### B1.1 Logic

Martin Bays

Oxford, MT 2023

## PART I: Propositional Calculus

# 1. The language of propositional calculus

... is a very coarse language with limited expressive power;

... allows you to break a complicated sentence down into its subclauses, but not any further;

... will be refined in PART II *Predicate Calculus*, the true language of 1st order logic;

... is nevertheless well suited for entering formal logic.

Lec 2 - 1/8

#### 1.1 Propositional variables

The propositional calculus implements logic of the following kind:

- <u>1.</u> Socrates is alive or Socrates is dead.
  <u>2.</u> Socrates is not alive.
  <u>Therefore:</u> Socrates is dead.
- <u>1</u>. If Socrates is a vampire and vampires are immortal, then Socrates is not dead.
  <u>2</u>. Socrates is dead.
  <u>Therefore:</u> Either Socrates is not a vampire, or vampires are not immortal.

We use *propositional variables* to denote propositions – e.g.  $p_0$  for "Socrates is a vampire".

A *proposition* is something which can be true or false.

Lec 2 - 2/8

## 1.2 The alphabet of propositional calculus

The alphabet of the propositional language  $\mathcal{L}_{prop}$  consists of the following symbols:

the propositional variables  $p_0, p_1, \ldots, p_n, \ldots$ 

**negation**  $\neg$  - the unary connective *not* 

four binary connectives  $\rightarrow$ ,  $\land$ ,  $\lor$ ,  $\leftrightarrow$ *implies, and, or* and *if and only if* respectively

**two punctuation marks** ( and ) *left parenthesis* and *right parenthesis*.

Note that these are *abstract symbols*. Note also that we use  $\rightarrow$ , and not  $\Rightarrow$ . Lec 2 - 3/8

#### 1.3 Strings

 A string (of L<sub>prop</sub>) is any finite sequence of symbols from the alphabet of L<sub>prop</sub>.

#### • Examples

(i) 
$$\to p_{17}()$$
  
(ii)  $((p_0 \land p_1) \to \neg p_2)$   
(iii)  $)) \neg )p_{32}$ 

The length of a string is the number of symbols in it.
 So the strings in the examples have length 4, 10, 5 respectively.

(A propositional variable has length 1.)

• We now single out from all strings those which make grammatical sense (formulas).

Lec 2 - 4/8

#### 1.4 Formulas

The notion of a **formula of**  $\mathcal{L}_{prop}$  is defined (*recursively*) by the following rules:

I. Every propositional variable is a formula.

**II.** If the string A is a formula then so is  $\neg A$ .

**III.** If the strings A and B are both formulas then so are the strings

| $(A \rightarrow B)$     | read A implies B         |
|-------------------------|--------------------------|
| $(A \wedge B)$          | read A and B             |
| $(A \lor B)$            | read A or B              |
| $(A \leftrightarrow B)$ | read A if and only if B. |

**IV.** Nothing else is a formula, i.e. a string  $\phi$  is a formula if and only if  $\phi$  can be obtained from propositional variables by finitely many applications of the *formation rules* II. and III.

Lec 2 - 5/8

#### Examples

 The string ((p<sub>0</sub> ∧ p<sub>1</sub>) → ¬p<sub>2</sub>) is a formula (Example (ii) in 1.3).
 Proof:



 Parentheses are important, e.g. (p<sub>0</sub> ∧ (p<sub>1</sub> → ¬p<sub>2</sub>)) is a different formula and p<sub>0</sub> ∧ (p<sub>1</sub> → ¬p<sub>2</sub>) is not a formula at all.

Lec 2 - 6/8

#### Examples

 The strings → p<sub>17</sub>() and ))¬)p<sub>32</sub> from Example (i) and (iii) in 1.3 are not formulas.

Indeed, if  $\phi$  is a formula, then  $\phi$  arises from one of I., II, or III., and so one of the following must hold:

- 1.  $\phi$  is a propositional variable.
- 2. The first symbol of  $\phi$  is  $\neg$ .
- 3. The first symbol of  $\phi$  is (.

#### The unique readability theorem

A formula can be constructed in only one way:

For each formula  $\phi$  exactly one of the following holds

(a)  $\phi$  is  $p_i$  for some unique  $i \in \mathbb{N}$ ;

(b)  $\phi$  is  $\neg \psi$  for some **unique** formula  $\psi$ ;

(c)  $\phi$  is  $(\psi \star \chi)$  for some **unique** pair of formulas  $\psi$ ,  $\chi$  and a **unique** binary connective  $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}.$ 

Proof: Problem sheet 1.

Lec 2 - 8/8