · · · }. This construction gives long stretches with H(Xi) = 1
followed by exponentially longer stretches of H(Xi) = 0, hence the running average will oscillate between
0 and 1.

Theorem 5.3. For a stationary stochastic processes X, the entropy rate exists and

H(X) = lim
n→+∞

H(Xn|Xn−1, · · · , X1).

We prepare the proof with two Lemmas.

Lemma 5.4. For a stationary stochastic process X, n 7→ H(Xn|Xn−1, · · · , X1) is non-increasing and
limn→+∞ H(Xn|Xn−1, · · · , X1) exists.

Proof. For any integer n,

H(Xn+1|Xn, · · · , X1) ≤ H(Xn+1|Xn, · · · , X2) = H(Xn|Xn−1, · · · , X1),

where we used that conditioning reduces entropy for the inequality, and the equality is due to the sta-
tionarity of the process X. Since H(Xn|Xn−1, · · · , X1) ≥ 0, the limit exists.

Lemma 5.5. (Cesàro mean). If limn→+∞ an = a, then limn→+∞
1
n

∑n
i=1 ai = a.

Proof. For any ε > 0, there exists a n0 such that for all n ≥ n0, , |an − a| < ε. Hence∣∣∣∣∣ 1n
n∑

i=1
ai − a

∣∣∣∣∣ ≤ 1
n

n∑
i=1

|ai − a|

≤ 1
n

n0∑
i=1

|ai − a| + n − n0

n
ε

≤ 1
n

n0∑
i=1

|ai − a0| + ε.

Sending n → +∞ makes the first term vanish and then result follows.

We now can give a proof of Theorem 5.3.

Proof of Theorem 5.3. By the chain rule for conditional entropy,

H(X1, · · · , Xn)
n

= 1
n

n∑
i=1

H(Xi|Xn−1, · · · , X1).

By above Lemma 5.4 the conditional entropies converge. Using Cesàro means as in Lemma 5.5, the above
running average of conditional entropies converges to limn→+∞ H(Xn|Xn−1, · · · , X1). □
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Example 5.6. A discrete stochastic process X = (Xi)i≥1 is a Markov chain if

P(Xn+1 = xn+1 | Xn = xn, · · · , X1 = x1) = P(Xn+1 = xn+1 | Xn = xn)

for all n and all x1, · · · , xn ∈ X .

A Markov chain is time-invariant (or time-homogenous) if

P(Xn+1 = b|Xn = a) = P(X2 = b | X1 = a)

for all n and all a, b ∈ X .

A time-invariant Markov chain with state space X = {x1, · · · , xm} is characterised by its initial state X1

and its probability transition matrix P = (Pi,j)m×m, where Pi,j := P(X2 = xj | X1 = i). In this case, the
pmf of Xn+1 is given as pXn+1(xj) =

∑
i pXn

(xi)Pi,j .

Given a time-invariant Markov process X, the distribution pXn
on X is called stationary distribution of

X if pXn+1 = pXn
. Hence, a pmf µ on X is a stationary distribution, if µj =

∑
i µiPi,j for all j, where

µi = µ(xi), or in matrix notation (with µ = (µ1, · · · , µm))

µ = µP.

If a time-invariant Markov chain is irreducible (i.e. for any x1, x ∈ X there exists t > 0 such that
P(Xt = x|X1 = x1) > 0) then it has a unique stationary distribution; if the Markov chain is also acyclic
(i.e. the irreducibility condition holds for all t sufficiently large, or equivalently for two coprime values of
t), then for any x0 ∈ X we have the geometric convergence |µ − x1P n| ≤ (1 − ϵ)n for some ϵ > 0 (this
is a consequence of the Perron–Frobenius theorem). This result is known as the geometric ergodicity of
the Markov chain.

A time-invariant Markov chain with stationary distribution µ and initial state X1 ∼ µ is a stationary
stochastic process and its entropy rate is given by

H(X) = lim
n→+∞

H(Xn | Xn−1, · · · , X1) = lim H(Xn | Xn−1) = H(X2|X1).

Using the definition of conditional entropy this becomes

H(X) =
∑

i

P(X1 = xi)H(X2|X1 = xi) = −
∑

i

µi

∑
j

Pi,j log(Pi,j)

 = −
∑
i,j

µiPi,j log(Pi,j).

While we will focus on stationary processes (so X1 ∼ µ), the geometric ergodicity of a Markov chain can
be used to show that the entropy rate is well defined for any starting distribution, and equals the rate
for the stationary case.
Example 5.7. Let X = (Xi) be Markov chain with two states X = {a, b} and P(X2 = b|X1 = a) =
α,P(X2 = a|X1 = b) = β, that is

P =
(

1 − α α

β 1 − β

)
.

Then the stationary distribution is µ(a) = β
α+β , µ(b) = 1 − µ(α). If X1 ∼ µ, then

H(X) = β

α + β
h(α) + α

α + β
h(β),

where h(α) resp. h(β) denotes the entropy of a Bernoulli random variable with probability α resp. β.
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Example 5.8. Consider a connected1 graph (V, E) with vertices V = {1, · · · , m} and without self-
connection. Associate with the edge connecting node i and j a weight wi,j = wj,i ≥ 0 (if there’s no edge,
set wi,j = 0). Define a Markov chain on the set of vertices V by

Pi,j = P(Xn+1 = j | Xn = i) = wi,j∑m
k=1 wi,k

.

(Choose the next vertex at random from the neighbouring vertices, with probabilities proportional to
the weight of the connecting edge). We can guess the stationary distribution: the probability of being at
vertex i should be proportional to the total weight of the edges emanating from this vertex. That is, if
we denote the total weight of edges connecting to vertex i by wi =

∑
j wj,i, and the sum of weight of all

edges by w =
∑

j>i wi,j . Then
∑

i wi = 2w and we expect that µi = wi

2w . Indeed, we can directly verify
µP = µ: ∑

i

µiPi,j =
∑

i

wi

2w

wi,j

wi
= 1

2
∑

i

wi,j

2 = wj

2w
= µj .

It is interesting to note that µi does not change if the edge weights connecting to vertex i stay the same,
but the other weights are changed subject to having the same total weight. To calculate the entropy rate

H(X) = H(X2|X1) = −
∑

i

µi

∑
j

Pi,j log(Pi,j)

= −
∑

i

wi

2w

∑
j

wi,j

wi
log
(

wi,j

wi

)

= −
∑
i,j

wi,j

2w
log
(

wi,j

wi

)

= −
∑
i,j

wi,j

2w
log
(

wi,j

wi

2w

2w

)
= −

∑
i,j

wi,j

2w
log
(wi,j

2w

)
+
∑
i,j

wi,j

2w
log
( wi

2w

)
= −

∑
i,j

wi,j

2w
log
(wi,j

2w

)
+
∑

i

wi

2w
log
( wi

2w

)
= H

(
· · · ,

wi,j

2w
, · · ·

)
− H

(
· · · ,

wi

2w
, · · ·

)
.

Example 5.9. Consider English-language text, with alphabet |A| = 27. We can define a Markov chain
model for the sequence of letters by estimating {P(Lt = a|Lt−1 = b)}a,b∈A from data, where Lt is the
tth observed letter. More generally, we can take Xt−1 = [Lt−1, Lt−2, ..., Lt−k] for a model with X = Ak

where the next letter depends on the preceeding k letters, and estimate {P(Lt = a|Lt−1 = b1, ..., Lt−k =
bk)}a,b1,...,bk∈A. In practice, k ≥ 5 is needed to reasonably resemble English text.

A similar setting is used by large language models (e.g. ChatGPT, Bard, Sydney), where the previous
k words are used, and a predictive model is learned for the next word. As there are a large number of
possible words, this requires a very large model, but is conceptually in the same class.

In practice, one is often not directly interested in the Markov chain X = (Xi) but to understand the
process Y defined by a function of X, i.e., Yi = ϕ(Xi). For example, think of X as a complicated system
that evolves over time but we only observe the current state of the system partially. A basic question is

1A graph is connected if every pair of vertices can be connected by a path of edges.
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to determine the entropy rate of the stochastic process Y . This is a complicated question since in general
Y itself is not a Markov chain so we can’t directly apply the results of the previous section. However, we
know that H(Y ) is well-defined since Y is stationary.

A first approach is to simply estimate H(Y ) by the first n observations as H(Yn | Yn−1, · · · , Y1). However,
the convergence H(Y ) = limn H(Yn|Yn−1, · · · , Y1) can be very slow so we have no means to decide whether
this estimate is good for a given n! The theorem below shows that the difference H(Yn | Yn−1, · · · , Y1) −
H(Yn|Yn−1, · · · , Y1, X1) gives guarantees for the goodness of this estimation.

Theorem 5.10. Let X = (Xi)i≥1 be a stationary Markov chain and ϕ : X −→ Y. Let Y = (Yi)i≥1 with
Yi := ϕ(Xi). Then

H(Yn|Yn−1, · · · , Y1, X1) ≤ H(Y ) ≤ H(Yn|Yn−1, · · · , Y1)

and H(Y ) = limn→+∞ H(Yn|Yn−1, · · · , Y1, X1) = limn→+∞ H(Yn|Yn−1, · · · , Y1).

Since H(Yn|Yn−1, · · · , Y1) converges monotonically from above to H(Y ), the theorem follows by combining
the following two lemmas.

Lemma 5.11. H(Yn|Yn−1, · · · , Y2, X1) ≤ H(Y ).

Proof. Using that Y1 = ϕ(X1), the Markovianity of X, that Yi = ϕ(Xi) we get for any integer k that

H(Yn|Yn−1, · · · , Y2, X1) = H(Yn|Yn−1, · · · , Y2, Y1, X1)

= H(Yn|Yn−1, · · · , Y2, Y1, X1, X0, X−1, · · · , X−k)

= H(Yn|Yn−1, · · · , Y2, Y1, X1, X0, X−1, · · · , X−k, Y0, · · · , Y−k)

≤ H(Yn|Yn−1, · · · , Y1, Y0, · · · , Y−k)

= H(Yn+k+1|Yn+k, · · · , Y1),

where the inequality is because the conditioning reduces entropy. So

H(Yn|Yn−1, · · · , Y2, Y1) ≤ lim
k

H(Yn+k+1|Yn+k, · · · , Y1) = H(Y ).

Lemma 5.12. H(Yn|Yn−1, · · · , Y1) − H(Yn|Yn−1, · · · , Y1, X1) → 0 as n → +∞.

Proof. I(X1; Yn | Yn−1, · · · , Y1) = H(Yn | Yn−1, · · · , Y1) − H(Yn | Yn−1, · · · , Y1, X1).
Since I(X1; Yn, Yn−1, · · · , Y1) ≤ H(X1) and n 7→ I(X1; Yn, Yn−1, · · · , Y1) increases, the limit

lim
n

I(X1; Yn, Yn−1, · · · , Y1) ≤ H(X1)

exists. By the chain rule,

I(X1; Yn, Yn−1, · · · , Y1) =
n∑

i=1
I(X1; Yi | Yi−1, · · · , Y1),

so combining with the above we get

+∞ > H(X1) ≥
+∞∑
i=1

I(X1; Yi | Yi−1, · · · , Y1),

thus limn→+∞ I(X1; Yn | Yn−1, · · · , Y1) = 0.
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5.2 Combining symbol and channel coding for DMCs [not ex-
aminable]

We now have a useful definition for the entropy of a non-iid source process. We will use this to understand
the interaction between symbol and channel coding.

Consider a source that generates symbols from a finite set V. We model this source as a discrete stochastic
process V = (Vi) with state space V. Our goal is to transmit a sequence of symbols V n := (V1, · · · , Vn)
over a DMC. Therefore we use an encoder c : Vn −→ X n and recover V n from the output sequence Y n

by using a decoder d : Yn −→ Vn. We want to do this in such away that P(V n ̸= V̂ n) is small.

Theorem 5.13. Let (X , M, Y) be a DMC with channel capacity C. Let V = (Vi)i≥1 be a discrete
stochastic process in a finite state space V. If V satisfies the AEP and

H(V ) < C,

then for every ε > 0 there exists an n ≥ 1, a map c : Vn −→ X n, and a map d : Yn −→ V such that
P(V n ̸= V̂ n) < ε. Conversely, for any stationary stochastic process V , if H(V ) > C, there exists a
constant δ > 0 such that P(V n ̸= V̂ n) > δ for any coder-decoder pair, for any n ≥ 1.

Sketch of Proof. There exists a typical set T (n)
ε of size |T (n)

ε | ≤ 2n(H(V )+ε) such that and P(V n ∈ T (n)
ε ) ≥

1 − ε. Now consider a coder that only encodes elements in T (n)
ε and elements in Vn\T (n)

ε are all encoded
randomly to the rest of codewords not used for those in T (n)

ε . We need at most

n(H(V ) + ε)

bits to index elements in T (n)
ε . Using channel coding we can transmit such an index with probability of

error less than ε given the fact

H(V ) + ε = R < C.

The decoder reconstructs V n by enumerating the typical set T (n)
ε and decoding the received index Y n =

(Y1, · · · , Yn) to get V̂ n. Then for a large enough n,

P(V n ̸= V̂ n) ≤ P(V n /∈ T (n)
ε ) + P(d(Y n) ̸= V n | V n ∈ T (n)

ε ) ≤ ε + ε.

This shows the first part of the theorem (achievability). For the second part (optimality) we need to
show that

P(V n ̸= V̂ n) → 0

implies H(V ) ≤ C for any sequenced (cn, dn) of channel codes. By Fano’s inequality,

H(V n|V̂ n) ≤ 1 + P(V̂ n ̸= V ) log(|Vn|)

= 1 + P(V̂ n ̸= V )n log(|V|).
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Now

H(V ) ≤ H(V1, · · · , Vn)
n

= 1
n

H(V1, · · · , Vn | V̂1, · · · , V̂n) + 1
n

I(V n; V̂ n)

≤ 1
n

[
1 + P(V n ̸= V̂ n)n log(|V|)

]
+ 1

n
I(V n; V̂ n)

≤ 1
n

[
1 + P(V n ̸= V̂ n)n log(|V|)

]
+ 1

n
I(X1, · · · , Xn; Y1, · · · , Yn)

≤ 1
n

+ P(V n ̸= V̂ n) log(|V|) + C,

where we used: the definition of entropy rate, the definition of mutual information, Fano’s inequality, the
data processing inequality, and finally, the definition of capacity of a DMC. Letting n → +∞ finishes the
proof since

H(V ) ≤ log(|V|) lim
n→+∞

P(V n ̸= V̂ n) + C = C.

□

We emphasise that above theorem makes no assumptions on the stochastic process V other than that the
AEP holds; the sequence of random variables (V1, · · · , Vn) can have very complicated dependencies. Most
importantly, the theorem implies that a two-stage approach – given by firstly using symbol coding and
then applying channel coding – achieves the same rates as applying source coding alone. This two-stage
approach is advantageous from an engineering perspective since it divides a complicated problem into
two smaller problems. On the other hand, it still only gives us an existence result – actually finding good
codes which achieve this bound, for a typical problem, remains difficult!

To sum up: source coding compresses the information using that by the AEP there exists a set of small
cardinality ≈ 2nH that carries most of the probability mass. Hence, we can use H bits per symbol to use
a symbol code to compress the source. Channel coding uses that by the joint AEP, we have for large n

with high probability that input and output are jointly typical; only with probability ≈ 2−nI any other
codeword will be jointly typical. Thus we can 2nI codewords. Theorem 5.13 shows that we can design
source code and channel code separately without loss of performance.

5.3 Decoding from a noisy non-iid channel

Given we have received a message which arose from a Markov chain source, and was encoded and trans-
mitted over a noisy discrete memoryless channel, the final major task is to reconstruct the original signal,
in a reasonably efficient manner. This is a special case of a more general problem in time series analysis
– reconstructing the state of hidden Markov processes from observations.

We will do this in two stages. We will first consider an algorithm due to Wonham which efficiently
calculates the posterior probabilites of the source messages at each time, given the observations up to
that time. We will then consider an extension of this due to Viterbi, which calculates the most-likely
source message from the entire sequence of observations.

For simplicity, we will assume our Markov chain is initialized according to some distribution X0 ∼ µ0

(which may or may not be stationary).
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We begin by associating the states of our Markov chain with the basis row-vectors in R|X |, which makes
the algebra easier. That is, if |X | = 3, we have states [1, 0, 0], [0, 1, 0] and [0, 0, 1]. With this notation, we
see that xP is the probability vector describing the distribution of states of X2|(X1 = x). Furthermore,
as our states are written in this way, we know that x̃Px⊤ = P[X2 = x|X1 = x̃].

Recall that we have defined the emission matrix M such that xM is the vector of probabilities of each
observation value, given the current state is x. If we identify Y with the basis column-vectors in R|Y|, we
have

P(Yt = y|Xt = x) = xMy.

In particular, we can compute

P(Xt = x, Yt = y|Xt−1 = x̃) = P(Yt = y|Xt = x)P(Xt = x|Xt−1 = x̃) = (xMy)(x̃Px)

Bayes’ theorem then lets us calculate

P(Xt = x|Yt = y, Xt−1 = x̃, Xs<t−1) = P(Xt = x, Yt = y|Xt−1 = x̃)∑
z∈X P(Xt = z, Yt = y|Xt−1 = x̃) = (xMy)(x̃Px⊤)∑

z(zMy)(x̃Mz)

As
∑

x P(Xt = x|Yt = y, Xt−1 = x̃) = 1, we can ignore the denominator on the right hand side, and
obtain the probability up-to-renormalization, namely

P(Xt = x|Yt = y, Xt−1 = x̃) ∝ (xMy)(x̃Px⊤)

We now do some algebraic rearrangement:

(xMy)(x̃Px⊤) = x̃(P )(x⊤x)(My)

and observe that x⊤x = diag(x), and diag(x)My = diag(My)x⊤. Therefore,

P(Xt = x|Yt = y, Xt−1 = x̃) ∝ x̃(Pdiag(My))x⊤

In other words, x̃(Pdiag(My)) gives (up to renormalization), the vector of probabilities for each state of
Xt, given the prior state x̃ and the observation y.

We can extend this further, by noticing that (for any event A)

P(Xt = x|A) = E[Xt|A]x⊤.

(as X takes values in basis vectors). Therefore, we know

E[Xt|Yt = y, Xt−1 = x̃] = x̃(Pdiag(My)).

Using this, and the fact that Xt, Yt are independent of Xt−2 and Yt−2 given Xt−1, we get a simple
recursion:

Proposition 5.14. (The Wonham filter) For a Markov chain with X0 ∼ µ0, the conditional probability
vector µt = E[Xt|{Ys = ys}s≤t] satisfies

µt = µt−1Pdiag(Myt)
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Proof. As described above, we know

µt = E[Xt|{Ys = ys}s≤t]

=
∑

x̃

P(Xt−1 = x̃|{Ys = ys}s≤t−1)E[Xt|Xt−1 = x̃, Yt = yt, {Ys = ys}s≤t−1]

=
∑

x̃

(µt−1x̃⊤)E[Xt|Xt−1 = x̃, Yt = yt] =
∑

x̃

(µt−1x̃⊤)x̃(Pdiag(Myt))

= µt−1

(∑
x̃

diag(x̃)
)

(Pdiag(Myt)) = µt−1(Pdiag(Myt)).

This gives a straightforward algorithm to estimate Xt from observations of {Ys}s≤t, we simply apply the
above recursion, and renormalize at each step (or whenever is needed for stability).

The Wonham filter gives us the best estimate of Xt at each time, based on the current observations.
However, in the coding context we usually wish to determine the whole path of X, rather than simply
its present value. This is the purpose of the Viterbi algorithm, which extends the Wonham filter to give
the most likely path.

At time t, we know that

P
(

Xt = xt, Yt = yt

∣∣∣Xt−1 = xt−1, {Xs}s<t, {Ys}s<t

)
= xt−1Pdiag(Myt)x⊤

t .

Therefore,

P
(

{Xs = xs}s≤t, {Ys = ys}s≤t

)
= (xt−1Pdiag(Myt)x⊤

t )P
(

{Xs = xs}s<t, {Ys}s<t

)
.

However, by Bayes’ rule

P
(

{Xs = xs}s≤t

∣∣∣{Ys = ys}s≤t

)
=

P
(

{Xs = xs}s≤t, {Ys = ys}s≤t

)
P
(

{Ys = ys}s≤t

)
so

P
(

{Xs = xs}s≤t

∣∣∣{Ys = ys}s≤t

)
∝ (xt−1Pdiag(Myt)x⊤

t )P
(

{Xs = xs}s<t

∣∣∣{Ys}s<t

)
(5.3.1)

with a normalization constant independent of {xs}s≤t.

Proposition 5.15. We write χx
t = {x0, ..., xt−1, x} ∈ X t for the path ending in x with the highest

posterior probability
πt(x) = P

(
{Xs = xs}s<t, Xt = x

∣∣∣{Ys = ys}s≤t

)
,

Then χx
t and πx

t satisfy the recursion with initial values χx
0 = {x} and π0(x) = µ0x⊤, and iteration

χx
t = [χx̃

t−1, x],

πx
t ∝

(
x̃Pdiag(Myt)x⊤)πx̃

t−1,

where x̃ = arg max
z∈X

{(
zPdiag(Myt)x⊤)πz

t−1

}
,

and the constant of proportionality for πt(x) is independent of {xs}s≤t.
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Proof. Clearly, at time t = 0, before any observations have been made, we know χx
1 = {x} and π0 = µ0.

At each t, we know from (5.3.1) that χx
t should be obtained by extending a path χx̃

t−1, as the change
in probability depends only on y, xt, xt−1, and all coefficients are positive. The result follows from our
earlier calculations.

Overall, this gives an easily-implementable algorithm for decoding a signal observed in (possibly large
amounts of) noise. The Viterbi algorithm is ubiquitous in applications.

In its basic formulation, the Viterbi algorithm keeps |X | copies of the entire history of the path in memory.
However, assuming our Markov chain is ergodic, we do not expect the value of xt to have much impact
on the most likely value of xs for s ≪ t. Therefore, we will often have that early sections of χx

t are the
same for all values of x – these values will never change, and so can be sent to output (and hence do not
need to be stored further).

The challenge in applications is that it requries a list of all codewords, the Markov transitions between
them, and the emission matrix associated with the DMC, which limits the scale it can be applied to.
Often these parameters need to be estimated, possibly with only limited observation of the underlying
signal. This connects with the large area of stochastic filtering, which attempts to address these problems
in wider contexts.



Appendix A

Probability theory

We briefly recall and introduce basic notation from probability theory. We refer the reader to [3, 4] for
an elementary introduction to probability theory and to [2, 5] for a more exhaustive treatment.

A.1 Measure theory

A measurable space (X , A) consists of a set X and and a σ-algebra A, that is a collection of subsets of X
such that

(1) X ∈ A;

(2) A ∈ A implies Ac ∈ A;

(3) if An ∈ A then ∪n∈NAn ∈ A.

Example A.1. Take X = {a, b, c, d]} and A = {∅, {a, b}, {c, d}, {a, b, c, d}}, then (X , A) is a discrete
measurable space.

Take X = R and A the smallest σ-algebra that contains all open sets (“Borel σ-algegra”), then (X , A) is
one of the most often-used measurable spaces.

Given two measurable spaces (X1, A1) and X2, A2), we call a map X : X1 −→ X2 measurable with respect
to A1\A2 if

X−1(A) ∈ A1 for ∀A ∈ A2.

It is a good exercise to show that the space of measurable maps (with respect to A1\A2) is closed under
addition, scalar multiplication, lim inf, lim sup, etc.

A.2 Probability spaces

A probability space (Ω, F ,P) is a measurable space (Ω, F) together with a map P : F −→ [0, 1] such that

(1) P(Ω) = 1,

59
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(2) (σ-additivity) P(∪nAn) =
∑

P(An) for disjoint (An) ⊂ F (i.e. Ai ∩ Aj = ∅ for any i ̸= j).

We refer to Ω as sample space, to elements of F as events, and to P as the probability measure. An
F\A-measurable map X : Ω −→ X from Ω to another measurable space X with σ-algebra A is called a
random variable, and X is called the state space.
Example A.2. A player flips a coin and wins one pound if it is a head, otherwise the player wins nothing.
We can model this as follows: Let Ω = {H, T}, F = {∅, {H}, {T}, {H, T}}, and

X(ω) =
{

1 if ω = H

0 if ω = T
.

Given any number p ∈ [0, 1], we can define a probability measure by P(H) = p,P(T ) = 1 − p1 Notice that
with different value p ∈ [0, 1] we get different probability measure P,
Example A.3. For an integer N , let Ω = {H, T}N and F be the class of all subsets of Ω. Then

Xi(ω) :=
{

1 if ωi = H

0 if ωi = T
is a random variable on (Ω, F) and so is

X1 + · · · + Xn

(the number of heads in n coin tosses).

We call two events A, B ∈ F independent events if P(A ∩ B) = P(A)P(B). Otherwise, we call them
dependent. Given two random variables on (Ω, F ,P) we say that X and Y are independent if {X ∈ A}2

and {Y ∈ B} are independent for all A, B ∈ A. In the case of the discrete random variables, it is sufficient
to require P(X = x, Y = y) = P(X = x)P(Y = y) for all x ∈ X(Ω), y ∈ Y (Ω).

A.3 Discrete random variables

Throughout this course, we are mostly interested in random variables that take values in a countable set.
More precisely, we call X : Ω −→ R a discrete random variable, if the image X(Ω) is a countable subset
of R and X−1(x) ∈ F for all x ∈ R. In this course, we often denote the image space of X with X . Given
a probability space (Ω, F ,P) and a discrete random variable X, we call

pX(x) := P(X = x)

the probability mass function (pmf) of X (also distribution of X).
Example A.4. In Example A.2, X is a discrete random variable with the image space X(Ω) = {0, 1}.

We can regard two discrete random variable X, Y with image spaces X , Y as one discrete random varible
(X, Y ) with image space X × Y. We call

pX,Y (x, y) := P(X = x, Y = y) = P((X, Y ) = (x, y))

the joint pmf of X and Y . Given a pmf on X × Y we call

pX(x) :=
∑
y∈Y

pX,Y (x, y)

the marginal on X , and the marginal on Y is defined similarly.
1To be rigorous, we should write P({H}) = p, which is often simplified to the notation P(H) = p.
2The rigorous expression for {X ∈ A} is {ω : X(ω) ∈ A}.
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A.4 Expectation

Given a probaiblity space (Ω, F ,P) and a discrete random variable X : Ω −→ X ⊂ R, we call

E[X] :=
∑
x∈X

xP(X = x)

the expectation of X whenever this sum converges absolutely. If X and Y are discrete random variable
defined on (Ω, F ,P), so are (X, Y ) and any measurable function of (X, Y ).

We call Var[X] := E[(X − E[X])2] the variance of X (if this expectation exists) and

Cov[X, Y ] := E[(X − E[X])(Y − E[Y ])]

the covariance of X and Y .

It is well-known that X and Y are independent (denoted as X⊥Y ) iff

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

for all functions f, g for which the two expectations on the right hand side exists.

A.5 Conditional probabilities and conditional expectations

Given a probability space (Ω, F ,P) and A ∈ F with P(A) > 0, we define the conditional probability
P(·|A) : F −→ [0, 1] as

P(B|A) = P(A ∩ B)
P(A) .

Note that (Ω, F ,QA) is a probability space with QA(·) := P(·|A). Given two discrete random variables
X and Y , we call

pY |X(y|x) := pY |X=x(y) := P(Y = y|X = x) =
{

pX,Y (x,y)
pX (x) if pX(x) > 0

0 otherwise

the conditional pmf of Y given X.

For A ∈ F and a discrete random variable X, define the conditional expectation of X given A as

E[X|A] :=
∑
x∈X

xP (X = x|A).

We often apply this with A = {Y = y} where Y is another discrete random variable, i.e. E[X|A] =
E[X|Y = y].
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Appendix B

Convexity

Definition B.1. We call f : R −→ R be convex, if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ R and λ ∈ [0, 1]. We call f strictly convex if above is a strict inequality for all λ ∈ (0, 1).

Theorem B.2. (Jensen’s inequality). Let X be a real-valued random variable such that E[X] exists. If
ϕ : R −→ R is a convex function such that E[|ϕ(X)|] < +∞, then

ϕ(E[X]) ≤ E[ϕ(X)].

If ϕ is strictly convex, then the equality holds iff X is constant with probability one.
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