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Quadrature
Suppose we want to compute

I (f ) =

∫ b

a
µ(x)f (x)dx

where µ(x) is a non-negative weight function (we will consider
µ(x) ≡ 1 for now). Unfortunately most integrals do not have
closed form solutions. For example, what is

I (f ) =

∫ 1

−1
exp(−x2)dx ?

The idea of quadrature is to approximate I (f ) so

I (f ) ≈ In(f ) =
n∑

k=0

wk f (xk) .

Here

▶ n is the degree of the quadrature
▶ xk are the quadrature nodes
▶ wk are the quadrature weights



Relation to Interpolation

One of the reasons we gave for interpolation of f (x) by p(x) was

“I might want to know
∫ b
a f (x)dx — a good approximation should

be
∫ b
a p(x)dx .”

We looked at different sorts of interpolants in 1D:

▶ Lagrange interpolant on uniform meshes;

▶ Lagrange interpolant on Chebyshev meshes;

▶ Splines on uniform meshes.

What sort of quadrature rules do these lead to?



Integral of Linear Lagrange Interpolant

The linear Lagrange interpolant of f (x) on [a, b] can be written as

p1(x) =
x − a

b − a
f (b) +

b − x

b − a
f (a) .

Then we can write

I (f ) =

∫ b

a
f (x)dx ≈

∫ b

a
p1(x)dx

=
b − a

2
(f (a) + f (b)) .

This is the trapezium rule!



Integral of Quadratic Lagrange Interpolant

The quadratic Lagrange interpolant of f (x) at the points a,
(a+ b)/2, and b can be written as

p2(x) =
x − a

b − a

2x − (a+ b)

b − a
f (b)− 2(x − a)

b − a

2(x − b)

b − a
f

(
a+ b

2

)
+
x − b

b − a

2x − (a+ b)

b − a
f (a) .

Then we can write

I (f ) =

∫ b

a
f (x)dx ≈

∫ b

a
p2(x)dx

=
b − a

6

(
f (a) + 4f

(
a+ b

2

)
+ f (b)

)
.

This is Simpson’s rule!



Newton-Cotes

The Newton-Cotes quadrature rules are the extensions of the
trapezium rule and Simpson’s rule to interpolants of higher
degrees.

Let pn(x) be the Lagrange interpolant of degree n of f (x) at the
uniformly spaced nodes xk = a+ k(b − a)/n, 0 ≤ k ≤ n. Then the
Newton-Cotes rule is

I (f ) ≈ I (pn) =
n∑

k=0

f (xk)

∫ b

a
Ln,k(x)dx .

The integral on the right-hand-side can be computed exactly since
the integrand is just a polynomial of degree n.



Error in Newton-Cotes Quadrature

We wrote down a formula for the error in the Lagrange interpolant
as:

f (x)− pn(x) =
f (n+1)(ξ)

(n + 1)!

n∏
k=0

(x − xk) . (1)

Integrating this gives an error bound for Newton-Cotes quadrature
of the form∣∣∣∣∣
∫ b

a

f (x)dx −
∫ b

a

pn(x)dx

∣∣∣∣∣ ≤
maxξ∈[a,b] |f (n+1)(ξ)|

(n + 1)!

∣∣∣∣∣
∫ b

a

n∏
k=0

(x − xk)dx

∣∣∣∣∣ .
We already saw that uniformly spaced points are bad for
polynomial interpolation and it follows that Newton-Cotes
quadrature does not work well for large degrees.



Possible Remedies

Since Newton-Cotes is not an effective quadrature rule for high
degrees we need an alternative. Possibilities are:

▶ Smaller degrees on sub-intervals — composite rules;

▶ Integrate better interpolants (using different nodes) — Gauss
quadrature/ Clenshaw-Curtis.

In either case adaptivity can help improve efficiency.



Composite Trapezium Rule

Here the idea is to split the range of integration into subintervals
and to apply the trapezium rule on each subinterval. Hence (with
xk = a+ kh, h = (b − a)/m)∫ b

a
f (x)dx =

m∑
k=1

∫ xk

xk−1

f (x)dx

≈ h

2

m∑
k=1

(f (xk+1) + f (xk))

=
h

2

(
f (a) + 2

m−1∑
k=1

f (xk) + f (b)

)
=: Im(f ) .

This is the composite trapezium rule (and can also be thought of
as the integral of the linear spline approximation of f (x)).



Error in Composite Trapezium Rule

We can simply integrate the error given by Equation (1) on each
subinterval and sum to get the error in the composite trapezium
rule as

|I (f )− Im(f )| ≤ h2(b − a)

12
max
ξ∈[a,b]

|f ′′(ξ)| .

If f is a periodic analytic function we see geometric convergence.

Note that the points xk do not have to be equally spaced. In this
case the error bound becomes

|I (f )− Im(f )| ≤
m∑

k=1

(xk − xk−1)
3

12
max

ξ∈[xk−1,xk ]
|f ′′(ξ)| ,

and this can be used as the basis for an adaptive quadrature rule.



Composite Simpson’s Rule

There is an analagous composite Simpson’s rule

In(f ) =
h

3

f (a) + 2

n/2−1∑
k=1

f (x2k) + 4

n/2∑
k=1

f (x2k−1) + f (b)


where n must be even. The approximation error is

|I (f )− In(f )| ≤ h4(b − a)

180
max
ξ∈[a,b]

|f (4)(ξ)| .



Clenshaw-Curtis Quadrature

We already saw that using Chebyshev points was great for
interpolation on [−1, 1] and we could scale to other intervals. The
idea of Clenshaw-Curtis rules is to integrate polynomial
interpolants over [−1, 1] based on Chebyshev points (and we can
perform a change of variable first if we wish to integrate over other
intervals).

Such quadrature rules inherit the accuracy of the interpolant so
|I (f )− In(f )| ∼ O(ρ−n) as n → ∞.

Unfortunately the nice representation of the Chebyshev interpolant
we had via the second barycentric interpolation formula is not
helpful here. It helps to re-write the interpolant as

pn(x) =
n∑

k=0

αkTk(x) ,

where Tk(x) is the degree k first kind Chebyshev polynomial.



Clenshaw-Curtis Quadrature: Coefficient Space
The Chebyshev polynomials are defined as

Tk(x) = cos(k cos−1(x))

for x ∈ [−1, 1]. Thus we have∫ 1

−1
Tk(x)dx =

∫ 1

−1
cos(k cos−1(x))dx

=

∫ π

0
cos(kθ) sin(θ)dθ

=

{
0 for k odd
2

1−k2 for k even .

Thus we may write the quadrature rule as

I (f ) ≈ I (pn) =
n∑

k=0
k even

2αk

1− k2
,

where the αk can be found using a Vandermonde matrix approach.



Clenshaw-Curtis Quadrature: Value Space

An alternative approach is to find the weights, wk , such that
I (pn) =

∑n
k=0 wk f (xk).

We can do this by ensuring that the quadrature rule integrates
each Tk exactly, i.e. we require

n∑
k=0

wkTj(xk) =

∫ 1

−1
Tj(x)dx ,

for 0 ≤ j ≤ n. Thus we again solve a Vandermonde type system,
V Tw = b where bj =

∫ 1
−1 Tj(x)dx .

(In practice this system can be solved in O(n log n) operations via
an FFT/DCT.)



Gauss Quadrature

So far we have fixed the nodes of a quadrature rule and then
chosen the weights to intergrate the corresponding polynomial
interpolant exactly.

An alternative is to choose both the weights and nodes in the
formula

In(f ) =
∑n

k=0 wk f (xk) .

Here there are 2n + 2 unknowns (n + 1 nodes and n + 1 weights)
and so these can be chosen to integrate all polynomials of degree
2n + 1 exactly. This is the idea behind Gauss quadrature.



Gauss Quadrature: Derivation

Orthogonal polynomials on an interval [a, b] with respect to a
weight function µ(x) are defined to be the polynomials
P0(x),P1(x), . . . such that Pk(x) is a polynomial of degree k and
the orthogonality property∫ b

a
µ(x)Pj(x)Pk(x)dx = 0 ,

holds, whenever j ̸= k .

Now define Pk to be the set of polynomials of degree k. Then, for
f2n+1 ∈ P2n+1 we may write

f2n+1(x) = qn(x)Pn+1(x) + rn(x)

for some qn, rn ∈ Pn.



Gauss Quadrature: Derivation

Then we have

I (f2n+1) =

∫ b

a
µ(x)f2n+1(x)dx

=

∫ b

a
µ(x)qn(x)Pn+1(x)dx +

∫ b

a
µ(x)rn(x)dx

=
n∑

k=0

αk

∫ b

a
µ(x)Pk(x)Pn+1(x)dx +

∫ b

a
µ(x)rn(x)dx

= 0 +

∫ b

a
µ(x)rn(x)dx .



Gauss Quadrature: Derivation

Now let the xk be the n + 1 roots of Pn+1(x), then the quadrature
rule gives

In(f2n+1) =
n∑

k=0

wk f2n+1(xk)

=
n∑

k=0

wkqn(xk)Pn+1(xk) +
n∑

k=0

wk rn(xk)

=
n∑

k=0

wk rn(xk) .

Thus, if we choose the weights wk such that polynomial
interpolants through the xk are integrated exactly, we have

I (f2n+1) = In(f2n+1) .



Gauss Quadrature: Examples

Different ranges of integration and different weight functions lead
to different sets of orthogonal polynomials which define Gauss
quadrature rules. Common examples are:

Name Interval Weight

Gauss-Legendre [−1, 1] 1

Gauss-Chebyshev [−1, 1] 1/
√

(1− x2)
Gauss-Jacobi [−1, 1] (1 + x)α(1− x)β

Gauss-Laguerre [0,∞) exp(−x)
Gauss-Hermite (−∞,∞) exp(−x2)



Gauss Quadrature: Computing the Nodes
Orthogonal polynomials satisfy a recurrence relation

γkPk−1(x) + βkPk(x) + γk+1Pk+1(x) = xPk(x) .

(Note this symmetry also requires the polynomials to be
orthonormal.)

We can write this in matrix form as
β0 γ1
γ1 β1 γ2

γ2 β2 γ3
. . .

. . .
. . .

γn βn




P0(x)
P1(x)
P2(x)

...
Pn(x)

+


0
0
0
...

γn+1Pn+1(x)

=x


P0(x)
P1(x)
P2(x)

...
Pn(x)


or equivalently

TP(x) + γn+1Pn+1(x)en+1 = xP(x).

Thus the roots of Pn+1(x) are the solution of a symmetric
tridiagonal eigenvalue problem, i.e. Pn+1(x) = 0 if and only if

Tv = xv.



Gauss Quadrature: Computing the Weights

Once we have computed the nodes xk , we can compute the
weights as

wk =
v21,k

(P0(xk))2

where v1,k is the first entry of the normalised eigenvector
corresponding to eigenvalue (node) xk .


