B1.1 Logic

Martin Bays

Oxford, MT 2023

PART I: Propositional Calculus

1. The language of propositional calculus

... is a very coarse language with limited expressive power;

... allows you to break a complicated sentence down into its subclauses, but not any further;

will be refined in PART II Predicate Calculus, the true language of 1st order logic;

... is nevertheless well suited for entering formal logic.

Lec 2 - 1/8

1.1 Propositional variables

The propositional calculus implements logic of the following kind:

- 1. Socrates is alive or Socrates is dead. 2. Socrates is not alive. Therefore: Socrates is dead.
- 1. If Socrates is a vampire and vampires are immortal, then Socrates is not dead. 2. Socrates is dead. Therefore: Either Socrates is not a vampire, or vampires are not immortal.

We use *propositional variables* to denote propositions - e.g. p_0 for "Socrates is a vampire".

A proposition is something which can be true or false.

Lec 2 - 2/8

1.2 The alphabet of propositional calculus

The alphabet of the propositional language $\mathcal{L}_{\text{prop}}$ consists of the following symbols:

the propositional variables $p_0, p_1, \ldots, p_n, \ldots$

negation \neg - the unary connective *not*

four binary connectives \rightarrow , \land , \lor , \leftrightarrow implies, and, or and if and only if respectively

two punctuation marks (and) left parenthesis and right parenthesis.

Note that these are abstract symbols. Note also that we use \rightarrow , and not \Rightarrow . Lec 2 - 3/8

1.3 Strings

• A string (of $\mathcal{L}_{\text{prop}}$) is any finite sequence of symbols from the alphabet of $\mathcal{L}_{\text{prop}}$.

• Examples

(i)
$$
\rightarrow p_{17}
$$
()
\n(ii) $((p_0 \land p_1) \rightarrow \neg p_2)$
\n(iii) $))\neg p_{32}$

• The length of a string is the number of symbols in it.

So the strings in the examples have length 4, 10, 5 respectively.

(A propositional variable has length 1.)

• We now single out from all strings those which make grammatical sense (formulas).

Lec 2 - 4/8

1.4 Formulas

The notion of a **formula of** \mathcal{L}_{prop} is defined (recursively) by the following rules:

I. Every propositional variable is a formula.

II. If the string A is a formula then so is $\neg A$.

III. If the strings A and B are both formulas then so are the strings

IV. Nothing else is a formula, i.e. a string ϕ is a formula if and only if ϕ can be obtained from propositional variables by finitely many applications of the formation rules II. and III.

Lec 2 - 5/8

Examples

• The string $((p_0 \wedge p_1) \rightarrow \neg p_2)$ is a formula (Example (ii) in 1.3). Proof:

• Parentheses are important, e.g. $(p_0 \wedge (p_1 \rightarrow \neg p_2))$ is a different formula and $p_0 \wedge (p_1 \rightarrow \neg p_2)$ is not a formula at all.

Lec 2 - 6/8

Examples

• The strings $\rightarrow p_{17}()$ and $))\neg p_{32}$ from Example (i) and (iii) in 1.3 are not formulas.

Indeed, if ϕ is a formula, then ϕ arises from one of I., II, or III., and so one of the following must hold:

- 1. ϕ is a propositional variable.
- 2. The first symbol of ϕ is \neg .
- 3. The first symbol of ϕ is (.

The unique readability theorem

A formula can be constructed in only one way: For each formula ϕ exactly one of the

following holds

(a) ϕ is p_i for some unique $i \in \mathbb{N}$;

(b) ϕ is $\neg \psi$ for some **unique** formula ψ ;

(c) ϕ is $(\psi \star \chi)$ for some **unique** pair of formulas ψ , χ and a **unique** binary connective $\star \in \{\rightarrow, \wedge, \vee, \leftrightarrow\}.$

Proof: Problem sheet 1.

Lec 2 - 8/8