Exercise sheet 2. Chapters 1-8.

Part A

Question 2.1. Give an example of a noetherian topological space of infinite dimension.

Solution. Second part. Consider the natural numbers \mathbb{N} with the topology in which the closed subsets are the subsets

$$
C_{n}:=\{1,2,3, \ldots, n\}
$$

$(n \geqslant 0)$ (where we set $C_{0}=\emptyset$). In this topology, the sets C_{n} are irreducible. Indeed, if $C_{n}=C_{m} \cup C_{t}$, then either $C_{m} \subseteq C_{t}$ or $C_{t} \subseteq C_{m}$. So C_{n} cannot be written as the union of two proper closed subsets not contained in each other, ie C_{n} is irreducible. Also, this topology on \mathbb{N} is noetherian. Indeed, since all the closed subsets are finite, any descending sequence of closed subsets must stabilise for reasons of cardinality. Finally, we have

$$
C_{1} \subsetneq C_{2} \subsetneq C_{3} \subsetneq \ldots
$$

so that \mathbb{N} has infinite dimension.
Question 2.2. (1) Let $P\left(x_{0}, \ldots, x_{n}\right)$ be a homogenous polynomial. Show that all the irreducible factors of P are also homogenous.
(2) Let $D \subseteq \mathbb{P}^{n}(k)$ be a closed subvariety. Suppose that D is irreducible and that $\operatorname{cod}\left(D, \mathbb{P}^{n}(k)\right)=1$. Show that there is a homogenous irreducible polynomial $P \in k\left[x_{0}, \ldots, x_{n}\right]$ such that $D=\mathrm{Z}(P)$.

Solution. (1) Let Q be an irreducible factor of P. Since P is homogenous, the polynomial $Q\left(t x_{0}, \ldots, t x_{n}\right)$ is also an irreducible factor of P (up to a constant) for all $t \in k \backslash\{0\}$. Since there are only finitely many irreducible factors, we thus see that for infinitely many $t \in k$, we have $Q\left(t x_{0}, \ldots, t x_{n}\right) / Q_{0} \in k$ for some (irreducible) polynomial Q_{0}. In other words, for infinitely many $t \in k$, we have

$$
Q\left(t x_{0}, \ldots, t x_{n}\right)=\sum_{i \geqslant 0} t^{i} Q_{[i]}\left(x_{0}, \ldots, x_{n}\right)=c(t) Q_{0}
$$

for some $c(t) \in k$. By the same Vandermonde argument used in question 2.4, we conclude that each $Q_{[i]}$ is a multiple of Q_{0} by a constant. In particular, each non zero $Q_{[i]}$ has the same degree so that only one $Q_{[i]}$ can be non zero. In particular, Q is homogenous.
(2) Let $D_{i}:=D \cap U_{i}$, where U_{i} a coordinate chart such that $D \cap U_{i} \neq \emptyset$. By question 2.7 (1), we may suppose that $\operatorname{cod}\left(D \cap U_{i}, U_{i}\right)=1$. Then $u_{i}^{-1}\left(D_{i}\right)$ corresponds to a prime ideal \mathfrak{p} of height one in $k\left[x_{0}, \ldots, \breve{x}_{i}, \ldots, x_{n}\right]$ (use Lemma 2.5 and the fact that $D_{i} \cap U_{i}$ is irreducible).

We claim that \mathfrak{p} is principal. To see this, let $P \in \mathfrak{p}$. Since $k\left[x_{0}, \ldots, \breve{x}_{i}, \ldots, x_{n}\right]$ is a UFD, we can write $P=\prod_{j} P_{j}$, where P_{j} is irreducible. Since \mathfrak{p} is prime we have $\mathfrak{p} \supseteq\left(P_{j_{0}}\right)$ for some j_{0}. However, since $P_{j_{0}}$ is irreducible, the ideal $\left(P_{j_{0}}\right)$ is prime. Since \mathfrak{p} has height one (and because the 0 ideal is prime), we thus have $\mathfrak{p}=\left(P_{j_{0}}\right)$, proving the claim.
Now write $Q:=P_{j_{0}}$. Note that since D is irreducible, the closure of $D \cap U_{i}$ in $\mathbb{P}^{n}(k)$ is D. On the other hand, by question 2.9 (2) the closure of $D \cap U_{i}$ in $\mathbb{P}^{n}(k)$ is

$$
\mathrm{Z}\left(x_{i}^{\operatorname{deg}(Q)} Q\left(x_{0} / x_{i}, \ldots, x_{i-1} / x_{i}, \overline{x_{i} / x_{i}}, x_{i+1} / x_{i}, \ldots, x_{n} / x_{i}\right)\right)=: \mathrm{Z}\left(\beta_{i}(Q)\right)
$$

(see question 2.9 for the notation). We contend that $\beta_{i}(Q)$ is also irreducible. To see this, suppose for contradiction that $\beta_{i}(Q)$ is not irreducible. Then $\beta_{i}(Q)=S_{1} S_{2}$, where S_{1} and S_{2} are non constant. By (1) we may assume that S_{1} and S_{2} are homogenous. Also $\beta_{i}(Q)$ is by construction not divisible by x_{i} and so neither are S_{1} and S_{2}. We then have

$$
Q=\beta_{i}(Q)\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)=S_{1}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right) S_{2}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)
$$

so that either $S_{1}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)$ or $S_{2}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)$ is constant (since Q is irreducible). Say $S_{1}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)$ is constant. Since we have

$$
\beta_{i}\left(S_{1}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)\right)=S_{1}
$$

(because S_{1} is homogenous and not divisible by x_{i}) we conclude that S_{1} is a constant, which is a contradiction. So $\beta_{i}(Q)$ is irreducible.

So we have $D=\mathrm{Z}\left(\beta_{i}(Q)\right)$, where $\beta_{i}(Q)$ is irreducible, which is what we wanted to prove.

Part B

Question 2.3. Let V (resp. W) be a closed subvariety of $\mathbb{P}^{n}(k)$ (resp. $\left.\mathbb{P}^{t}(k)\right)$. Let $V_{0} \subseteq V$ (resp. $W_{0} \subseteq W$) be an open subset of V (resp. and open subset of W). View V_{0} (resp. W_{0}) as an open subvariety of V (resp. W). Let $Q_{0}, \ldots, Q_{t} \in k\left[x_{0}, \ldots, x_{n}\right]$ be homogenous polynomials of the same degree. Suppose that $V_{0} \cap \mathrm{Z}\left(\left(Q_{0}, \ldots, Q_{t}\right)\right)=\emptyset$. Let $f: V_{0} \rightarrow \mathbb{P}^{t}(k)$ be the map given by the formula $f(\bar{v}):=\left[Q_{0}(\bar{v}), \ldots, Q_{t}(\bar{v})\right]$. Suppose finally that $f\left(V_{0}\right) \subseteq W_{0}$. Show that the induced map $V_{0} \rightarrow W_{0}$ is a morphism of varieties.

Solution. By Lemma 5.3, we may and do assume that $W_{0}=\mathbb{P}^{t}(k)$. Furthermore, we may and do assume that $V_{0}=\mathbb{P}^{n}(k) \backslash \mathrm{Z}\left(\left(Q_{0}, \ldots, Q_{t}\right)\right)$ (since f arises as a restriction of a map defined on $\left.\mathbb{P}^{n}(k) \backslash \mathrm{Z}\left(\left(Q_{0}, \ldots, Q_{t}\right)\right)\right)$. Now note that for any $j \in\{0, \ldots, t\}$, the image of $\left.f\right|_{V_{0} \backslash Z\left(Q_{j}\right)}$ lies in the coordinate chart U_{j}^{t} of $\mathbb{P}^{t}(k)$. Since a map is a morphism iff it is a morphism everywhere locally, we thus only have to check that the map $\left.f\right|_{\left(V_{0} \backslash Z\left(Q_{j}\right)\right) \cap U_{i}^{n}}:\left(V_{0} \backslash Z\left(\left(Q_{j}\right)\right)\right) \cap U_{i}^{n} \rightarrow U_{j}^{t}$ is a morphism for any $i \in\{0, \ldots, n\}$ and $j \in\{0, \ldots, t\}$. In the coordinates of U_{i}^{n} and U_{j}^{t}, the map has the form

$$
\begin{aligned}
& f\left(X_{0}, \ldots, \widetilde{X}_{i}, \ldots, X_{n}\right)= \\
& \left(\frac{Q_{0}\left(X_{0}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_{n}\right)}{Q_{j}\left(X_{0}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_{n}\right)}, \ldots, \frac{Q_{j}\left(X_{0}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_{n}\right)}{Q_{j}\left(X_{0}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_{n}\right)}, \ldots, \frac{Q_{t}\left(X_{0}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_{n}\right)}{Q_{j}\left(X_{0}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_{n}\right)}\right)
\end{aligned}
$$

and thus by Proposition 4.5 and question 1.7, the map $\left.f\right|_{\left(V_{0} \backslash Z\left(\left(Q_{j}\right)\right) \cap U_{i}^{n}\right.}:\left(V_{0} \backslash Z\left(\left(Q_{j}\right)\right) \cap U_{i}^{n} \rightarrow U_{j}^{t}\right.$ is a morphism.

Question 2.4. Prove Lemma 7.1.
Solution. Recall the statement. Let $I \subseteq k\left[x_{0}, \ldots x_{n}\right]$ be an ideal.
(1) I is homogenous iff for all $P \in I$ and all $i \geqslant 0$, we have $P_{[i]} \in I$.
(2) If I is homogenous then its radical $\mathfrak{r}(I)$ is also homogenous.

We prove (1). The \Leftarrow direction is clear so we only have to establish the \Rightarrow direction of the equivalence. Suppose that $I=\left(H_{1}, \ldots, H_{l}\right)$ where the H_{j} are homogenous. If $P \in I$ then $P=Q_{1} H_{1}+\cdots+Q_{l} H_{l}$ for some polynomials Q_{i} and we compute

$$
P_{[i]}=\sum_{j} Q_{j,\left[i-\operatorname{deg}\left(H_{j}\right)\right]} H_{j}
$$

so that $P_{[i]} \in I$.
(2) Let $t \in K \backslash\{0\}$ and let $\rho_{t}: k\left[x_{0}, \ldots, x_{n}\right] \rightarrow k\left[x_{0}, \ldots, x_{n}\right]$ be the map of k-algebras sending x_{i} to $t x_{i}$. Since $\rho_{1 / t} \circ \rho_{t}=\mathrm{Id}$, the map ρ_{t} is a bijection. Note that since I is homogenous, we have $\rho_{t}(I)=I$. Now

$$
\rho_{t}(\mathfrak{r}(I))=\rho_{t}\left(\cap_{\left.\left.\mathfrak{p} \in \operatorname{Spec}\left(k\left[x_{0}, \ldots, x_{n}\right]\right), \mathfrak{p} \supseteq I \mathfrak{p}\right)=\cap_{\mathfrak{p} \in \operatorname{Spec}\left(k\left[x_{0}, \ldots, x_{n}\right]\right), \mathfrak{p} \supseteq I} \rho_{t}(\mathfrak{p})=\cap_{\mathfrak{p} \in \operatorname{Spec}\left(k\left[x_{0}, \ldots, x_{n}\right]\right), \mathfrak{p} \supseteq I} \mathfrak{p}=\mathfrak{r}(I) .{ }^{2}\right)}\right.
$$

In particular, if $P \in \mathfrak{r}(I)$ then

$$
\rho_{t}(P)=\sum_{i=0}^{\operatorname{deg}(P)} t^{i} P_{[i]} \in \mathfrak{r}(I)
$$

for all $t \in K \backslash\{0\}$. If we let t run through $\operatorname{deg}(P)+1$ different values, we obtain a system of linear equations with maximal rank (a Vandermonde matrix), with a unique solution. Hence $P_{[i]} \in \mathfrak{r}(I)$ for all $i \geqslant 0$.

Question 2.5. Let T be a topological space.
(1) Let $S \subseteq T$ be a subset. Suppose that S is irreducible. Show that the closure of S in T is also irreducible.
(2) Suppose that T is noetherian. Show that T is Hausdorff iff T is finite and discrete.
(3) Let V be a variety. Show that V is irreducible iff the $\operatorname{ring} \mathcal{O}_{V}(U)$ is an integral domain for all open subsets $U \subseteq V$.
(4) Suppose T is noetherian. Show that T is quasi-compact.

Solution. (1) S is dense in its closure \bar{S} by construction. Hence any open subset U of \bar{S} (for the induced topology) meets S. By assumption $U \cap S$ is dense in S and hence U is also dense in \bar{S}.
(2) By Lemma 8.1 (= question 2.6 below), we may suppose wrog that T is irreducible (recall that any subset of a noetherian space is noetherian in the induced topology). In that case, T is Hausdorff iff T is one point. Indeed if U_{1} and U_{2} are neighbourhoods of two distinct points then they must meet (by irreducibility), so that T is not Hausdorff if it has more than one point.
(3) Suppose first that V is reducible. Then there are two disjoint non empty open subsets $O_{1}, O_{2} \subseteq V$. Possibly choosing smaller open sets O_{1} and O_{2}, we may assume that O_{1} and O_{2} are affine. We have $\mathcal{O}_{V}\left(O_{1} \cup O_{2}\right)=\mathcal{O}_{V}\left(O_{1}\right) \times \mathcal{O}_{V}\left(O_{2}\right)$ by the sheaf property and neither of the rings $\mathcal{O}_{V}\left(O_{1}\right)$ and $\mathcal{O}_{V}\left(O_{2}\right)$ is the 0-ring because O_{1} and O_{2} are affine and non-empty (use Theorem 3.7). Hence $\mathcal{O}_{V}\left(O_{1} \cup O_{2}\right)$ is not an integral domain. Conversely, suppose that there is an open subset O, such that $\mathcal{O}_{V}(O)$ is not integral. Let $f_{1}, f_{2} \in \mathcal{O}_{V}(O)$ be such that $f_{1} f_{2}=0$ and $f_{1}, f_{2} \neq 0$. Then there is by the sheaf property an open affine subset $O^{\prime} \subseteq O$ such that $\left.f\right|_{O^{\prime}} \neq 0$. If O^{\prime} arises from an algebraic set $V^{\prime} \subseteq k^{n}$ then f will vanish nowhere on $V^{\prime} \backslash Z\left(\left.f\right|_{O^{\prime}}\right)$, so there exists an open subset $O^{\prime \prime} \subseteq V$ such that $\left.f\right|_{O^{\prime \prime}}$ vanishes nowhere. Similarly there exists an open subset $U^{\prime \prime}$ such that $\left.f_{2}\right|_{U^{\prime \prime}}$ vanishes nowhere. Since $f_{1} f_{2}=0$, the sets $O^{\prime \prime}$ and $U^{\prime \prime}$ are disjoint, so V is reducible.
(4) Let $\left\{U_{i}\right\}_{\in I}$ be an open covering of T. Let J be the set of all finite subcoverings of $\left\{U_{i}\right\}$ (so that J can be identified with the set of finite subsets of the indexing set I). If $A \in J$ then write $\operatorname{Un}(A)$ for the union of all the open sets which appear in A. Suppose for contradiction that T is not quasi-compact so that $\operatorname{Un}(A) \neq T$ for all $A \in J$. Construct a sequence $A_{1}, A_{2}, \cdots \in J$ in the following way. Let $A_{1} \in J$ be arbitrary. Since $\operatorname{Un}\left(A_{1}\right) \neq T$ and $\cup_{i} U_{i}=T$, there is A_{2} so that $\operatorname{Un}\left(A_{2}\right) \supsetneq \operatorname{Un}\left(A_{1}\right)$. Proceed in the same way for A_{2}, A_{3} etc. The sequence will be infinite for otherwise $\left\{U_{i}\right\}_{\in I}$ has a finite subcovering. Hence

$$
T \backslash A_{1} \supsetneq T \backslash A_{2} \supsetneq \cdots
$$

is an infinite descending sequence of closed sets, contradicting noetherianity. Hence T is quasi-compact.
Question 2.6. Prove Lemma 8.1.
Solution. We recall the statement. Suppose T is noetherian and non empty. Then there is a unique finite collection $\left\{T_{i}\right\}$ of irreducible closed subsets of T such that
(a) $T=\cup_{i} T_{i}$.
(b) $T_{i} \nsubseteq \cup_{j \neq i} T_{j}$ for all i.

We first prove that T is the union of a finite collection of irreducible closed subsets. Denote this statement by $S(T)$. To prove $S(T)$, we first make the assumption $\left(^{*}\right.$) that for any proper closed subset C of T (ie such that $C \neq T$) we have $S(C)$. Now if T is irreducible then $S(T)$ holds tautologically. If T is not irreducible, then T has a non dense open subset and so T contains two disjoint non empty open subsets U_{1} and U_{2}, so that $T=\left(T \backslash U_{1}\right) \cup\left(T \backslash U_{2}\right)$, where $\left(T \backslash U_{1}\right)$ and $\left(T \backslash U_{2}\right)$ are not contained in each other. Since we know that $S\left(T \backslash U_{1}\right)$ and $S\left(T \backslash U_{2}\right)$ hold, we obtain a presentation of T as a union of finitely many irreducible closed subsets.

So the claim is proven under assumption $\left({ }^{*}\right)$. Now suppose for contradiction that $\left({ }^{*}\right)$ does not hold. Then T has a proper closed subset C_{1} so that $S\left(C_{1}\right)$ does not hold. Hence C_{1} is in particular not irreducible and thus can be written as union of two proper closed subsets C^{\prime} and $C^{\prime \prime}$. We know that either $S\left(C^{\prime}\right)$ or $S\left(C^{\prime \prime}\right)$ does not hold (otherwise $S\left(C_{1}\right)$ would hold), so suppose that $S\left(C^{\prime}\right)$ does not hold. Write $C_{2}:=C^{\prime}$. Repeating the same process for C_{2} in place of C_{1} and continuing in the same way, we obtain a sequence

$$
C_{1} \supsetneq C_{2} \supsetneq C_{3} \supsetneq \ldots
$$

contradiction the fact that C_{1} is noetherian. So we conclude that $\left(^{*}\right)$ holds and in particular we have established $S(T)$.

So T is a union of finitely many irreducible closed subsets. Since this set of irreducible closed subsets is finite, it has maximal elements for the relation of inclusion and also any element of it is contained in a maximal element. Let $\left\{T_{i}\right\}$ be the set of maximal elements. Then we have $T=\cup_{i} T_{i}$ (since any element is contained in a maximal element) and we have $T_{i} \nsubseteq \cup_{j \neq i} T_{j}$ for all i, because if $T_{i} \subseteq \cup_{j \neq i} T_{j}$ for some index i, then T_{i} is contained in T_{j} for some $j \neq i$ (because T_{i} is irreducible), which contradicts maximality. So we have established the existence of a collection $\left\{T_{i}\right\}$ with properties (a) and (b).

We now prove uniqueness. So suppose that we have a collection $\left\{T_{i}\right\}$ with properties (a) and (b). We note that the T_{i} are precisely the closed irreducible subsets of T, which are maximal among all irreducible closed subsets of T for the relation of inclusion. Indeed, let $C \subseteq T$ be an irreducible closed subset and suppose that $C \supseteq T_{i}$ for some i. Since $C \subseteq T_{j}$ for some j (because $C \subseteq \cup_{i} T_{i}$ and C is irreducible), we have $T_{i} \subseteq T_{j}$. This implies that $T_{i}=T_{j}$ by property (b). Hence $C=T_{i}$. So the T_{i} are maximal among all irreducible closed subsets of T for the relation of inclusion. On the other hand, suppose that C is a closed irreducible subset of T, which is maximal for the relation of inclusion. Then $C \subseteq T_{i}$ for some i (again just because C is irreducible) and thus $C=T_{i}$ by maximality. Hence he T_{i} are precisely the closed irreducible subsets of T, which are maximal among all irreducible closed subsets of T for the relation of inclusion. But this determines the T_{i} uniquely.

Question 2.7. Let T be a topological space. Let $\left\{V_{i}\right\}$ be an open covering of T. Let $C \subseteq T$ be an irreducible closed subset (hence non empty).
(1) Show that $C \cap V_{i}$ is irreducible if $C \cap V_{i} \neq \emptyset$ and that $\sup _{i, C \cap V_{i} \neq \emptyset} \operatorname{cod}\left(C \cap V_{i}, V_{i}\right)=\operatorname{cod}(C, T)$ and $\sup _{i} \operatorname{dim}\left(V_{i}\right)=\operatorname{dim}(T)$.
(2) Prove Proposition 8.6.

Solution. (1) First part. We first show that $C \cap V_{i}$ is irreducible if $C \cap V_{i}$ is not empty. If $U \subseteq C \cap V_{i}$ is open (for the induced topology) and non empty it is also open in C, and hence it is dense in C, and hence dense in $C \cap V_{i}$. So $C \cap V_{i}$ is also irreducible. To show that $\sup _{i, C \cap V_{i} \neq \emptyset} \operatorname{cod}\left(C \cap V_{i}, V_{i}\right)=\operatorname{cod}(C, T)$, note first that from the definitions, we have $\operatorname{cod}\left(C \cap V_{i}, V_{i}\right) \leqslant \operatorname{cod}(C, T)$ for all i such that $C \cap V_{i} \neq \emptyset$. So we only have to prove that there is an $i_{0}:=i_{0}(C)$ such that $\operatorname{cod}\left(C \cap V_{i_{0}}, V_{i_{0}}\right) \geqslant \operatorname{cod}(C, T)$. So let

$$
C \subsetneq C_{1} \subsetneq C_{2} \subsetneq \cdots \subsetneq C_{\operatorname{cod}(C, T)}
$$

be an ascending sequence of closed irreducible subsets. Let i_{0} be an index such that $C \cap V_{i_{0}} \neq \emptyset$. We then have $C_{j} \cap V_{i_{0}} \neq \emptyset$ for all $j \geqslant 1$ and moreover C_{j} is the closure of $C_{j} \cap V_{i_{0}}$ in T since C_{j} is irreducible and closed in T. Hence we also have

$$
C \cap V_{i_{0}} \subsetneq C_{1} \cap V_{i_{0}} \subsetneq C_{2} \cap V_{i_{0}} \subsetneq \cdots \subsetneq C_{\operatorname{cod}(C, T)} \cap V_{i_{0}}
$$

So we have $\operatorname{cod}\left(C \cap V_{i_{0}}, V_{i_{0}}\right) \geqslant \operatorname{cod}(C, T)$ as required.
Second part. Using the first part, we have

$$
\begin{aligned}
& \operatorname{dim}(T)=\sup _{C \text { irreducible closed in } T} \operatorname{cod}(C, T)=\sup _{C \text { irreducible closed in } T} \sup _{i, C \cap V_{i} \neq \emptyset} \operatorname{cod}\left(C \cap V_{i}, V_{i}\right) \\
= & \sup _{i} \operatorname{cod}\left(C \cap V_{i}, V_{i}\right)=\sup _{i} \sup _{\widetilde{C} \text { irreducibleble closed in } V_{i}} \sup \left(\widetilde{C}, V_{i}\right)=\sup _{i} \operatorname{dim}\left(V_{i}\right)
\end{aligned}
$$

where we have used question 2.5 (1) in the equality before last. So the second part follows from the first part.
(2) This follows from (1) and the fact that the dimension of a polynomial ring is finite (Theorem 8.4). Indeed an affine variety is topologically a closed subset of k^{n} for some $n \geqslant 0$ and thus all its closed subsets have finite dimension and codimension because k^{n} has finite dimension. The general case then follows from (1) and the fact that a variety has a finite covering by affine open subvarieties.

Question 2.8. (1) Show that any element of $\mathrm{GL}_{n+1}(k)$ ($=$ group of $(n+1) \times(n+1)$-matrices with entries in k and with non zero determinant) defines an automorphism of $\mathbb{P}^{n}(k)$.
(2) Show that if V is a projective variety, then for any two points $v_{1}, v_{2} \in V$, there is an open affine subvariety $V_{0} \subseteq V$ such that $v_{1}, v_{2} \in V_{0}$.

Solution. (1) Let $M \in \mathrm{GL}_{n+1}(k)$. Define a map $\phi_{M}: \mathbb{P}^{n}(k) \rightarrow \mathbb{P}^{n}(k)$ by the formula

$$
\phi_{M}([\bar{v}])=[M \cdot \bar{v}]=\left[\sum_{j} M_{0 j} v_{j}, \sum_{j} M_{1 j} v_{j}, \ldots, \sum_{j} M_{n j} v_{j}\right]
$$

By question 2.3 , this is a morphism from $\mathbb{P}^{n}(k)$ to $\mathbb{P}^{n}(k)$. Its inverse is by construction given by $\phi_{M^{-1}}$. This construction in fact gives a homomorphism of groups $\mathrm{GL}_{n+1}(k) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{n}(k)\right)$.
(2) It is sufficient to prove this for $V=\mathbb{P}^{n}(k)$.

Indeed, suppose that V is a closed subvariety of $\mathbb{P}^{n}(k)$. Suppose that $U \subseteq \mathbb{P}^{n}(k)$ is an open affine subvariety such that $v_{1}, v_{2} \in U$. Note that $C \cap U$ is a closed subset of U and an open subset of C. By construction,
the sheaf of functions that $C \cap U$ inherits from C as an open subvariety of C is the same as the sheaf of functions it inherits from U as closed subvariety of U (this follows from the definitions). On the other hand, if one endows $C \cap U$ with the sheaf of functions it inherits from U as a closed subvariety, then the resulting Topskf is affine by Lemma 5.4. Hence $C \cap U$ is an affine open subvariety of C. Furthermore, $C \cap U$ contains both v_{1} and v_{2}.

So we prove the statement for $\mathbb{P}^{n}(k)$. Suppose that $v_{1}=\left[\bar{v}_{1}\right]$ and $v_{2}=\left[\bar{v}_{2}\right]$, where $\bar{v}_{1}, \bar{v}_{2} \in k^{n+1} \backslash\{0\}$. We may suppose that $v_{1} \neq v_{2}$ (otherwise take V_{0} to be any open subvariety containing v_{1}) and so \bar{v}_{1} and \bar{v}_{2} are not multiples of each other. In particular, \bar{v}_{1} and \bar{v}_{2} are linearly independent. Now let $i \in\{0, \ldots, n\}$ be such that $v_{1} \in U_{i}$, where U_{i} is one of the standard coordinate charts. Let $\bar{w} \in k^{n+1} \backslash\{0\}$ be such that $[\bar{w}] \in U_{i} \backslash\left\{v_{1}\right\}$. Choose $M \in \mathrm{GL}_{n+1}(k)$ such that $M\left(\bar{v}_{1}\right)=\bar{v}_{1}$ and $M\left(\bar{v}_{2}\right)=\bar{w}$. So in particular, $\phi_{M}\left(v_{1}\right)=v_{1}$ and $\phi_{M}\left(v_{2}\right) \in U_{i}$. Then we have $v_{1}, v_{2} \in \phi_{M}^{-1}\left(U_{i}\right)=\phi_{M^{-1}}\left(U_{i}\right)$. Now $\phi_{M^{-1}}\left(U_{i}\right)$ is an open affine subvariety of $\mathbb{P}^{n}(k)$ because U_{i} is affine and $\phi_{M^{-1}}$ is an automorphism of varieties.

Part C

Question 2.9. Let $i \in\{0, \ldots, n\}$ and let $u_{i}: k^{n} \rightarrow \mathbb{P}^{n}(k)$ be the standard map (with image the coordinate chart U_{i}). Let $C \subseteq k^{n}$ be a closed subvariety of k^{n} (ie an algebraic set in k^{n}). For any $P \in k\left[x_{0}, \ldots, x_{i-1}, \breve{x_{i}}, x_{i+1}, \ldots, x_{n}\right]$ let

$$
\beta_{i}(P):=x_{i}^{\operatorname{deg}(P)} P\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{\widetilde{x_{i}}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right) \in k\left[x_{0}, \ldots, x_{n}\right] .
$$

(1) Let \bar{C} be the closure of $u_{i}(C)$ in $\mathbb{P}^{n}(k)$. Show that $\left(\beta_{i}(\mathcal{I}(C))\right)=\mathcal{I}(\bar{C})$ (where $\left(\beta_{i}(\mathcal{I}(C))\right)$ is the ideal of $k\left[x_{0}, \ldots, x_{n}\right]$ generated by all the elements of $\left.\beta_{i}(\mathcal{I}(Z))\right)$.
(2) Suppose that $\mathcal{I}(C)=(J)$ (ie $\mathcal{I}(C)$ is a principal ideal with generator $J)$. Show that $\left(\beta_{i}(J)\right)=\mathcal{I}(\bar{C})$.
(3) Suppose that $n=3$ and that C is the variety considered in question 1.3. Describe the closure of $u_{0}(C)$ in $\mathbb{P}^{3}(k)$. Find homogenous polynomials $\left(H_{1}, \ldots, H_{h}\right)$ such that $\mathrm{Z}\left(H_{1}, \ldots, H_{h}\right)$ is the closure of $u_{0}(C)$ in $\mathbb{P}^{3}(k)$.

Solution. (1) By construction we have $u_{i}^{-1}\left(\mathrm{Z}\left(\beta_{i}(P)\right)\right)=\mathrm{Z}(P)$ for any P as above so the closed set $\mathrm{Z}\left(\left(\beta_{i}(\mathcal{I}(C))\right)\right)$ contains the closure of $u_{i}(C)$ in $\mathbb{P}^{n}(k)$. In particular $\left(\beta_{i}(\mathcal{I}(C))\right) \subseteq \mathcal{I}(\bar{C})$. So we only have to show the opposite inclusion, ie we have to show that if Q is a homogenous polynomial which vanishes on $u_{i}(C)$ then $Q \in\left(\beta_{i}(\mathcal{I}(C))\right)$. So suppose that $Q=Q\left(x_{0}, \ldots, x_{n}\right)$ vanishes on $u_{i}(C)$. Write $Q=x_{i}^{\delta} Q_{0}$, where Q_{0} is not divisible by x_{0}. By construction, Q_{0} is also homogenous and also vanishes on $u_{i}(C)$. In particular, $Q_{0}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)$ vanishes on C (by the definition of the map u_{i}). But

$$
\beta_{i}\left(Q_{0}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)\right)=Q_{0}\left(x_{0}, \ldots, x_{n}\right)
$$

because $\operatorname{deg}\left(Q_{0}\left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)=\operatorname{deg}\left(Q_{0}\left(x_{0}, \ldots, x_{n}\right)\right)\right.$. So $Q_{0} \in\left(\beta_{i}(\mathcal{I}(C))\right)$ and hence $Q \in$ $\left(\beta_{i}(\mathcal{I}(C))\right)$.
(2) Notice that β_{i} is multiplicative. Hence $\left(\beta_{i}(\mathcal{I}(C))\right)=\left(\beta_{i}(J)\right)$.
(3) First note the following. Let T be a topological space and $\left\{T_{i}\right\}$ be an open covering og T. Let $S \subseteq T$ be a subset. Write $\operatorname{cl}(S, T)$ for the closure of S in T. Then we have $\operatorname{cl}(S, T)=\cup_{i} \operatorname{cl}\left(S \cap T_{i}, T_{i}\right)$. Indeed, from the definitions, we have $\operatorname{cl}(S, T) \supseteq \operatorname{cl}\left(S \cap T_{i}, T_{i}\right)$ for all i and hence $\operatorname{cl}(S, T) \supseteq \cup_{i} \operatorname{cl}\left(S \cap T_{i}, T_{i}\right)$. We prove the opposite inclusion. So suppose that $t \in \operatorname{cl}(S, T)$. Note that this is equivalent to saying that every
open neighbourhood of t meets S. For all the indices i such that $t \in T_{i}$, we then have $t \in \operatorname{cl}\left(S \cap T_{i}, T_{i}\right)$. Indeed if V is an open neighbourhood of t in T_{i}, then V is also open in T (since T_{i} is open) and thus V meets S. Since V is contained in T_{i}, V thus meets $S \cap T_{i}$. Since V was arbitrary, we thus see that $t \in \operatorname{cl}\left(S \cap T_{i}, T_{i}\right)$. Since t is contained in at least one T_{i}, we conclude that $\operatorname{cl}(S, T) \subseteq \cup_{i} \operatorname{cl}\left(S \cap T_{i}, T_{i}\right)$ and thus that $\operatorname{cl}(S, T)=\cup_{i} \operatorname{cl}\left(S \cap T_{i}, T_{i}\right)$.
Using this statement, we see that $\operatorname{cl}\left(u_{0}(C), \mathbb{P}^{3}(k)\right)=\cup_{i=0}^{3} u_{i}\left(\operatorname{cl}\left(u_{i}^{-1}\left(u_{0}(C)\right), k^{3}\right)\right)$.
Now the variety $u_{1}^{-1}\left(u_{0}(C)\right)$ is $\left\{\left(1 / t, t, t^{2}\right) \mid t \in k \backslash\{0\}\right\}$ in the coordinates x_{0}, x_{2}, x_{3}. This is precisely the zero set of $\left(x_{2} x_{0}-1, x_{3}-x_{2}^{2}\right)$ in k^{3} and is thus closed in k^{3}.
The variety $u_{2}^{-1}\left(u_{0}(C)\right)$ is $\left\{\left(1 / t^{2}, 1 / t, t\right) \mid t \in k \backslash\{0\}\right\}$ in the coordinates x_{0}, x_{1}, x_{3}. This is precisely the zero set of $\left(x_{3} x_{1}-1, x_{1}^{2}-x_{0}\right)$ in k^{3} and is thus closed in k^{2}.
The variety $u_{3}^{-1}\left(u_{0}(C)\right)$ is $\left\{\left(1 / t^{3}, 1 / t^{2}, 1 / t\right) \mid t \in k \backslash\{0\}\right\}$ in the coordinates x_{0}, x_{1}, x_{2}. This is precisely the zero set of $\left(x_{2}^{2}-x_{1}, x_{2}^{3}-x_{0}\right)$ in $k^{3} \backslash\{0\}$. On the other hand, the zero set of $\left(x_{2}^{2}-x_{1}, x_{2}^{3}-x_{0}\right)$ in k^{3} contains 0 and it is precisely the set $\left\{\left(u^{3}, u^{2}, u\right) \mid u \in k\right\}$. By the reasoning of question 1.3 , this set is isomorphic to k via the third projection. Hence $u_{3}^{-1}\left(u_{0}(C)\right)$ is an open set of a closed irreducible algebraic set (namely $\left.\mathrm{Z}\left(x_{2}^{2}-x_{1}, x_{2}^{3}-x_{0}\right)\right)$ in k^{3} and its closure is thus $\mathrm{Z}\left(x_{2}^{2}-x_{1}, x_{2}^{3}-x_{0}\right)$.
As $u_{3}(\langle 0,0,0\rangle)=[0,0,0,1]$, we conclude that $\operatorname{cl}\left(u_{0}(C), \mathbb{P}^{3}(k)=u_{0}(C) \cup\{[0,0,0,1]\}\right.$. Now C is described by the equation $x_{1}^{2}-x_{2}$ and $x_{1}^{3}-x_{3}$ in k^{3} and thus

$$
\operatorname{cl}\left(u_{0}(C), \mathbb{P}^{3}(k)\right) \subseteq \mathrm{Z}\left(\beta_{0}\left(x_{1}^{2}-x_{2}\right), \beta_{0}\left(x_{1}^{3}-x_{3}\right)\right)=\mathrm{Z}\left(x_{1}^{2}-x_{2} x_{0}, x_{1}^{3}-x_{3} x_{0}^{2}\right)
$$

If $x_{0}=0$ then the equations $x_{1}^{2}-x_{2} x_{0}$ and $x_{1}^{3}-x_{3} x_{0}^{2}$ are equivalent to the equation $x_{1}=0$. So we need a third equation which vanishes on $u_{0}(C)$ and which forces the equation $x_{2}=0$ if $x_{0}=x_{1}=0$. Consider $x_{2}^{3}-x_{3}^{2} x_{0}=\beta_{0}\left(x_{2}^{3}-x_{3}^{2}\right)=0$. By inspection, we see that $x_{2}^{3}-x_{3}^{2} x_{0}$ vanishes on $u_{0}(C)$. On the other hand, if $x_{0}=0$ and $x_{2}^{3}-x_{3}^{2} x_{0}=0$ then $x_{2}=0$.
We thus see that

$$
\operatorname{cl}\left(u_{0}(C), \mathbb{P}^{3}(k)\right)=\mathrm{Z}\left(x_{1}^{2}-x_{2} x_{0}, x_{1}^{3}-x_{3} x_{0}^{2}, x_{2}^{3}-x_{3}^{2} x_{0}\right)
$$

