Exercise sheet 3. Chapters 1-12.

Part A

Question 3.1. Show that k^{2} is not homeomorphic to $\mathbb{P}^{2}(k)$.

Solution. Suppose for contradiction that there is a homeomorphism $h: k^{2} \rightarrow \mathbb{P}^{2}(k)$. Let $V_{0}:=\mathrm{Z}\left(x_{1}\right)$ and $V_{1}=\mathrm{Z}\left(x_{1}-1\right)$. We have $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(V_{1}\right)=1$ and V_{0} and V_{1} are irreducible. Noting that both dimension and irreducibility only depend on the underlying topology, we see that $h\left(V_{0}\right)$ and $h\left(V_{1}\right)$ are irreducible closed subsets of dimension 1 of $\mathbb{P}^{2}(k)$. Thus we have $h\left(V_{0}\right) \cap h\left(V_{1}\right) \neq \emptyset$ by Proposition 11.2. However, by construction we have $V_{0} \cap V_{1}=\emptyset$, so this is a contradiction.

Part B

Question 3.2. Let $V_{0}=\mathrm{Z}\left(x_{0} x_{3}-x_{1}^{2}\right) \subseteq \mathbb{P}^{3}(k)$ and $V_{1}=\mathrm{Z}\left(x_{1} x_{3}-x_{2}^{2}\right) \subseteq \mathbb{P}^{3}(k)$. Let $C:=V_{0} \cap V_{1} \subseteq \mathbb{P}^{3}(k)$. Let $U:=\mathbb{P}^{3} \backslash \mathrm{Z}\left(x_{0}, x_{1}, x_{2}\right)$ and endow U with its structure of open subvariety of $\mathbb{P}^{3}(k)$. Let $g: U \rightarrow \mathbb{P}^{2}(k)$ be the morphism such that $g\left(\left[X_{0}, X_{1}, X_{2}, X_{3}\right]\right)=\left[X_{0}, X_{1}, X_{2}\right]$ for all $\left[X_{0}, X_{1}, X_{2}, X_{3}\right] \in U$ (see question 2.3).
(1) Show that the morphism $\left.g\right|_{C \cap U}: C \cap U \rightarrow \mathbb{P}^{2}(k)$ extends to a morphism $f: C \rightarrow \mathbb{P}^{2}(k)$.
(2) Show that $f(C)$ is closed and that $f(C)=\mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right)$.
(3) Show that the induced map $f: C \rightarrow f(C)$ is an isomorphism.

Solution. (1) We have $\mathrm{Z}\left(x_{0}, x_{1}, x_{2}\right)=\{[0,0,0,1]\} \subseteq C$. So $\left.g\right|_{C \cap U}$ is only undefined at one point. Now assuming that $X_{1}, X_{2}, X_{3} \neq 0$ and $\left[X_{0}, X_{1}, X_{2}, X_{3}\right] \in C$, we have

$$
\begin{aligned}
& g\left(\left[X_{0}, X_{1}, X_{2}, X_{3}\right]\right)=\left[X_{0}, X_{1}, X_{2}\right]=\left[X_{0} X_{3}, X_{1} X_{3}, X_{2} X_{3}\right]=\left[X_{1}^{2}, X_{2}^{2}, X_{2} X_{3}\right] \\
= & {\left[X_{1}^{2} X_{2}, X_{2}^{3}, X_{2}^{2} X_{3}\right]=\left[X_{1}^{2} X_{2}, X_{1} X_{2} X_{3}, X_{1} X_{3}^{2}\right]=\left[X_{1} X_{2}, X_{2} X_{3}, X_{3}^{2}\right] . }
\end{aligned}
$$

So the map $h: C \backslash\left(\mathrm{Z}\left(x_{1} x_{2}, x_{2} x_{3}, x_{3}^{2}\right) \cap C\right) \rightarrow \mathbb{P}^{2}(k)$ given by the formula

$$
h\left(\left[X_{0}, X_{1}, X_{2}, X_{3}\right]\right)=\left[X_{1} X_{2}, X_{2} X_{3}, X_{3}^{2}\right]
$$

coincides with g on $C \backslash\left(\left(\mathrm{Z}\left(x_{1} x_{2} x_{3}\right) \cup \mathrm{Z}\left(x_{0}, x_{1}, x_{2}\right)\right) \cap C\right)$. Now $[0,0,0,1] \notin \mathrm{Z}\left(x_{1} x_{2}, x_{2} x_{3}, x_{3}^{2}\right)$ so h extends $\left.g\right|_{U \cap C}$ in a neighborhood of $[0,0,0,1]$.
(2) The fact that $f(C) \subseteq \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right)$ follows from the fact that if $\left[X_{0}, X_{1}, X_{2}, X_{3}\right] \in C$ then

$$
X_{1}^{3}=X_{1} X_{0} X_{3}=X_{0}\left(X_{1} X_{3}\right)=X_{0} X_{2}^{2}
$$

The fact that $f(C)$ is closed follows from Corollary 12.10 (and the fact that projective varieties are complete). It also follows from (3) of this question.
(3) We shall construct an inverse map. Suppose that $\left[Z_{0}, Z_{1}, Z_{2}\right] \in \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right)$. Suppose first that $Z_{0}, Z_{1} \neq 0$. Then we have

$$
\left[Z_{0}, Z_{1}, Z_{2}, Z_{2}^{2} / Z_{1}\right]=\left[Z_{0} Z_{1}, Z_{1}^{2}, Z_{2} Z_{1}, Z_{2}^{2}\right]=\left[Z_{0}, Z_{1}, Z_{2}, Z_{1}^{2} / Z_{0}\right]=\left[Z_{0}^{2}, Z_{1} Z_{0}, Z_{2} Z_{0}, Z_{1}^{2}\right]
$$

(because $Z_{2}^{2} / Z_{1}=Z_{1}^{2} / Z_{0}$ since $\left[Z_{0}, Z_{1}, Z_{2}\right] \in \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right)$). Next, plugging either member of this equality into the equations for C we see that

$$
\left[Z_{0} Z_{1}, Z_{1}^{2}, Z_{2} Z_{1}, Z_{2}^{2}\right] \in C
$$

if either $Z_{0} Z_{1} \neq 0$ or $Z_{1}^{2} \neq 0$ or $Z_{2} Z_{1} \neq 0$ or $Z_{2}^{2} \neq 0$ and

$$
\left[Z_{0}^{2}, Z_{1} Z_{0}, Z_{2} Z_{0}, Z_{1}^{2}\right] \in C
$$

if either $Z_{0}^{2} \neq 0$ or $Z_{1} Z_{0} \neq 0$ or $Z_{2} Z_{0} \neq 0$ or $Z_{1}^{2} \neq 0$.
Let $\iota_{2}: \mathbb{P}^{2}(k) \backslash \mathrm{Z}\left(z_{0} z_{1}, z_{1}^{2}, z_{2} z_{1}, z_{2}^{2}\right) \rightarrow \mathbb{P}^{3}(k)$ be the map such that

$$
\iota_{2}\left(\left[Z_{0}, Z_{1}, Z_{2}\right]\right)=\left[Z_{0} Z_{1}, Z_{1}^{2}, Z_{2} Z_{1}, Z_{2}^{2}\right]
$$

and $\iota_{1}: \mathbb{P}^{2}(k) \backslash \mathrm{Z}\left(z_{0}^{2}, z_{1} z_{0}, z_{2} z_{0}, z_{1}^{2}\right) \rightarrow \mathbb{P}^{3}(k)$ be the map such that

$$
\iota_{1}\left(\left[Z_{0}, Z_{1}, Z_{2}\right]\right)=\left[Z_{0}^{2}, Z_{1} Z_{0}, Z_{2} Z_{0}, Z_{1}^{2}\right]
$$

We have shown that these two maps coincide on $\mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right)$ whenever $Z_{0}, Z_{1} \neq 0$. If $\left[Z_{0}, Z_{1}, Z_{2}\right] \in \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right)$ and $Z_{0}=0$ then $Z_{1}=0$ so $\left[Z_{0}, Z_{1}, Z_{2}\right]=[0,0,1]$. By the above ι_{2} is defined at $[0,0,1]$. On the other hand, if $Z_{1}=0$ then either $Z_{0}=0$ or $Z_{2}=0$ so that either $\left[Z_{0}, Z_{1}, Z_{2}\right]=[0,0,1]$ or $\left[Z_{0}, Z_{1}, Z_{2}\right]=[1,0,0]$. Again, ι_{1} is defined at $[1,0,0]$. Hence ι_{1} and ι_{2} together define a map $\phi: \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right) \rightarrow C$. Also, by construction, we have

$$
\left.\left.\phi\right|_{\mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right) \backslash \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}, z_{0} z_{1}\right)} \circ f\right|_{C \backslash \mathrm{Z}\left(x_{0} x_{1}\right)}=\operatorname{Id}_{C \backslash Z\left(x_{0} x_{1}\right)}
$$

and

$$
\left.\left.f\right|_{C \backslash \mathrm{Z}\left(x_{0} x_{1}\right)} \circ \phi\right|_{\mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right) \backslash \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}, z_{0} z_{1}\right)}=\operatorname{Id}_{\mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}\right) \backslash \mathrm{Z}\left(z_{0} z_{2}^{2}-z_{1}^{3}, z_{0} z_{1}\right)}
$$

(use the equalities at the beginning of the solution to (3)). Finally, we check by hand

$$
\begin{gathered}
f(\phi([1,0,0]))=f\left(\iota_{1}([1,0,0])\right)=f([1,0,0,0])=[1,0,0] \\
f(\phi([0,0,1]))=f\left(\iota_{2}([0,0,1])\right)=f([0,0,0,1])=h([0,0,0,1])=[0,0,1]
\end{gathered}
$$

Suppose $\left[X_{0}, X_{1}, X_{2}, X_{3}\right] \in C$. If $X_{0}=0$ then $X_{1}=X_{2}=0$. Also, if $X_{1}=0$ then $X_{2}=0$ and either $X_{0}=0$ or $X_{3}=0$. So we have either $\left[X_{0}, X_{1}, X_{2}, X_{3}\right]=[0,0,0,1]$ or $\left[X_{0}, X_{1}, X_{2}, X_{3}\right]=[1,0,0,0]$. Again we check

$$
\begin{aligned}
& \phi(f([0,0,0,1]))=\phi([0,0,1])=\iota_{2}([0,0,1])=[0,0,0,1] \\
& \phi(f([1,0,0,0]))=\phi([1,0,0])=\iota_{1}([1,0,0])=[1,0,0,0]
\end{aligned}
$$

So we have shown that $f: C \rightarrow f(C)$ and ϕ are inverse to each other.
Question 3.3. (1) Let $f: X \rightarrow Y$ be a surjective morphism of quasi-projective varieties. Suppose that X is complete. Show that Y is also complete.
(2) Show that a noetherian topological space only has finitely many connected components.
(3) Let $\left(V, \mathcal{O}_{V}\right)$ be a projective variety. Show that the k-vector space $\mathcal{O}_{V}(V)$ is finite-dimensional.

Solution. (1) We have to show that for any quasi-projective variety B and any closed subset $C \subseteq Y \times B$ the projection $\pi_{B}(C)$ of C on the second factor is closed. Now the natural map $f \times \operatorname{Id}_{B}: X \times B \rightarrow Y \times B$ is surjective, so we have $\pi_{B}(C)=\pi_{B}\left(\left(f \times \operatorname{Id}_{B}\right)^{-1}(C)\right)$ and $\pi_{B}\left(\left(f \times \operatorname{Id}_{B}\right)^{-1}(C)\right)$ is closed since X is complete.
(2) Recall that the connected components of a topological space T are the connected subsets of T, which are maximal (with respect to inclusion) among all such subsets. One can show that the connected components of T cover T (if this is not known to the students, this can be part of the exercise. See any standard textbook in topology for the solution, which is not difficult).

Note that if $C \subseteq T$ is connected then so is its closure \bar{C}. Indeed, if $\bar{C}=C_{1} \cup C_{2}$ where C_{1} and C_{2} are disjoint, non empty and open in \bar{C}, then $C=\left(C_{1} \cap C\right) \cup\left(C_{2} \cap C\right)$ and again $C_{1} \cap C$ and $C_{2} \cap C$ are disjoint, non empty and open in C. Hence the connected components of T are closed. This fact is not needed for (2) but will be used in (3).

Now suppose for contradiction that T has infinitely many connected components. In particular, T is not connected. So $T=T_{1} \cup T_{2}$, where T_{1} and T_{2} are open, non empty and disjoint. In particular T_{1} and T_{2} are closed. Now either T_{1} or T_{2} is not connected. Indeed, from the definitions any connected components of T is contained in either T_{1} or T_{2}. If T_{1} and T_{2} are connected, then each component is equal to either T_{1} or T_{2} (by maximality) and so there would be only finitely many. So suppose that T_{1} is not connected. Repeating the same reasoning, we obtain a closed and open subset T_{11} in T_{1}, which is not equal to T_{1} and which is not connected (otherwise all the connected components would be one of T_{2}, T_{11} or T_{12}). Continuing in this way, we obtain a decreasing sequence

$$
T \supsetneq T_{1} \supsetneq T_{11} \supsetneq T_{111} \supsetneq \ldots
$$

of closed subsets, contradicting the noetherian condition.
(3) Recall that a regular function on a variety V defines a morphism $f: V \rightarrow k$. The image of f is a closed subset of k because V is complete. See Corollary 12.10 for this. Hence $f(V)$ is either finite or it is k (see question 1.1). The second case cannot occur because by (1) the variety k would then be complete, which is not true. To see that k is not complete, let $\pi_{2}: k^{2} \rightarrow k$ be the second projection. Note that $\pi_{2}\left(\mathrm{Z}\left(x_{1} x_{2}-1\right)\right)=k \backslash\{0\}$ and that $k \backslash\{0\}$ is not closed in k. Hence k is not complete (see Definition 12.7). ${ }^{1}$ Now if C is a connected component of V, then $f(C)$ is connected and thus $f(C)$ is a point. So f is constant on each connected component of V (use Lemma 12.8). On the other hand, we know by (2) that V only has finitely many connected components so the connected components of V are also open.

Hence we have an isomorphism of k-algebras

$$
\mathcal{O}_{V}(V) \simeq \bigoplus_{C \text { connected comp. of } V} \mathcal{O}_{V}(C) \simeq \bigoplus_{C \text { connected comp. of } V} k
$$

Question 3.4. Let V and W be quasi-projective varieties. Suppose that V is irreducible. Let Mor (V, W) be the set of morphisms from V to W and let $\rho: \operatorname{Mor}(V, W) \rightarrow \operatorname{Rat}(V, W)$ be the natural map (ie ρ sends a morphism to the rational map it represents). Show that ρ is injective.

Solution. We have to show that if $U \subseteq V$ is an open subvariety and $f, g: V \rightarrow W$ are two morphisms such that $\left.f\right|_{U}=\left.g\right|_{U}$, then $f=g$. Now suppose that there is $v_{0} \in V \backslash U$ such that $f\left(v_{0}\right) \neq g\left(v_{0}\right)$. Let $f \times g: V \rightarrow W \times W$ be the morphism of varieties such that $(f \times g)(v)=(f(v), g(v))$ for all $v \in V$. Let $\Delta_{W} \subseteq W \times W$ be the diagonal, which we know to be closed because W is separated (by Proposition 12.5). In particular, the set $(f \times g)^{-1}\left(W \times W \backslash \Delta_{W}\right)$ is open and contains v_{0}. In particular, there is an open set $O \subseteq V$ such that $f(v) \neq g(v)$ for all $v \in O$. But O must meet U, since V is irreducible. This is a contradiction so $f(v)=g(v)$ for all $v \in V$.

Question 3.5. (1) Show that for any $m, n \geqslant 0, k^{m} \prod k^{n} \simeq k^{n+m}$.
(2) Let $V \subseteq k^{m}$ and $W \subseteq k^{n}$ be algebraic sets. Show that $V \times W \subseteq k^{n+m}$ is an algebraic set and describe $\mathcal{I}(V \times W)$. Show that the affine variety associated with the algebraic set $V \times W \subseteq k^{n+m}$ is a product of the affines varieties associated with V and W.

[^0]Solution. (1) We proceed as in the proof of Theorem 10.2. The projections from $\pi_{1}: k^{n+m} \rightarrow k^{n}$ and $\pi_{2}: k^{n+m} \rightarrow k^{m}$ are clearly morphisms since they are polynomial maps. Now let V be a variety and let $a: V \rightarrow k^{n}$ and $b: V \rightarrow k^{m}$ be morphisms. If there is a morphism of varieties $a \prod b: V \rightarrow k^{n+m}$ such that $\pi_{1} \circ a \prod b=a$ and $\pi_{2} \circ a \prod b=b$ then $a \prod b=a \times b$, since as a set k^{n+m} is the Cartesian product of k^{n} and k^{m}. Hence we only have to show that $a \times b$ is a morphism a varieties. Since a map between varieties is a morphism iff it is a morphism in a neighborhood of all points of the source, we may assume without restriction of generality that V is affine. So suppose that V is an algebraic set in k^{t} (say). By definition a (resp. b) is then the restriction to V of a polynomial map $A: k^{t} \rightarrow k^{n}$ (resp. $B: k^{t} \rightarrow k^{m}$). The map $A \times B: k^{t} \rightarrow k^{n+m}$ is polynomial by definition and $a \times b$ is the restriction to V of $A \times B$. Hence $a \times b$ is a morphism.
(2) The ideal $\mathcal{I}(V \times W)$ is described at the beginning of the proof of Proposition 10.8 and it is also shown there that $V \times W$ is closed in k^{n+m} (because it is a vanishing set of an explicit ideal). It then follows from Corollary 10.6 that $V \times W \subseteq k^{n+m}$ is a product of V and W.

Question 3.6. Let $a: X \rightarrow Y$ be a rational map between two quasi-projective varieties. Suppose that Y is quasi-projective. Show that there is a unique representative $f: O \subseteq X$ of a (where $O \subseteq X$ is an open subvariety of X) such that if $f: U \rightarrow Y$ is a representative of a then $U \subseteq O$. The open set O is called the open set of definition of a.

Solution. Let $\left\{f_{i}: O_{i} \rightarrow Y\right\}$ be the set of all representatives of a. Let $O:=\cup_{i} O_{i}$. Define the morphism $f: O \rightarrow Y$ in the following way. Let $o \in O$ and let $f_{i}: O_{i} \rightarrow Y$ be a representative of a such that $o \in O_{i}$. Define $f(o):=f_{i}(o)$. To show that this definition makes sense, we have to show that $f_{i}(o)=f_{j}(o)$ if $f_{j}: O_{j} \rightarrow Y$ is any other representative of a such that $o \in O_{j}$. To see this, note that by definition we have $\left.f_{i}\right|_{O_{i} \cap O_{j}}=\left.f_{j}\right|_{O_{i} \cap O_{j}}$ by Question 3.5 so that $f_{i}(o)=f_{j}(o)$. To see that f is a morphism note that by construction $\left.f\right|_{O_{i}}=f_{i}$ is a morphism for all i. Since the O_{i} cover O, f is a morphism because a (ordinary) map between varieties is a morphism iff it is everywhere locally a morphism.

Question 3.7. Let $n \geqslant 0$ and let $q: k^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}(k)$ be the map such that $q(\bar{v})=[\bar{v}]$ for all $\bar{v} \in k^{n+1} \backslash\{0\}$. Let $V \subseteq \mathbb{P}^{n}(k)$ be a closed subset. Endow $k^{n+1} \backslash\{0\}$ with the structure of variety it inherits from k^{n+1} as an open subset.
(1) Show that q is a morphism of varieties.
(2) Show that $\mathcal{I}(V)$ is prime iff V is irreducible.
(3) Show that $q^{-1}(V)$ is irreducible iff V is irreducible.

Solution. (1) Let $i \in\{0, \ldots, n\}$. We then have

$$
q^{-1}\left(U_{i}\right)=\left\{\left\langle X_{0}, \ldots, X_{n}\right\rangle \in k^{n+1} \backslash\{0\} \mid X_{i} \neq 0\right\}
$$

and so $q^{-1}\left(U_{i}\right)$ is an open subset of k^{n+1}. The map $\left.q\right|_{q^{-1}\left(U_{i}\right)}: q^{-1}\left(U_{i}\right) \rightarrow U_{i}$ is given by the formula $\left\langle X_{0}, \ldots, X_{n}\right\rangle \mapsto\left\langle X_{0} / X_{i}, \ldots, \overline{X_{i} / X_{i}}, \ldots, X_{n} / X_{i}\right\rangle$ and so by Proposition $4.5,\left.q\right|_{q^{-1}\left(U_{i}\right)}: q^{-1}\left(U_{i}\right) \rightarrow U_{i}$ is a morphism. Since the $q^{-1}\left(U_{i}\right)$ cover $k^{n+1} \backslash\{0\}$, we conclude that q is a morphism.
(2) We first show that the minimal prime ideals containing $\mathcal{I}(V)$ are homogenous. So let $\left\{\mathfrak{p}_{i}\right\}_{i \in I}$ be the minimal prime ideals containing $\mathcal{I}(V)$. Write $c:=\# I$. We proceed as in question 2.4. So let $t \in K \backslash\{0\}$ and let $\rho_{t}: k\left[x_{0}, \ldots, x_{n}\right] \rightarrow k\left[x_{0}, \ldots, x_{n}\right]$ be the map of k-algebras sending x_{i} to $t x_{i}$. Since $\rho_{1 / t} \circ \rho_{t}=\mathrm{Id}$, the
map ρ_{t} is a bijection. Note that since $\mathcal{I}(V)$ is homogenous, we have $\rho_{t}(\mathcal{I}(V))=\mathcal{I}(V)$. Now

$$
\rho_{t}\left(\mathcal{I}(V)=\rho_{t}\left(\cap_{i} \mathfrak{p}_{i}\right)=\cap_{i} \rho_{t}\left(\mathfrak{p}_{i}\right)\right.
$$

and thus by unicity ρ_{t} permutes the ideals \mathfrak{p}_{i} (use Theorem 2.4). We conclude that $\rho_{t^{c!}}\left(\mathfrak{p}_{i}\right)=\mathfrak{p}_{i}$ for all $i \in I$ (since the permutation group on c elements has c ! elements). We now reason as in question 2.4. Let $P \in \mathfrak{p}_{i}$. Let $\delta:=\operatorname{deg}(P)$. Since k is infinite, we can find $t_{0}, \ldots, t_{\delta} \in k$ such that the elements $t_{0}^{c!}, \ldots, t_{\delta}^{c!} \in k$ are distinct. Then we have

$$
\rho_{t_{l}^{c!}}(P)=\sum_{j \geqslant 0} t_{l}^{j \cdot c!} P_{[j]} \in \mathfrak{p}_{i}
$$

for all $l=0, \ldots, \delta$. This gives a linear system (a Vandermonde matrix) with a unique solution in the $P_{[j]}$ and so we conclude that $P_{[j]} \in \mathfrak{p}_{i}$. Hence \mathfrak{p}_{i} is a homogenous ideal.
So now suppose that $\mathcal{I}(V)$ is a prime ideal. Suppose for contradiction that V is not irreducible. By the discussion after Lemma 7.4, we see that there is a $r>1$ and radical ideals I_{1}, \ldots, I_{r} such that $\mathcal{I}(V)=\cap_{i} I_{i}$ and $I_{i} \supsetneq \cap_{j \neq i} I_{j}$ and $I_{i} \subsetneq \cap_{j \neq i} I_{j}$ for all i. In particular, there are elements $r_{1} \in I_{1}$ and $r_{2} \in \cap_{j \neq 1} I_{j}$ such that $r_{1} \notin \cap_{j \neq 1} I_{j}$ and $r_{2} \notin I_{1}$. In particular, $r_{1}, r_{2} \notin \mathcal{I}(V)=\cap_{i} I_{i}$. However we have $r_{1} r_{2} \in \mathcal{I}(V)$ so $\mathcal{I}(V)$ is not prime. This is a contradiction.

Conversely, suppose that $\mathcal{I}(V)$ is not a prime ideal. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be the minimal prime ideals of $\mathcal{I}(V)$. By assumption, we have $r>1$ and by the above claim, the \mathfrak{p}_{i} are also homogenous. By Theorem 2.4, we know that $\mathcal{I}(V)=\cap_{i} \mathfrak{p}_{i}$ and that for all i we have $\mathfrak{p}_{i} \supsetneq \cap_{j \neq i} \mathfrak{p}_{j}$ and $\mathfrak{p}_{i} \subsetneq \cap_{j \neq i} \mathfrak{p}_{j}$. Now note that neither \mathfrak{p}_{1} nor $\cap_{j \neq i} \mathfrak{p}_{j}$ is the irrelevant ideal. Indeed, the irrelevant ideal contains all the non trivial homogenous ideals and if either \mathfrak{p}_{1} or $\cap_{j \neq i} \mathfrak{p}_{j}$ were the irrelevant ideal then the previous two equalities would not be satisfied. Thus, applying $\mathrm{Z}(\cdot)$ to the same last two last equalities, we conclude that V is the union of two proper closed subsets which are not contained in each other. So V is reducible.
(3) Suppose that V is not empty (otherwise, there is nothing to prove). Then $V=\mathrm{Z}(\mathcal{I}(V))$ by Proposition 7.3. In particular, $\mathcal{I}(V)$ is a homogenous ideal which contains no non zero constants. Also, by construction $q^{-1}(V)$ is precisely the zero set of $\mathcal{I}(V)$ in $k^{n+1} \backslash\{0\}$. On the other hand, the zero set of $\mathcal{I}(V)$ in k^{n+1} is $q^{-1}(V) \cup\{0\}$ since any non constant homogenous polynomial vanishes at 0 . Since $q^{-1}(V)$ is not empty, it contains the intersection of a line with $k^{n+1} \backslash\{0\}$. By the reasoning in the second part of the proof of Proposition 11.2, the Zariski closure of this line contains 0 . Hence the Zariski closure of $q^{-1}(V)$ is $q^{-1}(V) \cup\{0\}$.

Now suppose that $q^{-1}(V)$ is irreducible (in $k^{n+1} \backslash\{0\}$). We conclude from question 2.5 and the last paragraph that $q^{-1}(V) \cup\{0\}$ is closed and irreducible. The last paragraph also implies that the ideal of $q^{-1}(V) \cup\{0\}$ in k^{n+1} is $\mathcal{I}(V)$. Hence $\mathcal{I}(V)$ is prime (by Lemma 2.5). We conclude from (2) that V is irreducible.

Conversely, suppose that V is irreducible. Then $\mathcal{I}(V)$ is prime by (2). By the first paragraph, $q^{-1}(V) \cup\{0\}$ is then closed and irreducible. Hence $q^{-1}(V)$ is irreducible (in $k^{n+1} \backslash\{0\}$), since it is the intersection of an irreducible set and an open set.

Part C

Question 3.8. (1) Let $U \subseteq \mathbb{P}^{1}(k)$ be an open subset (for the Zariski topology). Let $f: U \rightarrow \mathbb{P}^{1}(k)$ be a morphism of varieties. Show that there exists a morphism of varieties $g: \mathbb{P}^{1}(k) \rightarrow \mathbb{P}^{1}(k)$ such $\left.g\right|_{U}=f$.
(2) Show that every automorphism of $\mathbb{P}^{1}(k)$ is of the form described in question 2.8.
(3) Show that k is not isomorphic to any of its proper open subvarieties (an open subvariety is proper if it is not equal to k).

Solution. (1) First note the following. Let $O \subseteq U$ be an open subset. Let $a: O \rightarrow \mathbb{P}^{1}(k)$ be a morphism. Then: if a extends to a morphism $U \rightarrow \mathbb{P}^{1}(k)$, then this extension is unique. This follows from question 3.4. We may thus without restriction of generality replace U by one of its open subsets.

Now since the coordinate charts U_{0} and U_{1} cover $\mathbb{P}^{1}(k)$ we know that $f^{-1}\left(U_{i}\right) \neq \emptyset$ for either $i=0$ or $i=1$. Supposing that $f^{-1}\left(U_{0}\right) \neq \emptyset$, we may thus replace U by $f^{-1}\left(U_{0}\right)$ and thus suppose that $f(U) \subseteq U_{0}$. Further, replacing U by $U \cap U_{0}$ we may also suppose that $U \subseteq U_{0}$. Finally, by Lemma 4.1, we may without restriction of generality suppose that $u_{0}^{-1}(U)$ is an open affine subvariety with coordinate ring isomorphic to $k\left[x_{1}\right]\left[h^{-1}\right]$, where $h \in k\left[x_{1}\right]$. Let now $j: u_{0}^{-1}(U) \rightarrow k$ be the map such that $u_{0} \circ j=f \circ u_{0}$.
By Theorem 3.7, the map j is induced by a map of k-algebras $j^{*}: k\left[x_{1}\right] \rightarrow k\left[x_{1}\right]\left[h^{-1}\right]$. Let $P\left(x_{1}\right) / h^{l}\left(x_{1}\right)=: j^{*}\left(x_{1}\right)$, where $l \geqslant 0$ and where we suppose without restriction of generality that P and h are coprime. If $P=0$ then j and therefore f is a constant map and then g can be defined on all of $\mathbb{P}^{1}(k)$ to be the constant map with the same value. So we may suppose that $P \neq 0$.

Now by construction, we have

$$
j\left(X_{1}\right)=P\left(X_{1}\right) / h^{l}\left(X_{1}\right)
$$

for all $X_{1} \in u_{0}^{-1}(U) \subseteq k$ (see Corollary 4.4 for more details about this). Let $\delta:=\max (\operatorname{deg}(P), l \cdot \operatorname{deg}(h)$). Let $A\left(x_{0}, x_{1}\right):=x_{0}^{\delta} P\left(x_{1} / x_{0}\right)$ and $B\left(x_{0}, x_{1}\right):=x_{0}^{\delta} h^{l}\left(x_{1} / x_{0}\right)$. Note that A and B are homogenous. Note also that either $A(0,1) \neq 0$ or $B(0,1) \neq 0$ because we have either $\delta=\operatorname{deg}(P)$ or $\delta=\operatorname{deg}\left(h^{l}\right)$.
Now define a map $\mathbb{P}^{1}(k) \rightarrow \mathbb{P}^{1}(k)$ by the formula

$$
\left[X_{0}, X_{1}\right] \mapsto\left[B\left(X_{0}, X_{1}\right), A\left(X_{0}, X_{1}\right)\right]
$$

for all $X_{0}, X_{1} \in k$, not both zero. Note that if $X_{0}=0$ then $\left\langle A\left(X_{0}, X_{1}\right), B\left(X_{0}, X_{1}\right)\right\rangle \neq 0$ since either $A(0,1) \neq 0$ or $B(0,1) \neq 0$. If $X_{0} \neq 0$ then $\left\langle A\left(X_{0}, X_{1}\right), B\left(X_{0}, X_{1}\right)\right\rangle \neq 0$ for all X_{1} because P and h are coprime. So this map is well-defined. If $\left[X_{0}, X_{1}\right] \in U$ then by assumption we have $X_{0} \neq 0$ and $h\left(X_{1} / X_{0}\right) \neq 0$ so that

$$
\begin{aligned}
& {\left[B\left(X_{0}, X_{1}\right), A\left(X_{0}, X_{1}\right)\right]=\left[X_{0}^{\delta} h^{l}\left(X_{1} / X_{0}\right), X_{0}^{\delta} P\left(X_{1} / X_{0}\right)\right]=\left[h^{l}\left(X_{1} / X_{0}\right), P\left(X_{1} / X_{0}\right)\right] } \\
= & {\left[1, P\left(X_{1} / X_{0}\right) / h^{l}\left(X_{1} / X_{0}\right)\right]=\left[1, j\left(X_{1} / X_{0}\right)\right]=u_{0}\left(j\left(X_{1} / X_{0}\right)\right)=f\left(u_{0}\left(X_{1} / X_{0}\right)\right)=f\left(\left[1, X_{1} / X_{0}\right]\right)=f\left(\left[X_{0}, X_{1}\right]\right) }
\end{aligned}
$$

so the map $\left[X_{0}, X_{1}\right] \mapsto\left[B\left(X_{0}, X_{1}\right), A\left(X_{0}, X_{1}\right)\right]$ is a morphism $\mathbb{P}^{1}(k) \rightarrow \mathbb{P}^{1}(k)$ extending f.
(2) Let $A: \mathbb{P}^{1}(k) \rightarrow \mathbb{P}^{1}(k)$ be an automorphism. Write $\infty:=[0,1] \in \mathbb{P}^{1}(k)$. We saw in the solution of question 2.8 that any point of $\mathbb{P}^{1}(k)$ can be moved to ∞ (or any other point) by an automorphism of the required type (ie given by an invertible 2×2-matrix). Composing A with a suitable automorphism of the required type, we may thus suppose that $A(\infty)=\infty$. In that case, the restriction of A to U_{0} gives an automorphism $U_{0} \simeq U_{0}$ (since $\mathbb{P}^{1}(k)=U_{0} \cup\{\infty\}$). Now note that by Theorem 3.7, an automorphism of $U_{0} \simeq k$ corresponds to a k-algebra automorphism ϕ of $\mathcal{C}\left(U_{0}\right) \simeq k\left[x_{1}\right]$. Note that for any polynomial $P\left(x_{1}\right) \in k\left[x_{1}\right], \operatorname{deg}(P)=\operatorname{dim}_{k} k\left[x_{1}\right] /\left(P\left(x_{1}\right)\right)$. Since ϕ induces an isomorphism of k-algebras (and hence k-vector spaces) $k\left[x_{1}\right] /\left(P\left(x_{1}\right)\right) \simeq k\left[x_{1}\right] /\left(\phi\left(P\left(x_{1}\right)\right)\right)$ we thus have $\operatorname{deg}\left(\phi\left(P\left(x_{1}\right)\right)\right)=\operatorname{deg}\left(P\left(x_{1}\right)\right)$. So any automorphism of $k\left[x_{1}\right]$ sends x_{1} to $a x_{1}+b$ for some $a, b \in k$ with $a \neq 0$. We conclude that there are elements $a, b \in k$ such that $a \neq 0$ and such that

$$
A\left(\left[1, X_{1}\right]\right)=\left[1, a X_{1}+b\right]
$$

for all $X_{1} \in k$. Thus, if $X_{0} \neq 0$ we have

$$
A\left(\left[X_{0}, X_{1}\right]\right)=A\left(\left[1, X_{1} / X_{0}\right]\right)=\left[1, a\left(X_{1} / X_{0}\right)+b\right]=\left[X_{0}, a X_{1}+b X_{0}\right]
$$

Now consider the matrix

$$
M:=\left(\begin{array}{ll}
1 & 0 \\
b & a
\end{array}\right)
$$

This matrix has determinant a and thus lies in $\mathrm{GL}_{2}(k)$. By construction, the automorphism a_{M} defined by M restricts to A on U_{0} and hence by question 3.4 we have $A=a_{M}$.
(3) Suppose for contradiction that $U \subsetneq k$ is a proper open subvariety and that $f: k \rightarrow U$ is an isomorphism. Identify k with U_{0}, where $U_{0} \subseteq \mathbb{P}^{1}(k)$ is the well-known coordinate chart. By composition, f induces a morphism $\phi: U_{0} \rightarrow \mathbb{P}^{1}(k)$. By (1), ϕ extends to a morphism $g: \mathbb{P}^{1}(k) \rightarrow \mathbb{P}^{1}(k)$, such that $g\left(U_{0}\right)=U$. We know that $g\left(\mathbb{P}^{1}(k)\right)$ is closed by Corollary 12.10 . Since $g\left(\mathbb{P}^{1}(k)\right)$ also contains a non-empty subset, we see that $g\left(\mathbb{P}^{1}(k)\right)=\mathbb{P}^{1}(k)$. In particular, we must have $g([0,1])=[0,1]$, otherwise g is not surjective. But then $g\left(\mathbb{P}^{1}(k)\right)$ does not contain $U_{0} \backslash U$ and so g is not surjective, which is a contradiction.

Alternatively, note that if $U \neq k$, then there are non constant invertible regular functions on U. Indeed let $a \in k \backslash U$. Then the function $x-a$ never vanishes on U. On the other hand there are no non constant invertible functions on k. So k cannot be isomorphic to U.

[^0]: ${ }^{1}$ I am grateful to Dragos Ghioca for providing this argument.

