B1.1 Logic Lecture 3

Martin Bays

Oxford, MT 2023

2. Valuations

In natural language, the **truth** or **falsity** of a sentence using logical connectives is determined by the truth or falsity of its subclauses:

"Socrates is dead or Socrates is a vampire" is true because "Socrates is dead" is true.

The propositional calculus abstracts this to a recursive definition of the **truth value** T ('true') or F ('false') of a formula ϕ in terms of the truth values of the propositional variables occuring in ϕ .

Lec 3 - 1/9

2.1 Definition

1. A valuation v is a function

 $v : \{p_0, p_1, p_2, \ldots\} \to \{T, F\}.$

2. Given a valuation v we extend v uniquely to a function

 \widetilde{v} : Form(\mathcal{L}_{prop}) $\rightarrow \{T, F\}.$

(Form(\mathcal{L}_{prop}) denotes the set of all formulas of \mathcal{L}_{prop})

defined recursively as follows:

- (i) If ϕ is a formula of length 1, i.e. a propositional variable, then $\tilde{v}(\phi) := v(\phi)$.
- (ii) If ϕ is a formula of length n > 1, and \tilde{v} has been defined on formulas of length < n: by the Unique Readability Theorem,

either $\phi = \neg \psi_1$ for a unique ψ_1 ,

or $\phi = (\psi_1 \star \psi_2)$ for a unique pair ψ_1, ψ_2 and a unique $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$.

Then the ψ_i are formulas of length < n, and we define $\tilde{v}(\phi)$ in terms of the $\tilde{v}(\psi_i)$ by the **truth tables** on the following slide.

Lec 3 - 2/9

Truth Tables

Define $\tilde{v}(\phi)$ by the following truth tables:

Negation

$$\begin{array}{c|c} \psi & \neg \psi \\ \hline T & F \\ \hline F & T \\ \end{array}$$

i.e. if $\tilde{v}(\psi) = T$ then $\tilde{v}(\neg \psi) = F$ and if $\tilde{v}(\psi) = F$ then $\tilde{v}(\neg \psi) = T$

Binary Connectives

ψ	χ	$\psi \to \chi$	$\psi \wedge \chi$	$\psi \vee \chi$	$\psi \leftrightarrow \chi$
T	$\mid T \mid$	T	T	T	T
T	F	F	F	T	F
F	$\mid T \mid$	T	F	T	F
\overline{F}	F	T	F	F	T

so, e.g., if $\tilde{v}(\psi) = F$ and $\tilde{v}(\chi) = T$ then $\tilde{v}(\psi \lor \chi) = T$ etc.

Lec 3 - 3/9

Remark: These truth tables correspond roughly to our ordinary use of the words 'not', 'if - then', 'and', 'or' and 'if and only if', except, perhaps, the truth table for implication (\rightarrow) .

2.2 Example

Construct the full truth table for the formula

$$\phi := ((p_0 \vee p_1) \to \neg (p_1 \wedge p_2))$$

 $\tilde{v}(\phi)$ only depends on $v(p_0), v(p_1)$ and $v(p_2)$.

p_o	p_1	p ₂	$(p_0 \lor p_1)$	$(p_1 \wedge p_2)$	$\neg(p_1 \land p_2)$	ϕ
T	T	$\mid T \mid$	T	T	F	F
T	T	F	T	F	T	T
T	F	T	T	F	T	T
T	F	F	T	F	T	T
F	T	T	T	T	F	\overline{F}
F	T	F	T	F	T	T
F	F	T	F	F	T	T
F	F	F	F	F	T	T

Lec 3 - 4/9

2.3 Example Truth table for

$$\phi := ((p_0 \to p_1) \to (\neg p_1 \to \neg p_0))$$

p_0	$ p_1 $	$(p_0 \rightarrow p_1)$	$\neg p_1$	$\neg p_0$	$(\neg p_1 \rightarrow \neg p_0)$	ϕ
T	$\mid T \mid$	T	F	F	T	T
T	F	F	T	F	F	T
\overline{F}	T	T	F	T	T	T
\overline{F}	F	T	T	T	T	T

Lec 3 - 5/9

3. Logical Validity

3.1 Definition

- A valuation v satisfies a formula ϕ if $\tilde{v}(\phi) = T$.
- A formula φ is logically valid if φ is satisfied by every valuation (e.g. Example 2.3, not Example 2.2). Such a φ is also called a tautology. Notation: ⊨ φ
- A formula φ is satisfiable
 if φ is satisfied by some valuation. So:

 ϕ is satisfiable iff $\neg\phi$ is not a tautology.

 A formula φ is a logical consequence of a formula ψ if, for every valuation v:

if
$$\tilde{v}(\psi) = T$$
 then $\tilde{v}(\phi) = T$.

Notation: $\psi \models \phi$

Lec 3 - 6/9

3.2 Lemma $\psi \models \phi$ if and only if $\models (\psi \rightarrow \phi)$.

Proof. ' \Rightarrow ': Assume $\psi \models \phi$. Let v be any valuation.

• If $\tilde{v}(\psi) = T$ then (by def.) $\tilde{v}(\phi) = T$, so then $\tilde{v}((\psi \to \phi)) = T$ by tt \to .

('tt \star ' refers to the truth table of the connective \star)

• If
$$\tilde{v}(\psi) = F$$
 then $\tilde{v}((\psi \to \phi)) = T$ by $\mathsf{tt} \to$.

Thus, for every valuation v, $\tilde{v}((\psi \to \phi)) = T$, so $\models (\psi \to \phi)$.

' \Leftarrow ': Conversely, suppose $\models (\psi \rightarrow \phi)$. Let v be any valuation s.t. $\tilde{v}(\psi) = T$. Since $\tilde{v}((\psi \rightarrow \phi)) = T$, also $\tilde{v}(\phi) = T$ by tt \rightarrow . Hence $\psi \models \phi$.

Lec 3 - 7/9

3.3 Definition Let Γ be any (possibly infinite) set of formulas and let ϕ be any formula.

Then ϕ is a **logical consequence** of Γ if, for every valuation v:

If $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$ then $\tilde{v}(\phi) = T$.

Notation: $\Gamma \models \phi$

Note:

$$\models \phi \iff \emptyset \models \phi,$$
$$\psi \models \phi \iff \{\psi\} \models \phi.$$

Lemma 3.2 generalises to:

3.4 Lemma

 $\Gamma \cup \{\psi\} \models \phi \text{ if and only if } \Gamma \models (\psi \rightarrow \phi).$

Proof. Similar to the proof of Lemma 3.2. Exercise.

Lec 3 - 8/9

3.5 Example

$$\models ((p_0 \rightarrow p_1) \rightarrow (\neg p_1 \rightarrow \neg p_0)) \quad (Ex. 2.3)$$

Hence $(p_0 \rightarrow p_1) \models (\neg p_1 \rightarrow \neg p_0) \qquad \text{by 3.2}$
Hence $\{(p_0 \rightarrow p_1), \neg p_1\} \models \neg p_0 \qquad \text{by 3.4}$

3.6 Example

$$\phi \models (\psi \to \phi)$$

Proof. For any v: if $\tilde{v}(\phi) = T$ then, by $tt \rightarrow$, $\tilde{v}((\psi \rightarrow \phi)) = T$ (no matter what $\tilde{v}(\psi)$ is).

Lec 3 - 9/9