B1.1 Logic Lecture 3

Martin Bays

Oxford, MT 2023

2. Valuations

In natural language, the truth or falsity of a sentence using logical connectives is determined by the truth or falsity of its subclauses:

"Socrates is dead or Socrates is a vampire" is true because "Socrates is dead" is true.

The propositional calculus abstracts this to a recursive definition of the truth value T ('true') or F ('false') of a formula ϕ in terms of the truth values of the propositional variables occuring in ϕ .

Lec 3 - 1/9

2.1 Definition

1. A valuation v is a function

 $v : \{p_0, p_1, p_2, \ldots\} \rightarrow \{T, F\}.$

2. Given a valuation v we extend v uniquely to a function

 \tilde{v} : Form($\mathcal{L}_{\text{prob}}$) \rightarrow {T, F}.

(Form($\mathcal{L}_{\text{prop}}$) denotes the set of all formulas of $\mathcal{L}_{\text{prop}}$)

defined recursively as follows:

- (i) If ϕ is a formula of length 1, i.e. a propositional variable, then $\tilde{v}(\phi) := v(\phi)$.
- (ii) If ϕ is a formula of length $n > 1$, and \tilde{v} has been defined on formulas of length $\langle n \rangle$: by the Unique Readability Theorem,

either $\phi = \neg \psi_1$ for a unique ψ_1 ,

or $\phi = (\psi_1 * \psi_2)$ for a unique pair ψ_1, ψ_2 and a unique $\star \in \{\to, \wedge, \vee, \leftrightarrow\}.$

Then the ψ_i are formulas of length $\langle n, \rangle$ and we define $\tilde{v}(\phi)$ in terms of the $\tilde{v}(\psi_i)$ by the **truth tables** on the following slide.

Lec 3 - 2/9

Truth Tables

Define $\tilde{v}(\phi)$ by the following truth tables:

Negation

$$
\begin{array}{c|c}\n\psi & \neg \psi \\
\hline\nT & F \\
\hline\nF & T\n\end{array}
$$

i.e. if $\tilde{v}(\psi) = T$ then $\tilde{v}(\neg \psi) = F$ and if $\tilde{v}(\psi) = F$ then $\tilde{v}(\neg \psi) = T$

Binary Connectives

so, e.g., if $\tilde{v}(\psi) = F$ and $\tilde{v}(\chi) = T$ then $\tilde{v}(\psi \vee \chi) = T$ etc.

Lec 3 - 3/9

Remark: These truth tables correspond roughly to our ordinary use of the words 'not', 'if - then', 'and', 'or' and 'if and only if', except, perhaps, the truth table for implication (\rightarrow) .

2.2 Example

Construct the full truth table for the formula

$$
\phi := ((p_0 \vee p_1) \rightarrow \neg (p_1 \wedge p_2))
$$

 $\tilde{v}(\phi)$ only depends on $v(p_0), v(p_1)$ and $v(p_2)$.

Lec 3 - 4/9

2.3 Example Truth table for

$$
\phi := ((p_0 \rightarrow p_1) \rightarrow (\neg p_1 \rightarrow \neg p_0))
$$

Lec 3 - 5/9

3. Logical Validity

3.1 Definition

- A valuation v satisfies a formula ϕ if $\tilde{v}(\phi) = T$.
- A formula ϕ is logically valid if ϕ is satisfied by every valuation (e.g. Example 2.3, not Example 2.2). Such a ϕ is also called a **tautology**. Notation: $\models \phi$
- A formula ϕ is satisfiable if ϕ is satisfied by some valuation. So:

 ϕ is satisfiable iff $\neg \phi$ is not a tautology.

• A formula ϕ is a logical consequence of a formula ψ if, for every valuation v :

$$
\text{if } \tilde{v}(\psi) = T \text{ then } \tilde{v}(\phi) = T.
$$

Notation: $\psi \models \phi$

Lec 3 - 6/9

3.2 Lemma $\psi \models \phi$ if and only if $\models (\psi \rightarrow \phi)$.

Proof. ' \Rightarrow ': Assume $\psi \models \phi$. Let v be any valuation.

• If $\tilde{v}(\psi) = T$ then (by def.) $\tilde{v}(\phi) = T$, so then $\tilde{v}((\psi \rightarrow \phi)) = T$ by tt \rightarrow .

('tt \star ' refers to the truth table of the connective \star)

• If
$$
\tilde{v}(\psi) = F
$$
 then $\tilde{v}((\psi \to \phi)) = T$ by $t\tilde{t} \to$.

Thus, for every valuation v , $\tilde{v}((\psi \rightarrow \phi)) = T$, so $\models (\psi \rightarrow \phi).$

' \Leftarrow ': Conversely, suppose $\models (\psi \rightarrow \phi)$. Let v be any valuation s.t. $\tilde{v}(\psi) = T$. Since $\tilde{v}((\psi \rightarrow \phi)) = T$, also $\tilde{v}(\phi) = T$ by tt \rightarrow . Hence $\psi \models \phi$.

Lec 3 - 7/9

3.3 Definition Let Γ be any (possibly infinite) set of formulas and let ϕ be any formula.

Then ϕ is a logical consequence of Γ if, for every valuation v :

If $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$ then $\tilde{v}(\phi) = T$.

Notation: $Γ \models φ$

Note:

$$
\models \phi \Leftrightarrow \emptyset \models \phi,
$$

$$
\psi \models \phi \Leftrightarrow \{\psi\} \models \phi.
$$

Lemma 3.2 generalises to:

3.4 Lemma

 $\Gamma \cup {\psi} \models \phi$ if and only if $\Gamma \models (\psi \rightarrow \phi)$.

Proof. Similar to the proof of Lemma 3.2. Exercise.

Lec 3 - 8/9

3.5 Example

$$
\models ((p_0 \rightarrow p_1) \rightarrow (\neg p_1 \rightarrow \neg p_0)) \quad (\text{Ex. 2.3})
$$

Hence
$$
(p_0 \rightarrow p_1) \models (\neg p_1 \rightarrow \neg p_0) \text{ by 3.2}
$$

Hence
$$
\{(p_0 \rightarrow p_1), \neg p_1\} \models \neg p_0 \text{ by 3.4}
$$

3.6 Example

$$
\phi \models (\psi \rightarrow \phi)
$$

Proof. For any v : if $\tilde{v}(\phi) = T$ then, by tt \rightarrow , $\tilde{v}((\psi \rightarrow \phi)) = T$ (no matter what $\tilde{v}(\psi)$ is).

Lec 3 - 9/9

 $\overline{}$