B1.1 Logic Lecture 4

Martin Bays

Oxford, MT 2023

4. Logical Equivalence

4.1 Definition

Two formulas ϕ, ψ are **logically equivalent** if $\phi \models \psi$ and $\psi \models \phi$, i.e. if $\tilde{v}(\phi) = \tilde{v}(\psi)$ for *every* valuation v.

Notation: $\phi \models = \psi$

Exercise: $\phi \models = \psi$ if and only if $\models (\phi \leftrightarrow \psi)$.

4.2 Lemma

(i) For any formulas ϕ, ψ

$$(\phi \lor \psi) \models = \neg (\neg \phi \land \neg \psi).$$

(ii) Hence every formula is logically equivalent to one without ' \lor '.

Lec 4 - 1/12

Proof. (i) Either use truth tables, or observe that for any valuation v:

$$\begin{split} \widetilde{v}(\neg(\neg\phi\wedge\neg\psi)) &= F\\ \text{iff } \widetilde{v}((\neg\phi\wedge\neg\psi)) &= T \quad \text{by tt } \neg\\ \text{iff } \widetilde{v}(\neg\phi) &= \widetilde{v}(\neg\psi) = T \quad \text{by tt } \wedge\\ \text{iff } \widetilde{v}(\phi) &= \widetilde{v}(\psi) = F \quad \text{by tt } \neg\\ \text{iff } \widetilde{v}(\phi\vee\psi) &= F \quad \text{by tt } \vee \end{split}$$

(ii) Induction on the length of the formula ϕ . Clear for length 1.

For the induction step observe that

if
$$\psi \models = \psi'$$
 then $\neg \psi \models = \neg \psi'$,

and $(\phi \lor \psi) \models = |\neg (\neg \phi \land \neg \psi)$ by (i), and for $(\phi \star \psi)$ where \star is not \lor observe:

if
$$\phi \models = \phi'$$
 and $\psi \models = \psi'$ then
 $(\phi \star \psi) \models = (\phi' \star \psi').$

Lec 4 - 2/12

4.3 Some convenient notation

If ϕ_1, \ldots, ϕ_n are formulas, we can write their disjunction as

$$(\ldots ((\phi_1 \lor \phi_2) \lor \phi_3) \ldots \lor \phi_n).$$

This is rather cumbersome notation, so we abbreviate it to

$$\bigvee_{i=1}^{n} \phi_i$$

Formally, we make the following recursive definitions:

$$\bigvee_{i=1}^{1} \phi_i = \phi_1 \text{ and } \bigwedge_{i=1}^{1} \phi_i = \phi_1,$$

and for n > 1,

$$\bigvee_{i=1}^{n} \phi_i = (\bigvee_{i=1}^{n-1} \lor \phi_n) \text{ and } \bigwedge_{i=1}^{n} \phi_i = (\bigwedge_{i=1}^{n-1} \land \phi_n).$$

So $\tilde{v}(\bigvee_{i=1}^{n} \phi_i) = T$ iff for some *i*, $\tilde{v}(\phi_i) = T$ and $\tilde{v}(\bigwedge_{i=1}^{n} \phi_i) = T$ iff for all *i*, $\tilde{v}(\phi_i) = T$.

Lec 4 - 3/12

4.4 Some logical equivalences

Let A, B, A_i be formulas. Then

1. $\neg (A \lor B) \models = (\neg A \land \neg B)$ More generally,

$$\neg \bigvee_{i=1}^{n} A_i \models = \bigwedge_{i=1}^{n} \neg A_i,$$

hence also

$$\neg \bigwedge_{i=1}^{n} A_i \models = \bigvee_{i=1}^{n} \neg A_i.$$

These are called De Morgan's Laws.

- 2. $(A \rightarrow B) \models = (\neg A \lor B)$
- 3. $(A \leftrightarrow B) \models = ((A \rightarrow B) \land (B \rightarrow A))$

4.
$$(A \lor B) \models = | ((A \to B) \to B)$$

5. $(\phi \land \bigvee_{i=1}^{n} \psi_i) \models = \bigvee_{i=1}^{n} (\phi \land \psi_i)$ (" \land distributes over \lor "; similarly, \lor distributes over \land .)

Lec 4 - 4/12

5. Adequacy of the Connectives

The connectives \neg (unary) and $\rightarrow, \land, \lor, \leftrightarrow$ (binary) are the *logical part* of our language for propositional calculus.

Question:

- Do we have "enough connectives"?
- That is, can we express everything which is logically conceivable using only these connectives?
- More precisely, is every possible truth table implemented by some formula of \mathcal{L}_{prop} ?

Answer: yes.

Lec 4 - 5/12

5.1 Definition

(i) We denote by V_n the set of all functions $v : \{p_0, \dots, p_{n-1}\} \rightarrow \{T, F\},$ i.e. "partial" valuations assigning values only to the first n propositional variables. Note $\#V_n = 2^n$.

- (ii) An *n*-ary truth function is a function $J: V_n \to \{T, F\}.$ There are precisely 2^{2^n} such functions.
- (iii) Let $\operatorname{Form}_n(\mathcal{L}_{\operatorname{prop}})$ be the set of formulas which contain only propositional variables from the set $\{p_0, \ldots, p_{n-1}\}$.

Then any $\phi \in \operatorname{Form}_n(\mathcal{L}_{\operatorname{prop}})$ determines the truth function

$$J_{\phi}: V_n \to \{T, F\}$$
$$v \mapsto \widetilde{v}(\phi).$$

(So J_{ϕ} corresponds to the truth table for ϕ .)

Lec 4 - 6/12

5.2 Theorem

Our language \mathcal{L}_{prop} is adequate, i.e. for every n > 0 and every truth function $J: V_n \to \{T, F\}$ there is some $\phi \in \operatorname{Form}_n(\mathcal{L}_{prop})$ with $J_{\phi} = J$.

Proof: Let $J: V_n \rightarrow \{T, F\}$ be any *n*-ary truth function.

If J(v) = F for all $v \in V_n$ take $\phi := (p_0 \land \neg p_0)$. Then, for all $v \in V_n$: $J_{\phi}(v) = \tilde{v}(\phi) = F = J(v)$.

Otherwise let $U := \{v \in V_n \mid J(v) = T\} \neq \emptyset$. For each $v \in U$ and each i < n define the formula

$$\psi_i^v := \begin{cases} p_i & \text{if } v(p_i) = T \\ \neg p_i & \text{if } v(p_i) = F \end{cases}$$

and let $\psi^v := \bigwedge_{i=0}^{n-1} \psi^v_i$.

Lec 4 - 7/12

Then for any valuation $w \in V_n$ one has the following equivalence (*):

$$\begin{split} \widetilde{w}(\psi^v) &= T \quad \text{iff} \quad \begin{array}{l} \text{for all } i < n : \\ \widetilde{w}(\psi^v_i) &= T \\ \text{iff} \quad w = v \end{split} \qquad (\text{by tt } \wedge) \\ \end{split} \end{split}$$

Now define $\phi := \bigvee_{v \in U} \psi^v$. Then for any valuation $w \in V_n$: $\widetilde{w}(\phi) = T$ iff for some $v \in U$: $\widetilde{w}(\psi^v) = T$ (by tt \lor) iff for some $v \in U$: w = v (by (*)) iff $w \in U$ iff J(w) = THence $J_{\phi}(w) = J(w)$ for all $w \in V_n$; i.e. $J_{\phi} = J$.

Lec 4 - 8/12

5.3 Definition

- (i) A formula which is a conjunction of p_i's and ¬p_i's is called a conjunctive clause e.g. ψ^v in the proof of 5.2.
- (ii) A formula which is a disjunction of conjunctive clauses is said to be in disjunctive normal form ('dnf')

- e.g. ϕ in the proof of 5.2.

So in fact the proof of 5.2 yields the following stronger statement:

Lec 4 - 9/12

5.4 Theorem - 'The dnf-Theorem' *For any truth function*

$$J: V_n \to \{T, F\}$$

there is a formula $\phi \in \text{Form}_n(\mathcal{L}_{\text{prop}})$ in dnf with $J_{\phi} = J$.

In particular, every formula is logically equivalent to one in dnf.

Lec 4 - 10/12

5.5 Definition

Suppose S is a set of (truth-functional) connectives – so each $s \in S$ is given by some truth table.

- (i) Write $\mathcal{L}_{prop}[S]$ for the language with connectives S instead of $\{\neg, \rightarrow, \land, \lor, \leftrightarrow\}$ and define Form $(\mathcal{L}_{prop}[S])$ and Form_n $(\mathcal{L}_{prop}[S])$ accordingly.
- (ii) We say that S is adequate (or truth-functionally complete) if for all $n \ge 1$ and for all n-ary truth functions J there is some $\phi \in \operatorname{Form}_n(\mathcal{L}_{\operatorname{prop}}[S])$ with $J_{\phi} = J$.

5.6 Examples

- 1. $S = \{\neg, \land, \lor\}$ is adequate, by the dnf-Theorem.
- 2. Hence, by Lemma 4.2(i), $S = \{\neg, \land\}$ is adequate:

$$(\phi \lor \psi) \models = \neg (\neg \phi \land \neg \psi)$$

Similarly, $S = \{\neg, \lor\}$ is adequate:

 $(\phi \land \psi) \models = \neg (\neg \phi \lor \neg \psi)$

- 3. We can express \lor in terms of \rightarrow (4.4.4), so $\{\neg, \rightarrow\}$ is adequate.
- 4. $S = \{ \lor, \land, \rightarrow \}$ is **not** adequate: any $\phi \in \text{Form}(\mathcal{L}_{\text{prop}}[S])$ has T in the top row of tt ϕ , so no such ϕ gives $J_{\phi} = J_{\neg p_0}$.
- 5. There are precisely two binary connectives, say \uparrow and \downarrow , such that $S = \{\uparrow\}$ and $S = \{\downarrow\}$ are adequate.

Lec 4 - 12/12