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Introduction

Classical algebraic geometry is the study of the sets of of simultaneous
solutions of collections of polynomial equations in several variables with
coefficients in an algebraically closed field. Such sets are called algebraic
varieties. So eg the set of simultaneous solutions of the equations

x2 + y2 − 1 = 0, xy = 0

in C2 is an algebraic variety.

Because they are so easy to define, algebraic varieties appear in almost
every area of mathematics. They play a crucial role in number theory, in
topology, in differential geometry and complex geometry (ie the theory of
complex manifolds). When the base field is C, an algebraic variety defines
a complex manifold provided it has ”no kinks” (we shall give a precise
definition later).
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A basic reference for classical algebraic geometry is chap. I of D.
Mumford’s book

The Red Book of Varieties and Schemes (Springer Lecture Notes in
Mathematics 1358).

Another reference is chap. I of R. Hartshorne’s book

Algebraic Geometry (Springer).

One might also consult the book by M. Reid

Undergraduate algebraic geometry (London Mathematical Society Student
Texts 12, Cambridge University Press 1988).

An updated free version of M. Reid’s lectures can be found online.
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The natural generalisation of classical algebraic geometry is the theory of
schemes, which will be taught in Hilary Term.

In Grothendieck’s theory of schemes, the base field can be replaced by any
commutative ring but the absence of Hilbert’s Nullstellensatz, which is at
the root of the material presented here, means that different techniques
have to be used.

There are three important tools, which will not be presented in this course:

• The theory of sheaves

• Cohomological techniques

• The technique of base change
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These tools are very powerful but there will not be enough time to present
them in these lectures. Also, the best framework for them is the theory of
schemes (although they could also be used in the restricted setting of this
text).

There is also a tool from Commutative Algebra, which will not be used
here but which is very useful in Algebraic Geometry: the tensor product of
modules over a ring. Tensor products are ubiquitous in the theory of
schemes.

The prerequisites for this course are the part A course Rings and Modules
and the part B course Commutative Algebra.

It is assumed that the reader is familiar with the terminology used in the
notes of the commutative algebra course. We shall often quote results
proven in that course, referring to it as ”CA”. I have put the CA notes on
the web page of the present course for easy reference.
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Throughout the course, we shall work over a fixed algebraically closed field
k .

As in the CA course, a ring will be a commutative ring with unit, unless
stated otherwise.

The reader may assume that for any n > 1, the ring of polynomials
k[x1, . . . , xn] is a UFD (Unique Factorisation Domain).

It can also be assumed that the localisation k[x1, . . . , xn]S is a UFD for
any multiplicative set S ⊆ k[x1, . . . , xn].
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Hilbert’s Nullstellensatz and algebraic sets

Let n > 0 and let Rn := k[x1, . . . , xn].

Let Σ ⊆ Rn.

The algebraic set associated with Σ is

Z(Σ) = zero set of Σ := {(t1, . . . , tn) ∈ kn | ∀P ∈ Σ : P(t1, . . . , tn) = 0}

If we let ΣRn be the ideal generated by Σ in Rn then we clearly have

Z(Σ) = Z(ΣRn).
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We now recall two basic results in commutative algebra.

Theorem 1.1 (Hilbert’s basis theorem; see Th. 7.6 in CA)

The ring k[x1, . . . , xn] is noetherian.

Recall that a noetherian ring is a ring all of whose ideals are finitely
generated. In particular any algebraic set in kn is the zero set of a finite
number of polynomials.

Theorem 1.2 (Hilbert’s strong Nullstellensatz; see Cor. 9.5 in CA)

For any ideal I ⊆ Rn we have

r(I ) = {P ∈ Rn | ∀(t1, . . . , tn) ∈ Z(I ) : P(t1, . . . , tn) = 0}

Here r(I ) is the radical (or nilradical) of I .
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If A ⊆ kn is subset, we shall write

I(A) := {P ∈ Rn | ∀(t1, . . . , tn) ∈ A : P(t1, . . . , tn) = 0}.

The set I(A) is clearly and ideal in Rn.

Note that the strong HNS implies that I(Z(I )) = r(I ) for any ideal of Rn.

We may now prove the basic

Proposition 1.3

Let V ⊆ kn be an algebraic set and let I ⊆ Rn be an ideal. Then the
identities

Z(I ) = Z(r(I )), I(Z(I )) = r(I ) and Z(I(V )) = V

hold.
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In particular, the two maps

{algebraic sets in kn}
I
�
Z
{radical ideals in Rn}

are inverse to each other.

Note that in this correspondence, we have

V1 ⊆ V2 ⇐⇒ Z(V1) ⊇ Z(V2)

for any two algebraic sets V1 and V2.
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Proof. (of Proposition 1.3) The identity Z(I ) = Z(r(I )) follows from the
definitions.

The identity I(Z(I )) = r(I ) was already proven.

We thus only have to prove that Z(I(V )) = V .

To see this, note that by definition we have V ⊆ Z(I(V )).

On the other hand, by definition V = Z(J) for some ideal J in
k[x1, . . . , xn].

By construction, we have J ⊆ I(V ), so Z(J) = V ⊇ Z(I(V )).

Hence V = Z(I(V )).
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We also note the following identities, whose proof is straighforward:

(1) I(V1 ∪ V2) = I(V1) ∩ I(V2)

(2) I(∩iVi ) = r(
∑

i I(Vi ))

(3) Z(I1 ∩ I2) = Z(I1) ∪ Z(I2)

(4) Z(
∑

i Ii ) = ∩iZ(Ii )

In view of the properties (4) and (3) above, the algebraic sets in kn can be
viewed as the closed sets of a topology on kn, called the Zariski topology.

If V ⊆ kn is an algebraic set, we endow V with the topology induced by
the Zariski topology of kn.

This topology is called the Zariski topology of V .
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We can refine the correspondence above as follows.

Say that an algebraic set V ⊆ kn is reducible if

V = V1 ∪ V2,

where V1,V2 ⊆ kn are non empty algebraic sets, V1 6⊆ V2 and V2 6⊆ V1.

An algebraic set V ⊆ kn is said to be irreducible if it is not reducible.

One verifies from the definition that an algebraic set is irreducible iff all its
non empty open subsets are dense.
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For the following two lemmata, we shall need the following result from CA:

Theorem 1.4

Let R be a noetherian commutative ring and let I ⊆ R be a radical ideal.

Then there is unique finite set of prime ideals {pl} such that

I =
⋂
l

pl

and such that for all indices l we have pl 6⊇ ∩j 6=lpj .

Furthermore, the pl are the prime ideals of R, which are minimal for the
inclusion relation among the prime ideals containing I .

Proof. This follows from the Lasker-Noether theorem (see Prop. 7.8 in
CA) and the remark after Th. 6.7 in CA.
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Lemma 1.5

Let V ⊆ kn be an algebraic subset. Then V is irreducible iff I(V ) is a
prime ideal.

Proof. ”⇐”: Suppose that V is reducible. Then V = V1 ∪ V2, where V1

and V2 are two algebraic subsets not contained in each other (and in
particular not empty).

By property (1) above, we have I(V ) = I(V1) ∩ I(V2), where I(V1) and
I(V2) are two ideals not contained in each other.

In particular, there is a1 ∈ I(V1) such that a1 6∈ I(V2) and a2 ∈ I(V2)
such that a2 6∈ I(V1). In particular a1, a2 6∈ I(V ).

On the other hand a1a2 ∈ I(V ) so that I(V ) is not prime.
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”⇒”: Suppose that I(V ) is not prime.

Let {pl}l∈Λ be the set of prime ideals in R, which are minimal among the
prime ideals containing I(V ).

By Theorem 1.4 we know that Λ is finite and that I(V ) = ∩lpl .
Hence #Λ > 1 since I(V ) is not prime. Let l1 be any element of Λ.

By Theorem 1.4 again (or Prop. 6.1 (ii) in CA and the minimality of the
pl) we have pl1 6⊇ ∩l 6=l1pl .

On the other hand, we also have pl1 6⊆ ∩l 6=l1pl by minimality.

Hence Z(pl1) 6⊆ Z(∩l 6=l1pl) and Z(pl1) 6⊇ Z(∩l 6=l1pl).

Finally, we have Z(I(V )) = V = Z(pl1) ∪ Z(∩l 6=l1pl) by (3) above and
Proposition 1.3 so that V is reducible.
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Lemma 1.6

Let V ⊆ kn be an algebraic set.

Then there is a unique finite collection {Vl}l∈Λ of irreducible algebraic
subsets of kn such that

(1) V = ∪lVl ;

(2) ∀l : Vl 6⊆ ∪j 6=lVj .

Furthermore, the Vl are the irreducible algebraic sets in kn, which are
maximal among the irreducible algebraic sets contained in V .

Proof. In view of the remark after Prop. 1.3, the properties (1)...(4)
above and Lemma 1.5, this is equivalent to Theorem 1.4 for R = Rn.
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Proposition 1.7

Let V ⊆ kn be an algebraic set defined by a radical ideal I .

Let v̄ = 〈v1, . . . , vn〉 ∈ V and let m be a maximal ideal of Rn.

Suppose that m ⊇ I . Then

(1) I({v̄}) ⊇ I and I({v̄}) is a maximal ideal of Rn;

(2) Z(m) consists of one point ū = 〈u1, . . . , un〉 ∈ V and ū ∈ V ;

(3) m = (x1 − u1, . . . , xn − un) where ū is as in (2).

Proof. Unravel the definitions and use the correspondence between radical
ideals and algebraic sets.

The last proposition in particular provides a correspondence between the
points of V and the maximal ideals of Rn containing I(V ), or equivalently
with the maximal ideals of Rn/I(V ).
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In other words, if we write for any ring R

Spm(R) := {maximal ideals of R}

then there is a natural bijection Spm(Rn/I(V )) ' V .

Lemma 1.8

Let V ⊆ kn be an algebraic set.

Under the bijection
Spm(Rn/I(V )) ' V ,

the closed subsets of V correspond the subsets of Spm(Rn/I(V )) of the
form

Z(S) := {m ∈ Spm(Rn/I(V )) |m ⊇ S}

where S ⊆ Rn/I(V ).

The closed subsets of V are in one to one correspondence with the radical
ideals of Rn/I(V ) via Z(·).

Proof. Left to the reader. Unroll the definitions.
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Note that the set

{m ∈ Spm(Rn/I(V )) |m ⊇ S}

corresponds in V to the set Z(S ′) ∩ V for any lifting of S to Rn.

So the notation Z(S) will not lead to any confusion.

Also, if C ⊆ V is a closed subset, then we have

C = Z(I(C ) (mod I(V ))) = Z(I(C )) ∩ V .

So we will sometimes use the shorthand I(C ) for

I(C ) (mod I(V )) ⊆ Rn/I(V )

if C is a closed subset of V .

With this notation, the properties (1),. . . , (4) listed above are also valid
for the correspondence described in Lemma 1.8.
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Regular maps between algebraic sets

Let n, t > 0.

A map φ : kn → kt is said to be polynomial if there are elements

P1(x1, . . . , xn), . . . ,Pt(x1, . . . , xn) ∈ Rn = k[x1, . . . , xn],

such that

φ(a1, . . . , an) = 〈P1(a1, . . . , an), . . . ,Pt(a1, . . . , an)〉

for all 〈a1, . . . , an〉 ∈ kn.

Note that the polynomials Pi define a map of k-algebras φ∗ : Rt → Rn by
the formula

φ∗(Q(y1, . . . , yt)) := Q(P1(x1, . . . , xn), . . . ,Pt(x1, . . . , xn))
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On the other hand, if we are given a map of k-algebras

Φ : k[y1, . . . , yt ] = Rt → Rn = k[x1, . . . , xn],

then we can define polynomials T1(x1, . . . , xn), . . . ,Tt(x1, . . . , xn) ∈ Rn by
the formula

Ti (x1, . . . , xn) := Φ(yi )

and these two processes are obviously inverse to each other.

So to give polynomials Pi as above is equivalent to giving a map of
k-algebras Rt → Rn.

If Φ : Rt → Rn is a map of k-algebras, we shall write

Spm(Φ) : kn → kt

for the corresponding polynomial map.

Note that from definitions we see that the composition of two polynomials
maps is a polynomial map.

22 / 205



Lemma 1.9

The map

Spm : {maps of k-algebras Rt → Rn} → {polynomial maps kn → kt}

is bijective.

Proof. The surjectivity of Spm is a tautology so we only have to prove
injectivity.

Let Φ1,Φ2 : Rt → Rn be two maps of k-algebras.

Suppose that Spm(Φ1) = Spm(Φ2). We have to prove that Φ1 = Φ2.

Suppose that Φ1 (resp. Φ2) is defined by polynomials
P11(x1, . . . , xn), . . . ,P1t(x1, . . . , xn) (resp.
P21(x1, . . . , xn), . . . ,P2t(x1, . . . , xn)).

Let i ∈ {1, . . . , t}. If Spm(Φ1) = Spm(Φ2) then the polynomial P1i − P2i

vanishes for all the values of its variables.

This implies that P1i = P2i . Since i was arbitrary, we conclude that
Φ1 = Φ2.
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In view of the lemma, for any polynomial map

φ : kn → kt ,

there is a unique map of k-algebras

φ∗ : Rt → Rn

such that Spm(φ∗) = φ.

Note that the operation (·)∗ (resp. Spm(·)) is compatible with
composition of polynomial maps (resp. composition of maps of
k-algebras). This follows from the definitions.
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Let now V ⊆ kn and W ⊆ kt be algebraic sets in kn and kt , respectively.

A map
ψ : V →W

is said to be regular if there is a polynomial map

φ : kn → kt

such that φ(V ) ⊆W and such that ψ(v) = φ(v) for all v ∈ V .

Note that if ψ is given, there might be several different φ inducing ψ.

Note also that a regular map is continuous for the Zariski topology.

Finally, note that a composition of regular maps is regular.

In the next slides we shall generalise Lemma 1.9 to algebraic sets.
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Definition 1.10

Let V ⊆ kn be an algebraic set. The coordinate ring C(V ) of V is the ring

C(V ) := Rn/I(V ).

Note that since I(V ) is a radical ideal, the ring C(V ) is a reduced ring, ie
the only nilpotent element of C(V ) is the zero element.

We also recall that any finitely generated algebra over a field is a Jacobson
ring (see Cor. 9.4 in CA).

In particular, C(V ) is a Jacobson ring. Recall that a Jacobson ring R is a
ring such that for any ideal I ⊆ R, we have

∩m∈Spm(R),m⊇I = ∩p∈Spec(R),p⊇I =: r(I )

where Spec(R) is the set of prime ideals of R (see section 4 in CA).
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Let now V ⊆ kn and W ⊆ kt be algebraic sets in kn and kt , respectively.

Let
ψ : V →W

be a regular map and let
φ : kn → kt

be a polynomial map inducing ψ, as above.

Suppose that
φ = Spm(Φ)

for the map of k-algebras Φ : Rt → Rn.
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Lemma 1.11

We have Φ(I(W )) ⊆ I(V ).

Proof. Suppose Φ is given by elements

P1(x1, . . . , xn), . . . ,Pt(x1, . . . , xn) ∈ Rn = k[x1, . . . , xn],

as above. By assumption, for all v̄ ∈ V , we have

〈P1(v̄), . . . ,Pt(v̄)〉 ∈W

and so for any Q(y1, . . . , tt) ∈ I(W ) and any v̄ ∈ V , we have
Q(P1(v̄), . . . ,Pt(v̄)) = 0. In other words,

Φ(Q) = Q(P1(x1, . . . , xn), . . . ,Pt(x1, . . . , xn)) ∈ I(V )

as required.
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From the lemma, we see that Φ induces a map of k-algebras
ΦV ,W : C(W )→ C(V ).

The next lemma is needed in the next proposition.

Lemma 1.12

If v̄ := 〈v1, . . . , vn〉 ∈ V then the maximal ideal of C(W ) corresponding to
ψ(v̄) is the ideal

Φ−1
V ,W ((x1 − v1, . . . , xn − vn) (mod I(V )))

= Φ−1((x1 − v1, . . . , xn − vn)) (mod I(W )).

In particular, Φ−1
V ,W sends maximal ideals to maximal ideals and ΦV ,W

entirely determines ψ : V →W .
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Proof. Note first that Φ−1((x1 − v1, . . . , xn − vn)) is maximal in Rt

because there is by construction an injection of k-algebras

Rt/Φ−1((x1 − v1, . . . , xn − vn)) ↪→ Rn/(x1 − v1, . . . , xn − vn) ' k

so that Rt/Φ−1((x1 − v1, . . . , xn − vn)) ' k (isomorphism of k-algebras).

On the other hand, any maximal ideal in Rt = k[y1, . . . , yt ] is likewise of
the form (y1 − u1, . . . , yt − ut) by Proposition 1.7.

So in order to determine the ideal Φ−1((x1 − v1, . . . , xn − vn)) we only
need to find u1, . . . , ut ∈ k such that

Φ(yi − ui ) ∈ (x1 − v1, . . . , xn − vn). (1)

By the correspondence between algebraic sets and radical ideals, condition
(1) is equivalent to the condition that the polynomial Φ(yi − ui ) vanishes
on 〈v1, . . . , vn〉.
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We compute

Φ(yi − ui )(〈v1, . . . , vn〉) = Φ(yi )(〈v1, . . . , vn〉)− ui = φi (〈v1, . . . , vn〉)− ui

where φi is the projection of the map φ : kn → kt to the i-th coordinate.

We thus see that Φ(yi − ui ) vanishes on 〈v1, . . . , vn〉 for all i ∈ {1, . . . , t}
iff

φ(〈v1, . . . , vn〉) = 〈u1, . . . , ut〉.

Hence

Φ−1((x1 − v1, . . . , xn − vn)) = (y1 − φ1(v̄), . . . , yt − φt(v̄)).

In particular, the maximal ideal of C(W ) corresponding to ψ(v̄) is the ideal

Φ−1
V ,W ((x1 − v1, . . . , xn − vn) (mod I(V ))).
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We now have the

Proposition 1.13

The map ΦV ,W : C(W )→ C(V ) depends only on ψ.

Proof. Suppose that ψ is also induced by another polynomial map

φ′ : kn → kt ,

associated with a map of k-algebras Φ′ : Rt → Rn.

Let
Φ′V ,W : C(W )→ C(V )

be the map of k-algebras induced by φ′ via Lemma 1.11.

Let m ∈ Spm(V ).

By the above lemma and the assumptions, we have

(Φ′)−1
V ,W (m) = Φ−1

V ,W (m) ∈ Spm(C(W )).

Let
n := (Φ′)−1

V ,W (m) = Φ−1
V ,W (m).
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Let r ∈ C(W ). We have commutative diagrams

C(W )

��

ΦV ,W
// C(V )

��

C(W )/n // C(V )/m

k

'
OO

= // k

'
OO

and also

C(W )

��

Φ′V ,W
// C(V )

��

C(W )/n // C(V )/m

k

'
OO

= // k

'
OO

In particular, we see that ΦV ,W (r) (modm) = Φ′V ,W (r) (modm).
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Since m was an arbitrary maximal ideal of C(V ), we conclude that
ΦV ,W (r)− Φ′V ,W (r) lies in the Jacobson radical of C(V ).

Since C(V ) is a Jacobson ring and is reduced, we thus see that

ΦV ,W (r) = Φ′V ,W (r).

Since r ∈ C(W ) was arbitrary, we conclude that ΦV ,W = Φ′V ,W .

From the last lemma, we see that we may write

ΦV ,W =: ψ∗.
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Lemma 1.14

Let
Λ : C(W )→ C(V )

be a map of k-algebras. Then there is a regular map

λ : V →W

such that λ∗ = Λ.

We skip the proof, which is straightforward (see the notes for details).
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From the last lemma, Lemma 1.12 and Proposition 1.13, we see that given
a map of k-algebras

Λ : C(W )→ C(V ),

there is a unique regular map

Spm(Λ) : V →W

such that Spm(Λ)∗ = Λ.

On the other hand, by Proposition 1.13, Lemma 1.12 and the previous
lemma, given a regular map λ : V →W , the map of k-algebras

λ∗ : C(W )→ C(V )

is the unique one such that

Spm(λ∗) = λ.
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We conclude that there is a bijection from the set of regular maps

V →W

to the set of maps of k-algebras

C(W )→ C(V ),

which sends λ : V →W to λ∗ and who inverse is given by Spm(·).

Finally note that any finitely generated reduced k-algebra is isomorphic as
a k-algebra to the coordinate ring of some algebraic set.

All this leads to an intrinsic characterisation of algebraic sets and regular
maps between them.
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We may view algebraic sets as a category whose objects are pairs (V , n)
(n > 0), where V is the zero set in kn of a set of k-polynomials in n
variables.

The categorical arrows from (V , n) to (W , t) are the maps from V to W ,
which are restrictions of polynomial maps from kn to kt .

The following theorem is a categorical summary of the previous discussion.

Theorem 1.15

The category of algebraic sets is antiequivalent to the category of finitely
generated reduced k-algebras.
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Varieties

Let V ⊆ kn be an algebraic set.

Note that from Theorem 1.15, there is a natural identification between the
regular maps from V to k (where k is viewed as an algebraic set) and the
elements of C(V ).

Indeed the elements of C(V ) are in one-to-one correspondence with the
morphisms of k-algebras k[x ]→ C(V ) and in turn these morphisms
correspond to regular maps V → k .

More concretely, let f ∈ C(V ) = Rn/I(V ) and let f̃ be an arbitrary lifting
of f to Rn = k[x1, . . . , xn].

The regular function V → k corresponding to f is then the restriction of
the map kn → k given by the polynomial f̃ .
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We would also like to make sense of regular maps from open subsets of V
to k .

Definition 1.16

Let U ⊆ V be an open subset. A function

u : U → k

is said to be regular if for any regular map of algebraic sets

τ : T → V

such that τ(T ) ⊆ U, the function τ ◦ u is regular on T (ie corresponds to
an element of C(T )).

40 / 205



To show that this definition is useable, we shall need the following

Lemma 1.17

Any open set in V is a union of open subsets of the form V \Z(f ), for
f ∈ C(V ).

Proof. Left to the reader. Unroll the definitions.

Lemma 1.18

Suppose that the regular map h : V ′ → V makes C(V ′) isomorphic to
C(V )[f −1] as a C(V )-algebra for some f ∈ C(V ). Then

(1) h is injective and h is a homeomorphism onto V \Z(f );

(2) if g : V ′′ → V is a regular map such that g(V ′′) ⊆ V \Z(f ), then there
is a unique regular map g ′ : V ′′ → V ′ such that g = h · g ′.

We skip the proof. Note that this can be translated into a problem of
commutative algebra. See the notes for details.
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Corollary 1.19

Let f ∈ C(V ).

The regular functions on
V \Z(f )

are the restrictions of the functions kn → k which are of the form

P(x1, . . . , xn)

(F (x1, . . . , xn))l

( l > 0 ), where P(x1, . . . , xn) ∈ Rn and F (x1, . . . , xn) ∈ Rn is any lifting of
f to Rn.
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Proof. Note first that C(V )[f −1] ' C(V )[t]/(tf − 1) as a C(V )-algebra
(see Lemma 5.3 in CA).

Hence C(V )[f −1] corresponds to the algebraic set Z in kn+1 given by the
ideal generated by the sets I(V ) and tF (x1, . . . , xn)− 1 in k[x1, . . . , xn, t].

The polynomial map φ : kn+1 → kn inducing the map of k-algebras
C(V )→ C(V )[t]/(tf − 1) is simply given by the formula
φ(〈v1, . . . , vn, z〉) = 〈v1, . . . , vn〉.

The inverse of the map Z
φ|Z→ V \Z(f ) is given by the formula

〈v1, . . . , vn〉 7→ 〈v1, . . . , vn,F (v1, . . . , vn)−1〉.
Hence a regular map on V \Z(f ) is given by the evaluation of a polynomial
in the variables x1, . . . , xn, t on the vector 〈v1, . . . , vn,F (v1, . . . , vn)−1〉 (for
〈v1, . . . , vn〉 ∈ V \Z(f )).
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Proposition 1.20

Let U be an open subset of the algebraic set V ⊆ kn.

A function a : U → k is regular iff for any point ū ∈ U, there is

• a polynomial F ∈ Rn, such that F (ū) 6= 0

• a polynomial P ∈ Rn such that a coincides with P/F in a
neighbourhood of ū.

This implies in particular that if a function a : U → k is regular and
nowhere vanishing, then 1/a : U → k is also a regular function.

In other words, the units in the ring of regular functions U → k are the
nowhere vanishing regular functions.
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Proof. (of Proposition 1.20). We first show the following.

Let W ⊆ kt be an algebraic set.

Let f1, . . . , fl ∈ C(W ) and suppose that (f1, . . . , fl) = C(W ).

Let h : W → k be a function (not assumed regular) and suppose that for
each i ∈ {1, . . . , l} there is an integer ni > 0 and an element ci ∈ C(W )
such that h|W \Z(fi ) = ci/f

ni
i .

We claim that the function h is then regular on W (ie arises from an
element of C(W ).

To prove this, note first that we may assume that all the ni are equal to
some m > 1.

Indeed, if we let m := 1 + supi ni then we may write

h|W \Z(fi ) = ci f
m−ni
i /f mi

for all i .
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Now notice that for all i , j ∈ {1, . . . , l} we have

h|W \Z(fi fj ) = ci/f
m
i = cj/f

m
j

so that
(fi fj)

m(ci/f
m
i − cj/f

m
j ) = f mj ci − cj f

m
i = 0

on W \Z(fi fj).

We deduce that
(fi fj)f

m
j ci = (fi fj)cj f

m
i

on V .
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Now let bi ∈ C(W ) be functions such that∑
i

bi f
2m
i = 1

(note that we also have (f 2m
1 , . . . , f 2m

l ) = C(W ) - prove this or see Lemma
12.2 in CA).

Let
h̃ :=

∑
i

bi f
m
i ci .

We compute

h̃f 2m
j =

∑
i

bi f
m
i f 2m

j ci =
∑
i

bi (fi fj)
mf mj ci

=
∑
i

bi (fi fj)
mf mi cj = (

∑
i

bi f
2m
i )f mj cj = f mj cj

so that h̃|W \Z(fj ) = cj/f
m
j . Hence h̃ = h. This completes the proof of the

claim.
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Coming back to the proposition, note that the ”⇒” direction of the
equivalence stated in the proposition is clear from Lemma 1.17 and
Corollary 1.19.

Thus we only have to prove the ”⇐” direction of the equivalence.

Since the topology of U is quasi-compact (this will be proven in exercise
sheet 2, Q4 (4) - you can also prove this directly), we may reword this
implication as follows.

Let g1, . . . , gl ∈ C(V ) and suppose that U = ∪i (V \Z(gi )).

Let V ′ ⊆ kn
′

be an algebraic set and let H : V ′ → V be a regular map
such that H(V ′) ⊆ U.

Suppose that for all i ∈ {1, . . . , l} we have

a|V \Z(gi ) = di/gi

for some ni > 0 and some di ∈ C(V ).

The ”⇐” direction of the equivalence of the proposition is then the
statement that a ◦ H = H∗(a) is a regular function on V ′.

So we only have to prove this last statement.
48 / 205



Note first that by construction, for all i ∈ {1, . . . , l} we have

H∗(a)|V ′\Z(H∗(gi )) = H∗(di )/H
∗(gi ).

Also, since H(V ′) ⊆ U, we have

(H∗(g1), . . . ,H∗(gl)) = C(V ′).

Hence we may apply the preceding claim to

W = V ′, fi = H∗(gi ) and h = H∗(a)

to conclude that H∗(a) is regular on V ′.

Note that in view of the previous proposition, the following property holds
trivially: if U ′ ⊆ U is an inclusion of open subsets of V , then the
restriction to U ′ of a regular function on U is also regular.
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We encapsulate this property in the following

Definition 1.21

Let T be a topological space.

A sheaf of functions OT on T with values in k is an assignement, which
associates with each open subset O of T a sub k-algebra OT (O) of
Maps(O, k), with the following property:

• for any open covering {Oi} of an open subset O, a function f : O → k
lies in OT (O) iff f |Oi

∈ OT (Oi ) for all i .

Here Maps(O, k) is the set of functions from O to k, with its natural
k-algebra structure (given by pointwise multiplication and addition).

Note that if O is an open subset of topological space endowed with a sheaf
of k-valued functions, O inherits a sheaf of k-valued functions from T .

Proposition 1.20 implies that for any algebraic set V ⊆ kn, the regular
functions on Zariski open subsets of V define a sheaf of functions OV with
values in k on V .
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There is a natural notion of mapping between topological spaces endowed
with sheaves of k-valued functions:

Definition 1.22

Let (T ,OT ) and (T ′,OT ′) be two topological spaces endowed with
sheaves of functions with values in k .

A morphism (sometimes loosely called a map) from (T ,OT ) to (T ′,OT ′)
is a continuous map a : T → T ′ such that for any open subset

U ′ ⊆ T ′

and any element
f ∈ OT ′(U

′),

the function
f ◦ a|a−1(U′)

on a−1(U ′) lies in OT (a−1(U ′)).
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Let T be a topological space endowed with a sheaf of functions OT with
values in k.

Let t ∈ T . Let
ÔT ,t := ∪O open, t∈O OT (O)

(where all the OT (O) are considered to be disjoint from each other).

Define an equivalence relation on ÔT ,t by declaring two functions in ÔT ,t

equivalent if they coincide in some open neighbourhood of t.

The set of equivalence classes in ÔT ,t has a natural k-algebra structure
and we denote it by OT ,t .

The k-algebra OT ,t is called the local ring at t.

Note that by definition, for any open neighbourhood O of t, there is a
natural map of k-algebras OT (O)→ OT ,t .

Also, there is a natural map of k-algebras OT ,t → k, which is given by
evaluation at t.

If we are given a morphism from (T ,OT ) to (T ′,OT ′) as in the last
definition, the pull-back of functions gives a map of k-algebras
OT ,a(t) → OT ,t for any t ∈ T . 52 / 205



From the very definition of regularity, we see that any regular map from an
algebraic set to another induces a morphism between the associated
topological spaces with sheaves of k-valued functions.

We are now ready for the definition of a general variety.

Definition 1.23

Let T be a topological space endowed with a sheaf of functions with
values in k.

We say that T is a variety if there is a finite open covering {Ui} of T ,
such that Ui with its induced sheaf of k-valued functions is isomorphic to
an algebraic set endowed with its sheaf of regular functions.

A morphism of varieties is a morphism of the corresponding topological
spaces with sheaves of k-valued functions.
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Lemma 1.24

Let V ⊆ kn be an algebraic set and let (V ,OV ) be the associated
topological space with sheaf of k-valued functions. Let v̄ ∈ V .

Then the natural map of k-algebras

C(V ) = OV (V )→ OV ,v̄

extends (necessarily uniquely) to an isomorphism of k-algebras

C(V )v̄ ' OV ,v̄ .

Here we identified v̄ with the corresponding maximal ideal I({v̄}) when
writing C(V )v̄ (so that C(V )v̄ is the localisation of C(V ) at the
multiplicative set C(V )\I({v̄})).
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Proof. We first show that the map C(V )→ OV ,v̄ extends to a map of
k-algebras C(V )v̄ → OV ,v̄ .

To show this, we have to show that a regular function f ∈ C(V ), which
does not vanish at v̄ , maps to a unit in OV ,v̄ .

By definition, a unit in OV ,v̄ is represented by a regular function in a
neighbourhood of v̄ , which vanishes nowhere in that neighbourhood.

Now since f does not vanish at v̄ , it is nowhere vanishing in the set
V \Z(f ), which is a neighbourhood of v̄ . So the image of f in OV ,v̄ is a
unit.

So we have a unique extension of the map C(V )→ OV ,v̄ to a map of
k-algebras C(V )v̄ → OV ,v̄ .

We still have to show that this last map is injective and surjective.
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We first show injectivity. Let f /s ∈ C(V )v̄ (where s ∈ C(V )\I({v̄})).

Suppose that the image of f /s in OV ,v̄ vanishes.

By definition, this means that the function f vanishes in a neighbourhood
of v̄ .

In particular, there exists an h ∈ C(V ) such that f vanishes in V \Z(h),
where h does not vanish at v̄ (use Lemma 1.17).

In other words, the image of f in C(V )[h−1] vanishes.

Since h 6∈ I({v̄}), the natural map C(V )→ C(V )v̄ factors through
C(V )[h−1] and hence the image of f in C(V )v̄ also vanishes.

This settles injectivity.
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Now for surjectivity.

By Lemma 1.17, an element ẽ ∈ OV ,v̄ is represented by a regular function
on V \Z(h), for some h which does not vanish at v̄ .

Such a function corresponds to an element of C(V )[h−1] and again since
the natural map C(V )→ C(V )v̄ factors through C(V )[h−1], we see that ẽ
lies in the image of C(V )v̄ .

Since ẽ ∈ OV ,v̄ was arbitrary, the natural map C(V )v̄ → OV ,v̄ is
surjective.

In particular, the ring OV ,v̄ is local.

Also, note that the natural evaluation map OV ,v̄ → k is surjective,
because all constant functions are regular on V .

Hence the kernel of the map OV ,v̄ → k is maximal.

Hence this kernel coincides with the unique maximal ideal of OV ,v̄ .
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For Definition 1.23 to be coherent, we need to check that we can recover
an algebraic set from its associated topological space with sheaf of
k-valued functions:

Lemma 1.25

Let V ⊆ kn and W ⊆ kt be two algebraic sets.

Let (V ,OV ) and (W ,OW ) be the associated topological spaces with
sheaves of k-valued functions.

Let g be a morphism from (V ,OV ) to (W ,OW ).

Then g is induced by a regular map ψ : V →W .
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Proof. By definition, the morphism g provides a map of k-algebras
C(W )→ C(V ).

Furthermore, for any v̄ ∈ V , we have a commutative diagram of k-algebras

C(W )
g∗

//

��

C(V )

��

OW ,g(v̄)
g∗

// OV ,v̄

From the remark after Lemma 1.24, the ring OV ,v̄ is a local ring and its
maximal ideal consists of the elements represented by the regular functions
h defined in a neighbourhood of v̄ such that h(v̄) = 0.
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The same is true for OW ,g(v̄) and g(v̄) in place of v̄ . In particular, the
map g∗ : OW ,g(v̄) → OV ,v̄ sends the maximal ideal of OW ,g(v̄) into the
maximal ideal of OV ,v̄ .

Since the involved rings are local, this implies that the inverse image by g∗

of the maximal ideal of OV ,v̄ is the maximal ideal of OW ,g(v̄).

We conclude that the inverse image of

I({v̄}) ⊆ C(V )

by
g∗ : C(V )→ C(W )

is I({ḡ(v̄)}).

In particular, g(v̄) = Spm(g∗)(v̄) (use Lemma 1.12).

Hence g is induced by the map of k-algebras g∗ : C(W )→ C(V ) and
hence by a regular map V →W (by Theorem 1.15).
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Open and closed subvarieties

Proposition 1.26

Let (V ,OV ) be a variety.

Let U ⊆ V be an open subset and let OU be the sheaf of k-valued
functions induced by OV .

Then (U,OU) is a variety and the inclusion map is a morphism of
varieties.

Proof. Let {Vi} be an open covering of V such that each Vi is
isomorphic as a Topskf to an affine variety.

Then {Vi ∩ U} is an open covering of U.

Since Vi ∩U is open in Vi , there is for each i a subset Ei ⊆ C(Vi ) such that

∪e∈Ei
(Vi\Z(e)) = Vi ∩ U

(use Lemma 1.17). Hence we only have to show that the open subset
Vi\Z(e) of Vi is isomorphic as a Topskf to an affine variety.

But this follows from Lemma 1.18. 61 / 205



An open subset of a variety is called an open subvariety if it is endowed
with the structure of Topskf described in the last Proposition.

Let (V ,OV ) be a variety. Let Z ⊆ V be a closed subset.

Endow Z with the topology induced by V .

For any open subset O of Z , define a function f : O → k to be regular if
there is collection of open subsets {Ui} of V and regular functions
gi : Ui → k such that

- (∪iUi ) ∩ Z = O;

- gi |O∩Ui
= f |O∩Ui

.

This endows Z with a structure of topological space with k-valued
functions.

We shall write OZ for the corresponding sheaf of k-valued functions.

The sheaf of k-valued functions OZ on Z is said to be induced by OV .
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Proposition 1.27

The topological space Z with sheaf of k-valued functions OZ is a variety.
The inclusion map Z → V is a morphism of varieties.

Proof. The inclusion map Z → V provides us with a morphism

(Z ,OZ )→ (V ,OV )

of Topskf by construction.

Hence we only have to show that (Z ,OZ ) is a variety (see Definition 1.23).

Let {Vi} be a covering of V by open subsets such that (Vi ,OVi
) is

isomorphic as a Topskf to an affine variety.

By definition, it is sufficient to show that for each i , the Topskf Z ∩ Vi is
isomorphic to an affine variety.
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Hence we may assume that V is affine to begin with.

Hence we are reduced to the situation where V ⊆ kn is an algebraic set
and Z ⊆ kn is another algebraic set such that Z ⊆ V .

Endow Z with the sheaf of functions OZ induced by OV .

We would like to show that (Z ,OZ ) is isomorphic to an affine variety as a
Topskf.

Now note that by Proposition 1.20 the sheaf OZ is precisely the sheaf of
regular functions on Z viewed as an algebraic subset of kn.

So (Z ,OZ ) is isomorphic to an affine variety as a Topskf.
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An closed subset of a variety V is called a closed subvariety if it is
endowed with the structure of Topskf induced by V .

Lemma 1.28

Let (W ,OW ) and (V ,OV ) be two varieties.

Let Z (resp. O) be a closed subset (resp. open subset) of V .

Endow Z (resp. O) with its structure of closed (resp. open) subvariety.

Let λ : W → V be a morphism of Topskf such that

λ(W ) ⊆ Z

(resp. λ(W ) ⊆ O).

Then the induced map W → Z (resp. W → O) is a morphism of Topskf.

Proof. Left to the reader. Unroll the definitions.
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We also record a consequence of the proof of Proposition 1.27:

Lemma 1.29

Let V ⊆W ⊆ kn, where V and W are algebraic sets in kn.

Let (V ,OV )→ (W ,OW ) be the corresponding morphism of topological
spaces with sheaves of k-valued functions.

Then OV is induced by OW .
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Projective space

Projective varieties arise when one tries to find an algebraic counterpart of
the topological notion of compactness.

We will revisit this later when we consider complete varieties.

Let n > 0. A line through the origin of kn+1 is by definition the vector
subspace [v̄ ] of kn+1 generated by a vector v̄ ∈ kn+1\{0}.
We define projective space of dimension n to be the set Pn(k) of lines
through the origin of kn+1.

If v̄ = 〈v0, . . . , vn〉 ∈ kn+1\{0}, we shall write [v0, . . . , vn] for
[〈v0, . . . , vn〉].
We shall endow Pn(k) with a variety structure.
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For i ∈ {0, . . . n}, define

Ui = {[v0, . . . , vn] ∈ Pn(k) | vi 6= 0}.

In the following, we shall write the symbol ˇ over a term that is to be
omitted.

The map ui : kn → Ui such that

ui (〈v0, . . . , v̌i , . . . , vn〉) := [v0, . . . , vi−1, 1, vi+1, . . . vn]

is clearly a bijection and we have

u−1
i ([v0, . . . , vn]) = 〈v0

vi
, . . . ,

v̌i
vi
, . . . ,

vn
vi
〉.

if [v0, . . . , vn] ∈ Ui .
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If j < i and vj 6= 0, we compute

(u−1
j ◦ ui )(〈v0, . . . , v̌i , . . . , vn〉) = u−1

j ([v0, . . . , vi−1, 1, vi+1, . . . vn])

= 〈v0

vj
, . . . ,

v̌j
vj
, . . . ,

1

vj
,
vi+1

vj
, . . . ,

vn
vj
〉

and if j > i and vj 6= 0, we have similarly

(u−1
j ◦ ui )(〈v0, . . . , v̌i , . . . , vn〉) = 〈v0

vj
, . . . ,

vi−1

vj
,

1

vj
, . . . ,

v̌j
vj
, . . . ,

vn
vj
〉

Hence, if i 6= j , the map u−1
j ◦ ui gives a map from the open subset of kn

Uij := {〈v0, . . . , v̌i , . . . , vn〉 ∈ kn | vj 6= 0}

into the open subset of kn

Uji := {〈v0, . . . , v̌j , . . . , vn〉 ∈ kn | vi 6= 0}

and ui (Uij) = Ui ∩ Uj = uj(Uji ).
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Let uij := u−1
j ◦ ui : Uij → Uji .

Note that if one sees Uij as an open subvariety of kn, then Uij is an affine
variety associated with the coordinate ring

k[x0, . . . , x̌i , . . . , xn][x−1
j ] ' k[x0, . . . , x̌i , . . . , xn][t]/(txj − 1)

and similarly, Uji is an affine variety associated with the coordinate ring

k[y0, . . . , y̌j , . . . , yn][y−1
i ] ' k[y0, . . . , y̌j , . . . , yn][t]/(zyi − 1)

One checks from the definitions that uij arises from the polynomial map
which sends z to xj and yl to xl · t if l 6= i and to t if l = i .

Hence uij defines a morphism of varieties from Uij to Uji .
One checks from the just given formula that uij and uji are inverse to each
other, so uij is an isomorphism of varieties.
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Now we define a topology on Pn(k) by declaring a subset O ⊆ Pn(k) to be
open iff u−1

i (O) is open in kn for all i ∈ {0, . . . , n}.
Furthermore, if O ⊆ Pn(k) is open, we define a k-valued function

f : O → k

to be regular iff
f ◦ ui |u−1

i (O)

is a regular function on u−1
i (O) for all i .

Since (kn,Okn) is a Topskf, we see that with this definition, Pn(k)
becomes a Topskf.

We shall write OPn(k) for the just defined sheaf of k-valued functions on
Pn(k).
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Proposition 1.30

The sets Ui are open in Pn(k) for all i ∈ {0, . . . , n}.
The maps ui : kn → Pn(k) restrict to isomorphisms of Topskf between kn

and (Ui ,OUi
), where OUi

is the sheaf of k-valued functions induced on Ui

by OPn(k).

In particular, the Topskf (Pn(k),OPn(k)) is a variety.

The Ui are called the standard coordinate charts of Pn(k).

We shall sometimes write Un
i for Ui to emphasise the dependence on n.

Proof. To show that Ui is open, we have to show that u−1
j (Ui ) is open in

kn for all j .

We have shown above that u−1
j (Ui ) = Uji is open, so Ui is open.
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Next, we have to show that the map ui is a homeomorphism onto its
image.

The map ui is continuous and injective by definition so we only have to
show that ui is an open map.

So let O ⊆ kn be an open set. We have to show that ui (O) is open, or in
other words that u−1

j (ui (O)) is open for all j .

Now we have

u−1
j (ui (O)) = u−1

j (ui (O) ∩ (Ui ∩ Uj)) = u−1
j (ui (O ∩ Uij)) = uij(O ∩ Uij)

and uij(O ∩ Uij) is open in Uji since uij : Uij → Uji is a homeomorphism by
the above.

On the other hand Uji is open in Uj , so uij(O ∩ Uij) is also open in Uj .

So ui is a homeomorphism onto its image.

For the rest of the proof, see the notes.
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Example. The space P1(k) only has two coordinate charts, the charts U0

and U1.

By inspection, we see that P1(k)\Ui consists of only one point.

So one can see P1(k) as the ”compactification” of k obtained by adding a
”point at ∞” to k .

If k = C, the space P1(k) can be naturally identified (as a set) with the
Riemann sphere of complex analysis.
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Projective varieties

What are the closed subsets of projective space? To answer this question,
we shall need the following definitions.

A polynomial P(x0, . . . , xn) ∈ k[x0, . . . , xn] is said to be homogenous if it
is a sum of monomials of the same degree.

Any polynomial P(x0, . . . , xn) has a canonical decomposition

P =

deg(P)∑
i=0

P[i ]

where P[i ] is the sum of the monomials of degree i appearing in P (so that
in particular P[i ] is homogenous).

Example. The polynomials x0, x2
0 + x0x1 are homogenous but x2

0 + x1 is
not.
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We have a decomposition of k[x0, . . . , xn] as an internal direct sum

k[x0, . . . , xn] =
⊕
l>0

k[x0, . . . , xn][l ]

where k[x0, . . . , xn][l ] is the k-vector space of homogenous polynomials of
degree l .

In particular, we have k[x0, . . . , xn][0] = k .

This decomposition into a direct sum makes k[x0, . . . , xn] into a graded
ring in the sense of section 11.2 of CA.

Example. We have (x2
0 + x1)[2] = x2

0 , (x2
0 + x1)[1] = x1, (x2

0 + x1)[0] = 0.

76 / 205



Note the following elementary fact. If P(x0, . . . , xn) ∈ k[x0, . . . , xn] is
homogenous then

P(s · x0, . . . , s · xn) = sdeg(P)P(x0, . . . , xn)

for all s ∈ k .

We thus see that if P(x0, . . . , xn) ∈ k[x0, . . . , xn] is a homogenous
polynomial and v̄ ∈ kn+1 is non zero, we have P(v̄) = 0 iff P(s · v̄) = 0
for all s ∈ k∗.

This gives rise to the following definition.

Let S ⊆ k[x0, . . . , xn] be a set of homogenous polynomials. We define

Z(S) := {[v̄ ] ∈ Pn(k) | v̄ ∈ kn+1\{0},∀P ∈ S : P(v̄) = 0}.

A projective algebraic set in Pn(k) is a subset of the form Z(S), where
S ⊆ k[x0, . . . , xn] is a set of homogenous polynomials.
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For convenience, we shall extend the operator Z(·) to non homogenous
polynomials.

For any set S ⊆ k[x0, . . . , xn] (not necessarily consisting of homogenous
polynomials), we set

Z(S) := {[v̄ ] | v̄ ∈ kn+1\{0},P[i ](v̄) = 0∀i > 0}.

Just as in the affine case, we have Z(S) = Z(S · k[x0, . . . , xn]).

Hence the projective algebraic sets in Pn(k) are the sets of the type Z(I ),
where I ⊆ k[x0, . . . , xn] is an ideal generated by homogenous elements.

We shall say that an ideal of k[x0, . . . xn] is homogenous if it is generated
by homogenous elements.
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Lemma 1.31

Let I ⊆ k[x0, . . . xn] be an ideal.

Then I is homogenous iff for all P ∈ I and all i > 0, we have P[i ] ∈ I .

If I is homogenous then its radical r(I ) is also homogenous.

In other words, a homogenous ideal is a graded ideal in k[x0, . . . , xn] (ie a
graded k[x0, . . . , xn]-submodule of k[x0, . . . , xn]).

Proof. See exercises.

79 / 205



Proposition 1.32

Projective algebraic sets are closed in Pn(k).

Furthermore, if C ⊆ Pn(k) is a closed subset and J is the ideal generated
by the homogenous polynomials which vanish on C , then Z(J) = C .

In particular, the closed subsets of Pn(k) are precisely the projective
algebraic sets.

Proof. Let S := {Pl} be a set of homogenous polynomials in
k[x0, . . . , xn].

By construction, we have

u−1
i (Z(S)) = Z({Pl(x0, . . . , xi−1, 1, xi+1, . . . , xn)})

so that u−1
i (Z(S)) is closed in kn.

By Proposition 1.30, the set Z(S) ∩ Ui is thus closed in Ui (for the
induced topology).

Since the Ui cover Pn(k), we thus see that Z(S) is closed in Pn(k).
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As to the second assertion, we clearly have Z(J) ⊇ C .

So we need to prove that Z(J) ⊆ C .

In other words, we have to prove that if [v̄ ] 6∈ C , then there is a
homogenous polynomial H ∈ J, such that H([v̄ ]) 6= 0.

Now let j ∈ {0, . . . , n} and suppose that [v̄ ] ∈ Uj .

We then have [v̄ ] 6∈ C ∩ Uj .

Since u−1
j (C ) is the zero set of an ideal in k[x0, . . . x̌j , . . . , xn], there is a

polynomial
P(x0, . . . , x̌j , . . . xn) ∈ k[x0, . . . x̌j , . . . , xn]

such that P(u−1
j ([v̄ ])) 6= 0 and such that P ∈ I(u−1

j (C )).
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Let
βj(P) := x

deg(Pj )
j P(

x0

xj
, . . . ,

xj−1

xj
,
xj+1

xj
. . . ,

xn
xj

).

This is a homogenous polynomial (the ”homogenisation” of P with respect
of the variable xj) such that

(βj(P))(x0, . . . , xj−1, 1, xj , . . . , xn) = Pj .

In particular we have Z(βj(P)) ⊇ C ∩ Uj and

(βj(P))([v̄ ]) = P(u−1
j ([v̄ ])) 6= 0.

Now let Qj = x jβj(P). Then Qj is still homogenous and we have
Qj([v̄ ]) 6= 0 and Z(Qj) ⊇ C (because xj vanishes on Pn(k)\Uj).

Hence we may set H = Qj .

This completes the proof.
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If A ⊆ Pn(k) is a subset, we shall write

I(A) ⊆ k[x0, . . . , xn]

for the ideal generated by the homogenous polynomials vanishing on A.

This notation clashes with the notation in the affine case but the context
should make it clear which definition of I(·) we use.

Now we have the analogue of Proposition 1.3:

Proposition 1.33

Let C ⊆ Pn(k) be a closed subset and let J ⊆ k[x0, . . . , xn] be a
homogenous radical ideal.

Suppose that Z(J) 6= ∅.
Then I(C ) is a (by definition homogenous) radical ideal and we have

Z(I(C )) = C

and
I(Z(J)) = J.
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Proof. We first show that I(C ) is a radical ideal.

To see this, let H ⊆ r(I(C )) be the subset of r(I(C )) consisting of the
homogenous elements of r(I(C )).

By the definition of the nilradical of an ideal, all the elements of H vanish
on C .

On the other hand, r(I(C )) is a homogenous ideal by Lemma 1.31 and so
H generates r(I(C )).

Hence r(I(C )) ⊆ I(C ) and thus r(I(C )) = I(C ).

The equality Z(I(C )) = C is contained in Proposition 1.32.
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For the second equality, note first that the inclusion J ⊆ I(Z(J)) follows
from the definitions.

We thus only have to prove that J ⊇ I(Z(J)).

So let Q be a non zero homogenous polynomial vanishing on Z(J).

We need to show that Q ∈ J.

Note that deg(Q) > 0. Indeed, if deg(Q) = 0 then Q is a non zero
constant polynomial and then Z(Q) = ∅, which implies that Z(J) = ∅.
More generally, J does not contain any constant polynomial.

Now consider the map

q : kn+1\{0} → Pn(k)

given by the formula q(v̄) := [v̄ ].

Note that q−1(Z(J)) is by construction the set of zeroes of J in kn+1\{0}.
Hence the set of zeroes of J in kn is the set q−1(Z(J)) ∪ {0}.
Now Q also vanishes on q−1(Z(J)) ∪ {0} and so by the strong
Nullstellensatz we have Q ∈ r(J) = J.
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Lemma 1.34

Let J ⊆ k[x0, . . . , xn] be a homogenous radical ideal.

Then the subset Z(J) of Pn(k) is empty iff

J = k[x0, . . . , xn]

or
J = k[x0, . . . , xn]+.

Here k[x0, . . . , xn]+ is the homogenous ideal of k[x0, . . . , xn] generated by
all the non constant homogenous polynomials.
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Proof. We first prove the ⇐ direction of the equivalence.

So let v̄ = 〈v1, . . . , vn〉 ∈ kn+1\{0}.
Suppose that vi0 6= 0 for some i0 ∈ {0, . . . , n}.
The homogenous polynomial xi0 ∈ k[x0, . . . , xn]+ does not vanish at [v̄ ].

Since v̄ ∈ kn+1\{0} was arbitrary, we see that Z(J) is empty if
J = k[x0, . . . , xn]+ or J = k[x0, . . . , xn].

We now prove the ⇒ direction.

So suppose that Z(J) = ∅.
To avoid notational confusion, write Zaff(I ) for the set of common zeroes
in kn+1 of the elements of a (not necessarily homogenous) ideal
I ⊆ k[x0, . . . , xn].

By using the map q : kn+1\{0} → Pn(k) described in the proof of
Proposition 1.33, we see that

Zaff(J) ∩ (kn+1\{0}) = ∅.
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Now suppose first that J does not contain any non zero constant
polynomials.

Then 0 ∈ Zaff(J) (because J is generated by non constant homogenous
polynomials) so that Zaff(J) = {0}.
Using the correspondence described after Proposition 1.3, we conclude
that J is the radical ideal of k[x0, . . . , xn] associated with the point 0,
which is k[x0, . . . , xn]+ .

If J contains a non zero constant polynomial then J = k[x0, . . . , xn]
(because J contains a unit).

So we conclude that if Z(J) = ∅ then either J = k[x0, . . . , xn]+ or
J = k[x0, . . . , xn].

We shall call the ideal k[x0, . . . , xn]+ the irrelevant ideal of k[x0, . . . , xn].
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We conclude from Lemma 1.34 and Proposition 1.33 that there is a
correspondence

{closed sets in Pn(k)}
I
�
Z
{non irrelevant homogenous radical ideals in Rn}

where the maps Z(·) and I(·) are inverse to each other.

A projective variety is a variety isomorphic (as a variety) to a closed
subvariety of Pn(k) (for some n > 0).

A quasi-projective variety is a variety isomorphic to an open subvariety of a
projective variety.
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Dimension

Let T be a topological space.

The space T is said to be noetherian if for any descending sequence

C1 ⊇ C2 ⊇ C3 ⊇ . . .

of closed subsets of T , there is an i0 > 0 such that Ci0 = Ci0+1 = . . . .

In this situation, we say that the sequence stabilises at i0.

Note that any subset of a noetherian topological space is also noetherian
(in the induced topology).

Finally, note that a noetherian topological space is quasi-compact (ie any
covering of the space has a finite subcovering). See exercises.

The topological space T is said to be irreducible if T is not empty and any
open subset of T is dense in T .
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Example.

The Zariski topology on kn is noetherian.

Indeed any descending sequence

C1 ⊇ C2 ⊇ C3 ⊇ . . .

of closed subsets of kn corresponds uniquely to a sequence

I(C1) ⊆ I(C2) ⊆ I(C3) ⊆ . . .

(see the first section) and such a sequence stabilises for some index
because k[x1, . . . , xn] is a noetherian ring (by Hilbert’s basis theorem).

Consequently, the topology of any algebraic set is noetherian.

A closed subspace Z of kn is irreducible iff Z is irreducible as an algebraic
set.
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Lemma 1.35

Let T be a non empty noetherian topological space.

Then there is a unique finite collection {Ti} of irreducible closed subsets
of T such that

(1) T = ∪iTi

(2) Ti 6⊆ ∪j 6=iTj for all i .

Note that a consequence of the lemma is that the Ti are the irreducible
closed subsets of T which are maximal for the relation of inclusion among
all the irreducible closed subsets contained in T .

Proof. See exercises.
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The closed subsets Ti described in Lemma 1.35 are called the irreducible
components of T .

If T is an algebraic set, the decomposition of T into irreducible
components coincides with the decomposition given by Lemma 1.6.

Lemma 1.36

A variety is noetherian.

Proof. Let V be a variety. Let

C1 ⊇ C2 ⊇ C3 ⊇ . . .

be a descending sequence of closed subsets of V .

Let {Ui} be a finite covering of V by open affine subvarieties.

Since the Ui are noetherian (as topological spaces) by the remark above
and since there are only finitely many Ui , there is an integer l > 1 such
that Cl ∩ Ui = Cl+1 ∩ Ui = . . . for all i .

Since the Ui cover V , this implies that Cl = Cl+1 = . . .
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Now consider again a non empty topological space T .

The dimension dim(T ) of T is

dim(T ) := sup{t | there are irreducible closed subsets

C0, . . . ,Ct ⊆ T such thatC0 ( C1 ( · · · ( Ct}.

Note that dim(T ) might be infinite.

Dimension is not defined for the empty topological space (note that some
authors define the dimension of the empty topological space to be −1).
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Lemma 1.37

Let V ⊆ kn be an algebraic set.

Then dim(V ) = dim(C(V )).

Here dim(C(V )) is the dimension of C(V ) as a ring (see Def. 11.1 in CA).

Recall that by definition we have

dim(R) := sup{n | ∃ p0, . . . , pn ∈ Spec(R) : p0 ) p1 ) · · · ) pn}

for any ring R.

Proof. We have already seen that irreducible closed subsets of V
correspond to prime ideals of C(V ) (see Lemma 1.5).

Hence the definition of dim(C(V )) corresponds with the definition of
dim(V ) under the correspondence between radical ideals of C(V ) and
closed subsets of V described at the beginning of section one.
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Theorem 1.38

(1) The dimension of kn is n.

(2) The dimension of Pn(k) is n.

Proof. (1) We saw in CA that dim(k[x1, . . . , xn]) = n (see Cor. 11.27 in
CA). Hence dim(kn) = n by Lemma 1.37.

(2) Apply Q2.7 in exercise sheet 2 to the open covering of Pn(k) by its
standard coordinate charts and use (1).
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Definition 1.39

Let T be a topological space.

Let C ⊆ T be a closed irreducible subspace.

The codimension, or height of C is

cod(C ,T ) = ht(C ,T ) := sup{t | there are irreducible closed subsets

C1, . . . ,Ct ⊆ T such that C ( C1 ( · · · ( Ct}

We shall sometimes write cod(C ) and ht(C ) instead of cod(C ,T ) and
ht(C ,T ), respectively, when the ambient topological space T is clear from
the context.

Note that from the definitions, we have

dim(T ) = sup
C closed irreducible subset of T

ht(C ,T ).

97 / 205



Suppose that C ,V ⊆ kn are algebraic sets in kn and that C ⊆ V .

Suppose that C is irreducible. Then the height of C in V is the height of
the prime ideal I(C ) (mod I(V )) of C(V ) (in the sense of section 11 of
CA).

Proposition 1.40

Let V be a variety.

Let C ⊆ V be an irreducible closed subset.

Then dim(V ) and cod(C ,V ) are finite.

Proof. See Q6 (4) in Sheet 2.
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Finally, we also have the following difficult result of commutative algebra,
which justifies the use of the word ”codimension”.

Theorem 1.41

Let R be a finitely generated k-algebra.

Suppose that R is an integral domain.

Let p ⊆ R be a prime ideal.

Then we have
ht(p) + dim(R/p) = dim(R)

The proof of this theorem is given in the Appendix to the notes.
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Corollary 1.42

Let V be an irreducible variety. Let C ⊆ V be an irreducible closed subset.

Then
cod(C ,V ) + dim(C ) = dim(V )

Proof. See notes.

The next result is another fundamental result from the CA course, which is
relevant to the theory of dimension.
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Theorem 1.43

Let n > 0 and let V ,W ⊆ kn be algebraic sets.

Suppose that V ⊆W . Suppose that I ⊆ k[x1, . . . , xn] is such that
Z(I ) = V .

Let l > 1 and suppose that the ideal I (mod I(W )) ⊆ C(W ) is generated
by l elements.

Then every irreducible component of V has codimension 6 l in W .

Furthermore, if C is an irreducible component of V then there is an ideal
J ⊆ I(C ) ⊆ C(W ) which is generated by cod(C ,W ) elements and such
that C is an irreducible component of Z(J) ⊆W .

See Cor. 11.15 and Cor. 11.17 in CA for the proof. This is a consequence
of Krull’s principal ideal theorem.
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Rational maps

Let V ,W be varieties.

Consider the set H = HV ,W whose elements are morphisms f : U →W ,
where U is a non empty open subvariety of V .

Let ∼ = ∼V ,W be the relation on H, such that f : U →W and
g : O →W are related by ∼ iff there is a open subvariety UO of U ∩ O,
which is dense in V and which is such that f |UO = g |UO .

The relation ∼ is easily seen to be an equivalence relation.

We shall write Rat(V ,W ) for the set of equivalences classes of H under
the relation ∼.

We call elements of Rat(V ,W ) rational maps from V to W .

Beware that rational maps are not actual maps but equivalence classes of
maps.
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Suppose now until further notice that V is irreducible.

Note the following.

Let f : U →W be a representative of a rational map from V to W .

If f is dominant, then any other representative of the same rational map is
dominant as well.

Indeed, let g : O →W be another representative of the rational map
defined by f . Then

f |UO = g |UO .
Suppose for contradiction that g is not dominant. Then W \g(O) contains
a non empty open subset W1.

Since f : U →W is dominant, we know that f −1(W1) 6= ∅.
Thus, since V is irreducible, we have

f −1(W1) ∩ UO = g−1(W1) ∩ UO 6= ∅.

In particular g−1(W \g(O)) 6= ∅, which is a contradiction. So g is also
dominant.
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It thus makes sense to speak of a dominant rational map from V to W .

We shall write Ratdom(V ,W ) for the set of dominant rational maps from
V to W .

We shall write κ(V ) as a shorthand for Rat(V , k).

If f : U → k and g : O → k are two elements of HV ,k , one may define a
new element f + g : U ∩ O → k of HV ,k by declaring that

(f + g)(u) = f (u) + g(u)

for all u ∈ U ∩ O.

Similarly, one may define an element fg = f · g : U ∩ O → k by declaring
that

(f · g)(u) = f (u) · g(u)

for all u ∈ U ∩ O.

Finally, if f : U → k does not vanish on all of U, then we may define
f −1 : U\Z(f )→ k by the formula f −1(u) = 1/f (u).
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It is easily verified that these operations are compatible with ∼V ,k and we
thus obtain a structure of field on κ(V ).

This field is called the function field of V .

There is an obvious injection k ↪→ κ(V ) which makes κ(V ) into a
k-algebra.

Note finally that for any v ∈ V , there is a natural injection

OV ,v ↪→ κ(V ),

which sends any representative of an equivalence class in OV ,v to its
equivalence class in κ(V ).

So κ(V ) naturally contains the local rings at all the points of V .
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Now suppose that we are given a dominant morphism of irreducible
varieties a : V →W .

Then we may define a map HW ,k → HV ,k by the recipe

(f : O → k) 7→ (f ◦ a|f −1(O) : f −1(O)→ k)

where O is a non empty open subvariety of W and f : O → k is an
element of HW ,k .

This definition makes sense because f −1(O) 6= ∅ as f is dominant.

One checks that this map is compatible with the relations ∼W ,k and ∼V ,k

and also with the operations +, (·)−1 and ·.
One thus obtains a map of rings

a∗,rat : κ(W )→ κ(V ).
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Note that since κ(W ) is a field, the map a∗,rat is injective.

Also, if a : V →W is the inclusion of an open subvariety of V into W ,
the map a∗,rat is a bijection.

The construction of a∗,rat is compatible with compositions of dominant
morphisms.

We conclude from all this that the homomorphism a∗,rat only depends on
the element of Rat(V ,W ) defined by a.

In turn, any dominant representative g : O →W of an element of
Rat(V ,W ) defines a map of k-algebras

g∗,rat : κ(W )→ κ(V ) ' κ(O)

and again this map only depends on the class of g in Rat(V ,W ).

So any dominant rational map ρ ∈ Ratdom(V ,W ) gives rise to an
injection of fields

ρ∗,rat : κ(W )→ κ(V ).
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Lemma 1.44

Let X be an irreducible affine variety.

Let V ⊆ kn be an algebraic set giving rise to X .

Then there is a canonical isomorphism of k-algebras κ(X )→ Frac(C(V )).

This isomorphism is compatible with dominant regular maps between
irreducible algebraic sets and the corresponding morphisms of varieties.

Note that by Sheet 2, the fact that V irreducible implies that the ring
C(V ) is an integral domain. So it makes sense to talk about the fraction
field Frac(C(V )) of C(V ).

Proof. The proof is similar to the proof of Lemma 1.24 and will be
omitted.
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Proposition 1.45

Let V be an irreducible variety.

Then κ(V ) is finitely generated over k as a field and the dimension of V is
equal to the transcendence degree of κ(V ) over k.

Recall that the transcendence degree of κ(V ) over k is the largest integer
n > 0 such that there exists an injection of k-algebras

k[x1, . . . , xn] ↪→ κ(V )

See section 11.1 of CA for details.
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Proof. Let {Vi} be a finite open covering of V and suppose that each Vi

is an affine variety.

The function field of Vi is isomorphic to the function field of V as a
k-algebra.

On the other hand, we have dim(V ) = supi dim(Vi )) by sheet 2.

Hence it is sufficient to show that the transcendence degree of κ(Vi ) over
k is equal to dim(Vi ) for all i .

So we may suppose without restriction of generality that V is affine. In
that case, the statement is a consequence of Lemma 1.37, Lemma 1.44
and Cor. 11.28 in CA.
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Proposition 1.46

Let a : V →W be a dominant morphism of irreducible subvarieties.

Then a∗,rat : κ(W )→ κ(V ) is an isomorphism iff there exist open
subvarieties

V0 ⊆ V

and
W0 ⊆W

such that a(V0) ⊆W0 and such that the induced morphism

a|V0 : V0 →W0

is an isomorphism.
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Proof. The ⇐ direction of the equivalence is clear so we only have to
establish the ⇒ direction.

Let W00 ⊆W be an open affine subvariety and let V00 be an open affine
subvariety of a−1(W0).

We claim that the map V00 →W00 induced by a is also dominant.

To prove this claim, suppose for contradiction that the map V00 →W00 is
not dominant.

Then there is a non empty subset O of W00 such that O ⊆W00\a(V00).
Hence a−1(O) ∩ V00 = ∅.
Now a−1(O) 6= ∅ since a is dominant, so this contradicts the irreducibility
of V .

We have thus established the claim.

Since the inclusions V00 → V and W00 →W induce isomorphisms of
function fields, we may thus assume without restriction of generality that
V and W are affine to begin with.

In view of Lemma 1.44 and sheet 2, it is thus sufficient to prove the
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Let φ : A→ B be a homomorphism of finitely generated integral
k-algebras.

Suppose that Spm(φ)(Spm(B)) is dense in Spm(A) and suppose that the
induced map

Frac(φ) : Frac(A)→ Frac(B)

is an isomorphism.

Then there is an element f ∈ A such that the induced map

A[f −1]→ B[φ(f )−1]

is an isomorphism.
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To prove this assertion, note that by Sheet 1 we already know that under
the given assumptions, φ must be injective.

Note also that since we have a commutative diagram

Frac(A)
Frac(φ)

// Frac(B)

A

OO

φ
// B

OO

all whose maps are injective, the induced map A[f −1]→ B[φ(f )−1] is
injective for any choice of f ∈ A\{0}.
Thus we only have to show that there is f ∈ A\{0} such that the induced
map A[f −1]→ B[φ(f )−1] is surjective.
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Now let b1, . . . , bl be generators of B as a k-algebra.

Let a1
c1
, . . . , alcl ∈ Frac(A) such that

bi
1

=
φ(ai )

φ(ci )
=: Frac(φ)(

ai
ci

)

for all i ∈ {1, . . . , l}.
Let f :=

∏
i ci .

Then bi
1 = Frac(φ)(ai

∏
j 6=i cj )

f ).

Hence the image of
A[f −1]→ B[φ(f )−1]

contains bi
1 for all i ∈ {1, . . . , l} and also contains

1

φ(f )
= Frac(φ)(

1

f
).

Since B[φ(f )−1] is generated as a k-algebra by 1
φ(f ) and by the elements bi

1

(use Lemma 5.3 in CA), we see that A[f −1]→ B[φ(f )−1] is surjective.
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If V and W are irreducible varieties, and V0 ⊆ V and W0 ⊆W are open
subvarieties such that V0 'W0, we shall say that V and W are birational,
or birationally isomorphic.

A birational map from V to W is a rational map from V to W which has
a representative f : O →W , such that f (O) is open and such that the
induced map O → f (O) is an isomorphism.

A birational morphism from V to W is a morphism V →W which induces
a birational map.

Proposition 1.46 implies that a dominant rational map ρ ∈ Ratdom(V ,W )
is birational iff a∗,rat : κ(W )→ κ(V ) is bijective.
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Proposition 1.47

Let V ,W be irreducible varieties.

Let κ(W ) ↪→ κ(V ) be a field extension compatible with the k-algebra
structures.

Then there is an open subvariety V0 of V and a dominant morphism

a : V0 →W

such that the extension

a∗,rat : κ(W )→ κ(V0)

is isomorphic to
κ(W ) ↪→ κ(V )

as a κ(W )-extension.
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Proof. We may suppose without restriction of generality that V and W
are affine varieties.

Let B (resp. A) be the coordinate ring of V (resp. W ).

Let ι : Frac(A) ' κ(W ) ↪→ κ(V ) ' Frac(B) be the given field extension.

We claim that there is an g ∈ B\{0} such that

ι(A) ⊆ B[g−1] ⊆ Frac(B).

To prove this, let a1, . . . , al be generators of A as a k-algebra.

For all i ∈ {1, . . . , l} let bi , ci ∈ B be such that bi/ci = ι(ai/1).

Let g :=
∏

i ci .

We then have ι(ai/1) ∈ B[g−1] and thus ι(A) ⊆ B[g−1], proving the
claim.

118 / 205



Now let V0 be the open affine subvariety associated with B[g−1].

Let
ι0 : A→ B[g−1]

be the map induced by ι and the natural map from A to Frac(A).

Since the map ι0 is injective, it induces a dominant map V0 →W by
Sheet 1.

Hence V0 and the map V0 →W satisfy the requirements of the
proposition.
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Finally, note the following.

Let V and W be irreducible varieties.

Consider the map

Ratdom(V ,W )→ homomorphisms of k-algebras κ(W )→ κ(V ) (∗)

which sends a ∈ Ratdom(V ,W ) to a∗,rat : κ(W )→ κ(V ).

Proposition 1.47 implies that this map is surjective.

On the other hand we have

Lemma 1.48

The map (∗) is injective.
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Proof. Let a1, a2 ∈ Ratdom(V ,W ) and suppose that a∗,rat
1 = a∗,rat

2 . We
have to show that a1 = a2.

We may assume that both V and W are affine and that a1 (resp. a2) is
represented by a morphism. Let α1 : V →W (resp. α2 : V →W ) a
morphism representing a1 (resp. a2).

Now let B (resp. A) be the coordinate ring of V (resp. W ).

Let
ι : Frac(A) ' κ(W ) ↪→ κ(V ) ' Frac(B)

be the field extension given by a∗,rat
1 = a∗,rat

2 . We have by construction a
commutative diagram

Frac(A)
ι // Frac(B)

A

OO

α∗i // B

OO

for i ∈ {1, 2}. Since the vertical maps are injective and a∗,rat
1 = a∗,rat

2 , we
thus have α∗1 = α∗2.
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In view of the last lemma and the comment preceding it, we thus see that

there is a one-to-one correspondence between dominant rational maps
from V to W and κ(W )-algebra structures on the field κ(V ).

We shall from now on often write a∗ for a∗,rat when V and W are
irreducible varieties and a ∈ Rat(V ,W ).

This is justified by the proof of Lemma 1.48.
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Products

We wish to endow the cartesian product of two varieties with the structure
of a variety.

We shall do this for quasi-projective varieties.

Let V and W be varieties.

A product of V and W is a triple (V
∏

W , πV , πW ), where V
∏

W is a
variety and

πV : V
∏

W → V

and
πW : V

∏
W →W

are morphisms of varieties.

This triple is required to have the following property (PROD).

(PROD) If X is a variety and a : X → V and b : X →W are morphisms
of varieties, then there is a unique morphism of varieties

a
∏

b : X → V
∏

W

such that
πV ◦ (a

∏
b) = a

and
πW ◦ (a

∏
b) = b.
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Note that property (PROD) characterises the triple (V
∏

W , πV , πW )
uniquely up to unique isomorphism of triples.

This is an example of categorical product.

Note that if V and W are varieties, it is not clear a priori that they have a
product.

However, if the product of V and W exists, it is uniquely defined.

Abusing language, we shall often say that V
∏

W is the product of V and
W without writing the associated morphisms πV and πW .
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Theorem 1.49

Let m, n > 0. The product Pm(k)
∏

Pn(k) exists.

Before starting with the proof, we make a construction.

We shall consider the projective space Pmn+m+n. This is by definition the
set of lines generated by non zero vectors in

k(mn+m+n)+1=(m+1)(n+1).

We choose a basis bij for k(m+1)(n+1) where

i ∈ {0, . . . ,m}

and
j ∈ {0, . . . , n}.
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Let σ : Pm(k)× Pn(k)→ Pmn+m+n be the map given by the formula

σ(([X0, . . . ,Xm], [Y0, . . .Yn])) = [(XiYj)ij ]

where (·)ij means that we put (·) in the coordinate ij corresponding to bij .

We will write Zij for a variable quantity in the coordinate ij . We will write
zij for the homogenous variables of Pmn+m+n.

Lemma 1.50

The map σ is injective and σ(Pm(k)) is the closed subvariety of Pmn+m+n

given by the quadratic equations zijzrs = ziszrj .

Proof. See the notes.

The map σ is called the Segre embedding.

Its image is called the Segre variety.
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Proof. (of Theorem 1.49). Endow Pm(k)× Pn(k) with the variety
structure inherited from the Segre variety via the Segre embedding.

We will show that the variety Pm(k)× Pn(k), together with the natural
projections to the two factors, is a product.

We first show that the projections

π1 : Pm(k)× Pn(k)→ Pm(k)

and
π2 : Pm(k)× Pn(k)→ Pn(k)

are morphisms of varieties.

For any i0 ∈ {0, . . . ,m} and any j0 ∈ {0, . . . , n}, let Ui0j0 ⊆ Pmn+m+n be
the open subset of the elements [Zij ] such that Zi0j0 6= 0.

Let πi0j0,1 : Ui0j0 → Pm(k) be given by the formula

πi0j0,1([Zij ]) := [Z0j0 ,Z1j0 , . . . ,Zmj0 ]

By Sheet 2, this defines a morphism from Ui0j0 to Pm(k).
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Now suppose that

σ(([X0, . . . ,Xm], [Y0, . . .Yn])) = [(XiYj)ij ] ∈ Ui0j0

In other words, Xi0 ,Yj0 6= 0.

Then

πi0j0,1(σ(([X0, . . . ,Xm], [Y0, . . .Yn])))

= πi0j0,1([(XiYj)ij ]) = [X0Yj0 ,X1Yj0 , . . . ,XmYj0 ]

= [X0,X1, . . . ,Xm] = π1(([X0, . . . ,Xm], [Y0, . . .Yn]))

Hence π1 is a morphism on the open subset σ−1(Ui0j0) of Pm(k)× Pn(k).

Now if we vary the indices i0 and j0, the open subsets σ−1(Ui0j0) cover all
of Pm(k)× Pn(k) and hence π1 is a morphism.

Similarly π2 is a morphism.
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Choosing πPm(k) := π1 and πPn(k) := π2, we shall now verify (PROD).

So let X be a variety and a : X → Pm(k) and b : X → Pn(k) be
morphisms of varieties.

We have to show that there is a unique morphism of varieties

c : X → Pm(k)× Pn(k)

such that π1 ◦ c = a and π2 ◦ c = b.

Now note that the set Pm(k)× Pn(k) is the cartesian product of the sets
Pm(k) and Pn(k).

Hence, if the morphism c exists, it must be given by the formula

c(x) = (a(x), b(x))

for all x ∈ X .

Hence we only have to verify that c is a morphism of varieties.
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Since by the definition of a Topskf, a morphism is a morphism iff it is
every locally a morphism, we may assume that X is affine and that

a(X ) ⊆ UPm(k),i0

and
b(X ) ⊆ UPn(k),j0

for some indices i0 and j0.

So let us suppose that X is associated with an algebraic set V ⊆ kt .

The map a is then the restriction to V of a map kt → UPm(k),i0 of the form

v̄ ∈ kt 7→ [P0(v̄), . . . ,Pi0−1(v̄), 1,Pi0+1(v̄), . . .Pm(v̄)]

where the Ph are polynomials in the entries v1, . . . , vt of the vector v̄ .

Similarly, the map b is the restriction to V of a map kt → UPn(k),j0 of the
form

v̄ ∈ kt 7→ [Q0(v̄), . . . ,Qj0−1(v̄), 1,Qj0+1(v̄), . . .Qn(v̄)]

where the Pl are polynomials in the entries v1, . . . , vt of the vector v̄ .
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We now compute
σ(c(v̄)) = [(Pi (v̄)Qj(v̄))ij ]

and since Pi0(v̄)Qj0(v̄)) = 1, we see that σ ◦ c factors through a morphism
V → Ui0j0 and in particular is a morphism from V to Pmn+m+n.

Applying Lemma 1.28, we conclude that the morphism c is a morphism of
varieties.

In the proof above, we have shown that Pm(k)
∏

Pn(k) can be realised as
the Cartesian product Pm(k)× Pn(k) endowed with a certain variety
structure.

Furthermore, the projections πPm(k) and πPm(k) are then simply the
ordinary projections on the two factors.

We shall thus often write Pm(k)× Pn(k) instead of Pm(k)
∏

Pn(k).
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Lemma 1.51

Let C1 ⊆ Pm(k) (resp. V1 ⊆ Pm(k)) and C2 ⊆ Pn(k) (resp. V2 ⊆ Pn(k))
be closed (resp. open) subsets.

Then the Cartesian product C1 × C2 is closed in Pm(k)
∏

Pn(k) and the
Cartesian product V1 × V2 is open in Pm(k)

∏
Pn(k).

Proof. Note that the second statement is a consequence of the first,
because the complement of V1 × V2 is

(Pm(k)\V1)× Pn(k) ∪ Pm(k)× (Pn(k)\V2),

which is closed according to the first statement.

For the proof of the second statement, suppose that C1 (resp. C2) is
defined by homogenous polynomials P1(x0, . . . , xm), . . . ,Pa(x0, . . . , xm)
(resp. Q1(y0, . . . , yn), . . . ,Qb(y0, . . . , yn)). Then we have

σ(C1 × C2) =
⋂

i=0,...,m j=0,...,n

Z
(
P1(z0j , . . . , zmj), . . . ,Pa(z0j , . . . , zmj),

Q1(zi0, . . . , zin), . . . ,Qa(zi0, . . . , zin))
)⋂

σ(Pm(k)× Pn(k))

and thus C1 × C2 is closed in Pm(k)
∏

Pn(k). 132 / 205



Corollary 1.52

Let V and W be two quasi-projective varieties.

Then the product V
∏

W exists.

Proof. By assumption, there are integers m, n > 0 and open subvarieties
O1 ⊆ Pm(k) and O2 ⊆ Pm(k) such that V is isomorphic to a closed
subvariety of O1 and W is isomorphic to a closed subvariety of O2.

Let C1 ⊆ Pm(k) and C2 ⊆ Pn(k) be closed subsets such that C1 ∩O1 = V
and C2 ∩ O2 = W .

We then have
V ×W = (C1 × C2) ∩ (O1 × O2)

and hence V ×W is closed in the open set O1 × O2 by Lemma 1.51.

We endow the set V ×W with the structure of variety which comes from
its inclusion into O1 × O2 as a closed subset.

We now claim that V ×W , together with the projections on the two
factors, is a product of V and W .
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To see this, let X be a variety and let a : X → V , b : X →W be two
morphisms of varieties.

Since the set V ×W is the Cartesian product of V and W , we see as
before that if the morphism a

∏
b exists, it must be given by the unique

map
a× b : X → V ×W

sending x ∈ X to (a(x), b(x)).

So we only have to verify that this map is a morphism. But this follows
from Theorem 1.49.
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An outcome of the proof of Corollary 1.52 is the following.

Let m, n > 0 and let O1 ⊆ Pm(k) and O2 ⊆ Pn(k) be open subvarieties.

Suppose that V is a closed subvariety of O1 and that W is a closed
subvariety of O2.

Then O1 × O2 is open in Pm(k)× Pn(k), the Cartesian product V ×W is
closed in O1×O2 and the product of V and W is the set V ×W endowed
with the variety structure it inherits from O1 × O2 as a closed subvariety.

The projections πV and πW are then the ordinary projections on the two
factors.

Again, this justifies simply writing V ×W instead of V
∏

W .
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Corollary 1.53

Let V1,V2 be quasi-projective varieties.

Let C1 ⊆ V1 and C2 ⊆ V2 be closed subsets.

Let U1 ⊆ V1 and U2 ⊆ V2 be open subsets.

Then the set theoretic product C1 × C2 (resp. the set theoretic product
U1 × U2) is closed (resp. open) in V ×W = V

∏
W .

If C1 × C2 (resp. U1 × U2) is endowed with its structure of closed (resp.
open) subvariety of V1

∏
V2 and with the natural projection maps on the

two factors, then C1 × C2 (resp. U1 ×U2) is a product of C1 and C2 (resp.
U1 and U2).
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The next lemma is needed for the following proposition.

Lemma 1.54

Let I ⊆ k[x1, . . . , xn] (resp. J ⊆ k[y1, . . . , yt ]) be an ideal.

Let Ī (resp. J̄) be the ideal generated by I (resp. J) in
k[x1, . . . , xn, y1, . . . , yt ].

If I and J are radical (resp. prime) then Ī + J̄ is radical (resp. prime).

Proof. See the notes. This is an exercise in Commutative Algebra.

Proposition 1.55

Let V and W be irreducible quasi-projective varieties.

Then V ×W = V
∏

W is also irreducible.
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Proof. We first prove the result in the situation where V and W are
affine. So suppose that V ⊆ kn and W ⊆ kt are algebraic sets in kn and
kt , respectively.

By Sheet 3, we know that the subset V ×W of kn × kt = kn+t is an
algebraic subset in kn+t and is a product of V and W .

So we have to show that V ×W is irreducible, when endowed with the
topology induced from kn+t .

Write k[x1, . . . , xn] for the coordinate ring of kn and k[y1, . . . , yt ] for the
coordinate ring of kt .

Let
Ī(V ) = I(V ) · k[x1, . . . , xn, y1, . . . , yt ]

and
Ī(W ) = I(W ) · k[x1, . . . , xn, y1, . . . , yt ].

By construction we have Z(Ī(V ) + Ī(W )) = V ×W .

Furthermore, by Lemma 1.54 the ideal Ī(V ) + Ī(W ) is prime.

Hence I(V ×W ) = Ī(V ) + Ī(W ) and thus V ×W is irreducible.
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Now suppose that V and W are quasi-projective.

Suppose for contradiction that V ×W is not irreducible.

Let T1, . . . ,Tl be the irreducible components of V ×W .

By assumption, we have l > 2. Let (v1,w1) ∈ T1 and (v2,w2) ∈ T2.

Let Uv1 be an open affine neighbourhood of v1 in V and let Uw1 be an
open affine neighbourhood of w1 in W . Define Uv2 and Uw2 similarly.

Then we have (v1,w1) ∈ Uv1 × Uw1 and (v2,w2) ∈ Uv2 × Uw2 .

Now from the first part and Lemma 1.53, we know that Uv1 × Uw1 and
Uv2 × Uw2 are open irreducible subsets of V ×W .

Hence Uv1 × Uw1 ⊆ T1 and Uv2 × Uw2 ⊆ T2.

Also, we have Uv1 × Uw1 ∩ Uv2 × Uw2 = ∅, for otherwise T1\(T1 ∩ T2) is
not dense in T1.

However, since V and W are irreducible there is a point zv ∈ Uv1 ∩ Uv2

and a point zw ∈ Uw1 ∩ Uw2 .

We have (zv , zw ) ∈ Uv1 × Uw1 ∩ Uv2 × Uw2 , which is a contradiction. So
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Proposition 1.56

Let V and W be irreducible quasi-projective varieties. Then

dim(V ×W ) = dim(V ) + dim(W ).

Proof. Skipped. See the notes. This uses Noether’s normalisation lemma
to reduce the statement to the case V = Kn and W = kt .

We end with the following important remark.

One can show that for any varieties V , W the product V
∏

W exists.

The proof uses different methods. It proceeds roughly as follows.

One covers V and W with open affine varieties Vi and Wj , respectively. It
can be shown using commutative algebra that the products Vi

∏
Wj exist

(see Sheet 3).

One then constructs the product V
∏

W by glueing the varieties Vi
∏

Wj .

The above construction of the product of quasi-projective varieties
bypasses the need for such a cumbersome glueing procedure. 140 / 205



Intersections in affine and projective space

The following proposition is the key to the proof of the projective
dimension theorem, which follows it.

Proposition 1.57 (affine dimension theorem)

Let n > 0 and let V ,W ⊆ kn be irreducible algebraic sets.

Then every irreducible component of V ∩W has dimension
> dim(V ) + dim(W )− n.
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Proof. Note that the Cartesian product V ×W ⊆ k2n is closed and is a
product of V and W (see Sheet 3). Let

∆ := {(a1, . . . , an, a1, . . . , an) | a1, . . . , an ∈ k}

be the diagonal of k2n. Note that we have

∆ = Z(x1 − y1, x2 − y2, . . . , xn − yn)

where we write C(k2n) = k[x1, . . . , xn, y1, . . . , yn]. We have a k-algebra
map

φ : k[x1, . . . , xn, y1, . . . , yn]/(x1 − y1, x2 − y2, . . . , xn − yn)→ k[z1, . . . , zn]

such that φ(xi ) = φ(yi ) = zi for all i ∈ {1, . . . , n}. The map φ has an
inverse given by the map

zi 7→ xi (mod (x1 − y1, x2 − y2, . . . , xn − yn)).
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In particular Spm(φ) : kn → ∆ is an isomorphism of algebraic sets.

By construction, we have

Spm(φ)−1(V ×W ∩∆) = V ∩W .

Thus we only have to prove that every irreducible component of
V ×W ∩∆ has dimension > dim(V ) + dim(W )− n.

Now by construction we have

V ×W ∩∆ = Z(x1 − y1) ∩ Z(x2 − y2) ∩ · · · ∩ Z(xn − yn) ∩ V ×W .

Applying Theorem 1.43, we see that for any irreducible component C of
V ×W ∩∆ we have

cod(C ,V ×W ) 6 n

and by Corollary 1.42, Proposition 1.55 and Proposition 1.56, this
translates as

dim(V ×W )− dim(C ) = dim(V ) + dim(W )− dim(C ) 6 n

which is equivalent to the conclusion of the proposition.
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Proposition 1.58 (projective dimension theorem)

Let n > 0 and let V ,W ⊆ Pn(k) be closed irreducible subvarieties.

Then every irreducible component of V ∩W has dimension
> dim(V ) + dim(W )− n.

Furthermore, we have V ∩W 6= ∅ if dim(V ) + dim(W )− n > 0.

Proof. We first prove the first assertion. Let C be an irreducible
component of V ∩W .

Let Ui be a standard coordinate chart of Pn(k) such that C ∩ Ui 6= ∅.
We claim that C ∩ Ui is an irreducible component of (V ∩W ) ∩ Ui .

To see this, note that since C ∩ Ui is irreducible, there is an irreducible
component T of (V ∩W ) ∩ Ui , which contains C ∩ Ui .

Write T̄ for the closure of T in V ∩W .

Then T̄ is also irreducible by Sheet 2 and hence T̄ ⊆ C .

On the other hand, by construction, we also have T̄ ⊇ C so that C = T̄ .
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Hence T = T̄ ∩Ui = C ∩Ui so that C ∩Ui is an irreducible component of
V ∩W .

Now by Proposition 1.57, we have

dim(C ∩ Ui ) > dim(V ∩ Ui ) + dim(W ∩ Ui )− n

and by Proposition 1.45, we have dim(V ∩ Ui ) = dim(V ),
dim(W ∩ Ui ) = dim(W ) and dim(C ∩ Ui ) = dim(C ).

This proves the first assertion.

For the second assertion, consider again the map q : kn+1\{0} → Pn(k)
such that q(v̄) = [v̄ ] for all v̄ ∈ kn+1\{0}. Let

V0 ( V1 ( · · · ( Vdim(V ) = V

be an ascending sequence of irreducible closed subsets of V , which is of
maximal length.
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The closed subvarieties q−1(Vi ) of kn+1\{0} are all irreducible by Sheet 3.

Write q−1(Vi ) for the closure of q−1(Vi ) in kn+1.

The closed subsets q−1(Vi ) of kn+1 are then all irreducible by Sheet 3 and
Sheet 2. We thus get an ascending sequence

q−1(V0) ( q−1(V1) ( · · · ( q−1(Vdim(V )) = q−1(V )

of closed irreducible subsets of kn+1.

Now note that by maximality the variety V0 is a point.

We thus have

q−1(V0) = {λv̄0 |λ ∈ k} ∩ (kn+1\{0})

for some v̄0 ∈ kn+1\{0}.
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We claim that the closure of L∗v̄0
= {λv̄0 |λ ∈ k} ∩ (kn+1\{0}) in kn+1 is

Lv̄0 = {λv̄0 |λ ∈ k}.
To see this, note that Lv̄0 is closed in kn+1 and that there is an
isomorphismLv̄0 ' k sending 0 ∈ kn+1 to 0 ∈ k . Since the closure of
k\{0} in k is k , we see that the closure of L∗v̄0

in kn+1 is Lv̄0 .

We thus obtain an ascending sequence of irreducible closet subsets

{0} ( {λv̄0 |λ ∈ k} = q−1(V0) ( q−1(V1) ( · · · ( q−1(Vdim(V )) = q−1(V )

and we thus see that q−1(V ) has dimension > dim(V ) + 1.

Similarly, q−1(W ) is irreducible in kn+1 and has dimension > dim(W ) + 1.

We conclude from Proposition 1.57 that every irreducible component of
q−1(V ) ∩ q−1(W ) has dimension larger or equal to

dim(q−1(V )) + dim(q−1(W ))− (n + 1)

> dim(V ) + dim(W ) + 2− (n + 1)

= dim(V ) + dim(W )− n + 1.
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Hence, if dim(V ) + dim(W )− n > 0 then every irreducible component of

q−1(V ) ∩ q−1(W )

has dimension > 1.

On the other hand, both q−1(V ) and q−1(W ) contain the point 0, so
q−1(V ) ∩ q−1(W ) is not empty.

We conclude that q−1(V ) ∩ q−1(W ) contains points other than 0, or in
other words that

q−1(V ) ∩ q−1(W ) 6= ∅.

This implies that V ∩W 6= ∅.
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Corollary 1.59

Let n > 0 and let V ⊆ Pn(k) be a closed irreducible subset.

Let H be a closed irreducible subset such that cod(H,Pn(k)) = 1.

If dim(V ) > 1 then H ∩ C 6= ∅.

Proof. Clear.
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Separatedness and completeness

Separatedness is an algebraic analogue of the Hausdorff property in
topology. Completeness is an algebraic analogue of the notion of
compactness in topology.

If X is a quasi-projective variety. Write δX : X → X
∏

X for the map
IdX

∏
IdX .

We shall write ∆X ⊆ X
∏

X for the image of δX .

We call it the diagonal in X
∏

X .

Definition 1.60

Let X be a quasi-projective variety. We say that X is separated if the
diagonal in X

∏
X is closed.

Note that if ∆X is closed in X
∏

X then δX induces an isomorphism
between X and ∆X , where ∆X is seen as a closed subvariety of X

∏
X .

Indeed, the map δX induces a morphism X → ∆X by Lemma 1.28 and this
map has an inverse, given by the projection on the first factor.
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To understand this definition, note that if T is a topological space and
T × T is endowed with the product topology, then T is Hausdorff iff the
diagonal ∆T ⊆ T × T is closed.

Indeed, let a, b ∈ T and a 6= b. Then (a, b) 6∈ ∆T .

If ∆T is closed then there are open subsets U,V ⊆ T such that
U × V ∩∆T = ∅ and such that (a, b) ∈ U × V .

In particular, a ∈ U, b ∈ V and U ∩ V = ∅.
So a and b have disjoint neighbourhoods.

On the other hand, if a and b have disjoint neighbourhoods U and V ,
respectively, then U × V ∩∆T = ∅ and (a, b) ∈ U × V .

So (T × T )\∆T is open, ie ∆T is closed.
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Lemma 1.61

Let X be a separated quasi-projective variety.

Let V be a closed (resp. open) subvariety of X .

Then V is separated.

Proof. Suppose that V is a closed subvariety of X .

The Cartesian product V × V ⊆ X × X is closed and represents the
product of V with itself as a closed subvariety of X × X (by Corollary
1.53).

On the other hand, we have ∆V = ∆X ∩V ×V so ∆V is closed in V ×V
since ∆X is closed.

In other words, V is separated.

The proof in the situation where V is an open subvariety of X is
similar.
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Lemma 1.62

Affine varieties are separated.

Proof. We first prove that the varieties kt are separated for t > 0.

Recall that by Sheet 3, kt
∏

kt ' k2t .

Write C(k2t) = k[x1, . . . , xt , y1, . . . , yt ]. Now note that

∆kt = Z(x1 − y1, x2 − y2, . . . , xt − yt).

Hence ∆kt is closed.

The general case now follows from Lemma 1.61.
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Lemma 1.63

Let X be a quasi-projective variety.

Suppose that for any two points a, b ∈ X there exists an open affine
subvariety U ⊆ X such that a, b ∈ U.

Then X is separated.

Proof. Let (a, b) ∈ X × X\∆X (ie a, b ∈ X and a 6= b).

Let Ua,b be an open affine subvariety of X such that a, b ∈ Ua,b. Then
(a, b) ∈ Ua,b × Ua,b.

Furthermore,
∆Ua,b

= ∆X ∩ (Ua,b × Ua,b)

and the Cartesian product Ua,b ×Ua,b is a product of Ua,b with itself as an
open subvariety of X × X .

Hence ∆Ua,b
is closed as a subset of Ua,b × Ua,b by Lemma 1.62.

In particular, (a, b) is contained in an open subset of X × X , which is
disjoint from (a, b). Since (a, b) ∈ X × X\∆X was arbitrary, we conclude
that X × X\∆X is open, ie ∆X is closed.
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Proposition 1.64

Any quasi-projective variety is separated.

Proof. Suppose first that X = Pn(k) for some n > 0.

Then X is separated by Lemma 1.63 and Sheet 2.

The general case follows from this and Lemma 1.61.
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Proposition-Definition 1.65 (The graph of a morphism)

Let X and Y be quasi-projective varieties.

Let γ : X → Y be a morphism. Let

Γγ := {(x , γ(x)) | x ∈ X} ⊆ X × Y

be the graph of γ.

Then Γγ is closed in X × Y .

Proof. Let γ̃ : X × Y → Y × Y be the morphism such that

γ̃(x , y) := (γ(x), y)

for all (x , y) ∈ X × Y . We have

Γγ = γ̃−1(∆Y )

and so Γγ is closed since ∆Y is closed by Proposition 1.64.
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Definition 1.66

Let X be a quasi-projective variety.

We say that X is complete if for any quasi-projective variety B and any
closed subset C ⊆ X × B, the set πB(C ) is closed.

Here πB : X × B → B is the projection on the second factor.

Lemma 1.67

Let X be a complete quasi-projective variety.

Then any closed subvariety of X is also complete.

Proof. Unroll the definitions and use Corollary 1.53.
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Theorem 1.68

Projective varieties are complete.

Proof. By Lemma 1.67, we only need to prove this for X = Pn(k).

So let B be a quasi-projective variety and let {Bi} be an open affine
covering of B.

Let C ⊆ Pb(k)× B be a closed subset.

By Corollary 1.53, the Cartesian product Pb(k)× Bi is open in Pb(k)× B
and if Pb(k)× Bi is viewed as an open subvariety of Pb(k)× B it is a
product of Pn(k) and Bi .

Now πB(C ) is closed iff πB(C ) ∩ Bi is closed in Bi for all i and we have
πB(C ) ∩ Bi = πBi

(C ∩ (Pn(k)× Bi )).

Hence we may suppose from the start that B is affine.
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In that case B is a closed subvariety of kt for some t > 0.

By Corollary 1.53 again, the subset Pn(k)× B ⊆ Pn(k)× kt is closed and
is a product of Pn(k) and B if Pn(k)× B is viewed as a closed subvariety
of Pn(k)× kt .

Furthermore, πB(C ) is closed in B iff it is closed in kt .

Some we might suppose that B = kt .

Now let i ∈ {0, . . . , n} and let Ui ⊆ Pn(k) be the well-known coordinate
chart.

Recall that there is an isomorphism ui : kn → Ui given by the formula

ui (〈X0, . . . , X̌i , . . . ,Xn〉) = [X0, . . . ,Xi−1, 1,Xi+1, . . . ,Xn] ∈ Pn(k).

By Sheet 3, the variety Ui × kt is affine and we have

C(kn × kt) = k[x0, . . . , x̌i , . . . , xn, y1, . . . , yt ]

where the xj are the coordinates of kn and the yj are the coordinates of kt .
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Write

φi : k[x0, . . . xn, y1, . . . , yt ]→ k[x0, . . . , x̌i , . . . , xn, y1, . . . , yt ]

for the map of k-algebras such that φ(xj) = xj for all j 6= i , φ(xi ) = 1 and
φ(yj) = yj for all j .

Let Ii := I((ui × Idkt )−1(C )) ⊆ k[x0, . . . , x̌i , . . . , xn, y1, . . . , yt ].

Note the following. Suppose that H ∈ k[x0, . . . xn, y1, . . . , yt ] and that H is
homogenous in the x-variables. Then H ∈ φ−1

i (Ii ) iff

H(X0, . . . ,Xn,Y1, . . . ,Yt) = 0

for all
[X0, . . . ,Xn]× 〈Y1, . . . ,Yt〉 ∈ C ∩ (Ui × kt).

This follows directly from the definitions.

In particular a polynomial H ∈ k[x0, . . . xn, y1, . . . , yt ] which is homogenous
in the x-variables lies in ∩iφ−1

i (Ii ) iff H(X0, . . . ,Xn,Y1, . . . ,Yt) = 0 for all

[X0, . . . ,Xn]× 〈Y1, . . . ,Yt〉 ∈ C .
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For any N > 0, write SN ⊆ k[x0, . . . xn, y1, . . . , yt ] for the polynomials,
which are homogenous in the x-variable and which are of degree N in the
x-variable.

This gives k[x0, . . . xn, y1, . . . , yt ] the structure of a graded ring with
S0 = k[y1, . . . , yt ].

In particular SN is a S0 = k[y1, . . . , yt ]-submodule of
k[x0, . . . xn, y1, . . . , yt ].

We also write AN = SN ∩ (∩iφ−1
i (Ii )).

It follows from the definitions that ⊕l≥0Al is then a graded ideal in (=
graded sub-k[x0, . . . xn, y1, . . . , yt ]-module of) k[x0, . . . xn, y1, . . . , yt ].

In particular, AN is a S0 = k[y1, . . . , yt ]-submodule of SN .
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Now let w̄ = 〈W1, . . .Wt〉 ∈ kt and suppose that w̄ 6∈ πB(C ).

Let m̄ = (y1 −W1, . . . , yt −Wt) ⊆ k[y1, . . . , yt ] be the maximal ideal
associated with w̄ . Let i ∈ {0, . . . , n}.
By assumption, we have

Ii + m · k[x0, . . . , x̌i , . . . , xn, y1, . . . , yt ] = k[x0, . . . , x̌i , . . . , xn, y1, . . . , yt ]

(since the zero set of m · k[x0, . . . , x̌i , . . . , xn, y1, . . . , yt ] is kn × {w} and
by assumption u−1

i (C ) = Z(Ii ), which does not meet kn × {w}).

In particular, there is a polynomial Pi ∈ Ii and polynomials Mil ∈ m and
Gil ∈ k[x0, . . . , x̌i , . . . , xn, y1, . . . , yt ] such that

1 = Pi +
∑
l

Mil · Gil
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Hence, for any N > 0 we have

xNi = x
N−degx (Pi )
i

(
x

degx (Pi )
i Pi (x0/xi , . . . , x̌i , . . . , xn/xi , y1, . . . , yt)

)
+

∑
l

Mil(y1, . . . , yt)[
x
N−degx (Gil )
i

(
x

degx (Gil )
i Gil(x0/xi , . . . , x̌i , . . . , xn/xi , y1, . . . , yt)

)]
Now note that the polynomial

x
degx (Pi )
i Pi (x0/xi , . . . , x̌i , . . . , xn/xi , y1, . . . , yt)

is by construction homogenous in the x-variable and of x-degree degx(Pi ).

The same polynomial also lies in φ−1
i (Ii ) since

φi (x
degx (Pi )
i Pi (x0/xi , . . . , x̌i , . . . , xn/xi , y1, . . . , yt)) = Pi .
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Furthermore, by definition, the polynomial

x
degx (Pi )+1
i Pi (x0/xi , . . . , x̌i , . . . , xn/xi , y1, . . . , yt)

vanishes when evaluated on 〈X0, . . . ,Xn,Y1, . . . ,Yt〉 whenever

[X0, . . . ,Xn]× 〈Y1, . . . ,Yt〉 ∈ C

(remember that xi vanishes on (Pn(k)\Ui )× kt).

Hence

x
degx (Pi )+1
i Pi (x0/xi , . . . , x̌i , . . . , xn/xi , y1, . . . , yt) ∈ Adegx (Pi )+1

by the above discussion.

Similarly, the polynomial x
degx (Gil )
i Gil(x0/xi , . . . , x̌i , . . . , xn/xi , y1, . . . , yt) is

also homogenous in the x-variable and is of x-degree degx(Gil).
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So if N is larger than degx(Pi ) + 1 and also larger than degx(Gil) for all l ,
we have an equality

xNi = Ti +
∑
l

MilHil

where Ti ∈ AN and Hil ∈ SN .

Since there is only a finite number of indices i , there is thus a natural
number N0 such that

xNi ∈ AN + mSN

for all N > N0 and all i ∈ {0, . . . , n}.
Now note that if N1 is sufficiently large, any monomial of degree > N1 in
the xi becomes divisible by xN0

j for some xj .
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So if N1 is sufficiently large then for all N > N1 we have

SN ⊆ (⊕s>0Ss)(AN0 + mSN0)

Since ⊕s>0As is a graded ideal, we then have

SN ⊆ SN−N0(AN0 + mSN0) ⊆ AN + mSN .

In particular, we have (SN/AN) = m(SN/AN) where the quotient SN/AN

is quotient of k[y1, . . . , yt ]-modules.

We conclude from the generalised form of Nakayama’s lemma (see Q4 in
Sheet 1 of CA) that there is Q ∈ 1 + m such that Q · (SN/AN) = 0.

In particular Q · xNi ∈ AN for all i ∈ {0, . . . , n}. In other words, for any i
we have

XN
i Q(X0, . . . ,Xn,Y1, . . . ,Yt) = XN

i Q(Y1, . . . ,Yt) = 0

for all [X0, . . . ,Xn]× 〈Y1, . . . ,Yt〉 ∈ C (see the discussion above).
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In particular, whenever Q(Y1, . . . ,Yt) 6= 0 we have

C ∩ (Ui × {〈Y1, . . . ,Yt〉}) = ∅.

Since this holds for all i ∈ {0, . . . , n}, the set

C ∩ (Pn(k)× {〈Y1, . . . ,Yt〉})

is empty whenever Q(Y1, . . . ,Yt) 6= 0.

Said differently, if 〈Y1, . . . ,Yt〉 ∈ kt\Z(Q) then 〈Y1, . . . ,Yt〉 6∈ πB(C ).

Finally, we have Q(w̄) 6= 0 since Q ∈ 1 + m, so kt\Z(Q) is a
neighbourhood of w̄ .

Since w̄ ∈ kt\πB(C ) was arbitrary, we conclude that kt\πB(C ) is open, ie
πB(C ) is closed.
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Remark. Suppose given polynomials H1, . . . ,Hl ∈ k[x0, . . . , xn, y ].

Suppose that the Hj are homogenous in the variables xi . Let

C := {[X0, . . . ,Xn]×〈Y 〉 ∈ Pn(k)×k | ∀j ∈ {1, . . . , l} : Hj(X0, . . . ,Xn,Y ) = 0}.

It can easily be shown that C is a closed subset of Pn(k)× k .

By Theorem 1.68, the set

πk(C ) := {Y ∈ k | ∃[X0, . . . ,Xn] ∈ Pn(k) : ∀j : Hj(X0, . . . ,Xn,Y ) = 0}

is then closed. In other words, there is a unique polynomial Q(y) ∈ k[y ],
which is a product of distinct linear factors, and such that Q(y) = 0 iff
there is X0, . . . ,Xn ∈ kn+1\{0} such that

H1(X0, . . . ,Xn,Y ) = H2(X0, . . . ,Xn,Y ) = · · · = Hl(X0, . . . ,Xn,Y ) = 0.

This result is called the main theorem of elimination theory.

The polynomial Q(y) is called the resultant of the polynomials H1, . . . ,Hl .
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Corollary 1.69 (of Theorem 1.68)

Let X ,Y be quasi-projective varieties and suppose that X is complete.

Let φ : X → Y is a morphism.

Then φ(X ) is closed.

Proof. The image of φ(X ) is the projection of the graph Γφ ⊆ X × Y by
the projection to Y . Hence Proposition-Definition 1.65 implies the
result.

Proposition 1.70

A complete quasi-projective variety is projective.

Proof. Let X be a quasi-projective complete variety.

By definition, we may suppose that there is an open subvariety U of Pn(k)
such that X is a closed subvariety of U.

By Corollary 1.69, X is closed in Pn(k).

Hence, from the definition of subvarieties, X is a closed subvariety of
Pn(k). Hence X is projective.
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Lemma 1.71

Let X be an affine complete variety. Then X consists of a finite number of
points.

Proof. By Sheet 3, C(X ) is a finite dimensional k vector space.

In particular, C(X ) is finite over k .

We deduce from Prop. 8.12 in CA that C(X ) has only finitely maximal
ideals.

Hence X has only finitely many points by the discussion before Lemma
1.8.
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Smoothness

A variety is smooth if it has ”no kinks”.

For a curve C in the plane given by one equation f (x , y) = 0, this can
analysed by looking at its gradient grad(f ) = 〈 ∂∂x f ,

∂
∂y f 〉.

The curve will be smooth if grad(f ) does not vanish for any point of C .

The general definition has a similar flavour.

Definition 1.72

Let V ⊆ kn be an algebraic set.

Suppose that I(V ) = (P1, . . . ,Pt) ⊆ k[x1, . . . , xn]. Let v̄ ∈ V .

We say that V is nonsingular at v̄ if the matrix [( ∂
∂xj

Pi )(v̄)]ij has rank

n − cod({v},V ).
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Note that when C is a curve in the plane, we recover the definition given
above.

To make sense of this definition, we need to show that it does not depend
on the polynomials Pi .

In fact, we will show that the definition only depends on the coordinate
ring C(V ).

On the way to this result, we first make another definition.

Definition 1.73

Let R be a noetherian local ring with maximal ideal m and residue field
k0 := R/m.

We say that R is a regular local ring if dim(R) = dimk0 m/m
2.
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Note that with the notation of the last definition, we have
dim(R) = ht(m).

On the other hand, by Nakayama’s lemma (see Cor. 3.6 in CA), the ideal
m can be generated by dimk0 m/m

2 elements.

Hence by a corollary of Krull’s theorem (see CA Cor. 11.15), we have

dim(R) = ht(m) 6 dimk0 m/m
2.

The local ring R is regular iff this last inequality is an equality.

Proposition 1.74

Let V ⊆ kn be an algebraic set.

Then V is nonsingular at v̄ ∈ V iff the local ring OV ,v ' C(V )I({v̄}) is
regular.
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For the proof, we shall need the

Lemma 1.75

Let R be a ring and let m ⊆ R be a maximal ideal.

Let φ : R → Rm be the natural map of rings. Let n > 0.

Then the unique maximal ideal m of Rm is the ideal of Rm generated by
φ(m).

Furthermore, we have φ−1(mn) = mn and the map of R-modules induced
by φ

mn/mn+1 → mn/mn+1

is an isomorphism.

Note that the lemma is obviously false if m is not maximal (look eg at the
case n = 0).

Proof. (of Lemma 1.75) Skipped. See the notes.
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Proof. (of Proposition 1.74)

Let v̄ = 〈v1, . . . , vn〉 ∈ V ⊆ kn.

Suppose that I(V ) = (P1, . . . ,Pt).

Write
m := I({v̄}) = (x1 − v1, . . . , xn − vn)

be the maximal ideal of k[x1, . . . , xn] associated with v̄ .

Let n = m (mod I(V )) ⊆ C(V ) be the maximal ideal of C(V ) associated
with v̄ .

Define a map of k-vector space φ : m→ kn by the formula

φ(Q) = 〈( ∂

∂x1
Q)(v̄), . . . , (

∂

∂xn
Q)(v̄)〉.

Since m2 is generated by the elements (xi − vi )(xj − vj), we see that
φ(m2) = 0.

We thus obtain a k-linear map m/m2 → kn.
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This map is surjective because φ(xi − vi ) is the i-the element of the
standard basis of kn.

On the other hand, m/m2 is generated by n elements as a R/m = k-vector
space and so is of dimension 6 n.

Hence the map m/m2 → kn is an isomorphism of k-vector spaces.

Now the image (I(V ) + m2)/m2 of I(V ) ⊆ m in m/m2 is generated by
P1 (modm2), . . . ,Pt (modm2) as a R/m = k-vector space. Hence

dimk((I(V ) + m2)/m2) = dimk(φ(I(V )))

= rk


( ∂
∂x1

P1)(v̄) . . . ( ∂
∂xn

P1)(v̄)

( ∂
∂x1

P2)(v̄) . . . ( ∂
∂xn

P2)(v̄)
...

...
...

( ∂
∂x1

Pt)(v̄) . . . ( ∂
∂xn

Pt)(v̄)

 =: rk[(
∂

∂xj
Pi )(v̄)]ij .
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On the other hand, we have by construction a complex of R/m = k-vector
spaces

0→ (I(V ) + m2)/m2 → m/m2 → n/n2 → 0 (∗)

We claim that (∗) is exact.

The second arrow from the left is injective by definition and likewise it
follows from the definitions that the third arrow from the left is surjective.

So we only have to show that the complex is exact at m/m2.

To see this, suppose that P ∈ m and that P (mod I(V )) ∈ n2.

Since n2 = (m2 + I(V ))/I(V ), there is Q ∈ m2 + I(V ) such that

P (mod I(V )) = Q (mod I(V )).

We then have (P − Q) (mod I(V )) = 0, or in other words P − Q ∈ I(V ).

Hence P is the sum of an element of I(V ) and an element of m2.

This shows that (∗) is exact at m/m2 and is thus an exact complex.
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We conclude that

rk[(
∂

∂xj
Pi )(v̄)]ij + dimk(n/n2) = n. (2)

Now we have cod(V , {v̄}) = ht(n) = dim(C(V )I({v̄})) (see Lemma 11.2 in
CA).

Using Lemma 1.75, we see that the local ring C(V )I({v̄}) is regular iff

rk[(
∂

∂xj
Pi )(v̄)]ij = n − cod(V , {v̄}).

This proves the first assertion.

For the second assertion, note that if V is irreducible, we have

cod(V , {v̄}) = dim(V )

by Theorem 1.41 (note that a point has dimension 0).
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Remark. (1) Keep the notation of the proof of Proposition 1.74.

From the remark preceding the proposition, we have
dimk(n/n2) > cod(V , {v̄}) and so we always have

rk[(
∂

∂xj
Pi )(v̄)]ij = n − dimk(n/n2) 6 n − cod(V , {v̄})

even if V is singular at v̄ .

(2) Note that equation (2) gives an effective way to compute dimk(n/n2).

We also record the following lemma, which will be useful in calculations.

Lemma 1.76

Keep the assumptions and notation of Proposition 1.74.

Let Q1, . . .Qs ∈ I(V ).

Suppose that [( ∂
∂xj

Qi )(v̄)]ij has rank n − cod(V , {v}).

Then V is nonsingular at v̄ .
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This lemma will allow us to check nonsingularity in situations where it is
difficult to find generators of I(V ).

Proof. We use the notation of the proof of Proposition 1.74.

Let J ⊆ I(V ) be the ideal generated by Q1, . . . ,Qs .

It was shown in the proof of Proposition 1.74 that

rk[(
∂

∂xj
Qi )(v̄)]ij = dimk(φ(J))

and in particular that rk[( ∂
∂xj

Pi )(v̄)]ij = dimk(φ(I(V ))).

On the other hand, we have dimk(φ(I(V ))) > dimk(φ(J)) since
J ⊆ I(V ).

Hence by the remark preceding the lemma, we have

rk[(
∂

∂xj
Qi )(v̄)]ij 6 rk[(

∂

∂xj
Pi )(v̄)]ij 6 n − cod(V , {v̄}).

The assumptions of the lemma now imply that the two last inequalities are
equalities, hence the conclusion.
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Let now X be any variety.

We shall write Sing(X ) for the set of points x ∈ X such that the local ring
OX ,x is a regular local ring.

This clearly specialises to Definition 1.72 when X is an affine variety.

A variety X is nonsingular or smooth if Sing(X ) = ∅.

Proposition 1.77

Let X be a non empty irreducible variety.

Then the set Sing(X ) is closed and Sing(X ) 6= X .
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Let R be a UFD with fraction field K .

If
Q(x) = xm + rm−1x

m−1 + · · ·+ r0 ∈ R[x ],

we define the content cont(Q) to be the gcd of the coefficients of Q (the
gcd is only well-defined up to multiplication by a unit of R).

If Q(x) ∈ K [x ], we define the content of Q(x) to be cont(d · Q)/d , where
d ∈ R is such that d · Q(x) ∈ R[x ].

One can show that this last definition does not depend on the choice of d .

Moreover, one can show that cont(Q1 · Q2) = cont(Q1) · cont(Q2) for any
two Q1,Q2 ∈ K [x ]. Note that if Q(x) ∈ K [x ] and cont(Q) is a unit, then
Q(x) ∈ R[x ].

The all-important result concerning the content function is the

Lemma (generalisation of Gauss’s lemma). The irreducible elements of
R[x ] are the irreducible elements of R and the polynomials P(x) ∈ R[x ],
whose content is a unit and which are irreducible (and hence non
constant) in K [x ].
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Proposition 1.78

Let X be a non empty irreducible variety.

Then X is birational to an algebraic set V ⊆ kn such that
I(V ) ⊆ k[x1, . . . , xn] is prime and principal.

Proof. (of Proposition 1.78) We shall only prove this in the situation
where char(k) = 0. So suppose that char(k) = 0.

Restricting to an open affine subset of X , we may assume wlog that X is
an irreducible affine variety. Let K := Frac(C(X )) be the function field of
X .

Since the k-algebra C(X ) is finitely generated over k , the field K is finitely
generated as a field over k .

Let b1, . . . , bt ∈ K be a transcendence basis for K over k .

By definition, this means that the bi are algebraically independent over k
and that the field extension K |k(b1, . . . , bt) is algebraic.

Since char(k) = 0, the extension K |k(b1, . . . , bt) is a separable extension.
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K |k(b1, . . . , bt) is also a finite extension because K is finitely generated as
a field over k(b1, . . . , bt).

Hence the extension K |k(b1, . . . , bt) is a simple extension by the primitive
element theorem (see Galois theory) and so there is an element b ∈ K ,
such that K = k(b1, . . . , bt)(b) and an irreducible polynomial
Q(x) ∈ k(b1, . . . , bt)[x ] such that Q(b) = 0.

Now note that every element of k(b1, . . . , bt) can be written as quotient
c/d , where c, d ∈ k[b1, . . . , bt ].

Write
Q(x) = xm +

cm−1

dm−1
xm−1 + · · ·+ c1

d1
x +

c0

d0

where ci , di ∈ k[b1, . . . , bt ]. Let d =
∏

i di .

Consider the polynomial dQ ∈ k[b1, . . . , bt ][x ] and let

P := dQ/cont(dQ) ∈ k[b1, . . . , bt ][x ],

where cont(dQ) ∈ k[b1, . . . , bt ] is an arbitrary representative of the
content of dQ.
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By construction, the polynomial P(x) is irreducible in k(b1, . . . , bt)[x ] and
its content is a unit.

By the generalised Gauss lemma, P(x) is thus irreducible in
k[b1, . . . , bt ][x ].

Now let
φ : k[b1, . . . , bt ][x ]→ K

be the homomorphism of k-algebras sending the bi to themselves and x to
b.

The kernel ker(φ) is then a prime ideal (since the image of φ is a domain)
and by construction we have P(x) ∈ ker(φ).

Now the ideal (P) ⊆ k[b1, . . . , bt ][x ] is also prime, since P is irreducible.

Hence cod((P), k[b1, . . . , bt ][x ]) = 1 by Krull’s principal ideal theorem
(see Th. 11.13 in CA).

On the other hand, the fraction field of

Im(φ) = k[b1, . . . , bt , b] ' k[b1, . . . , bt ][x ]/ker(φ)

is the field K and K has transcendence degree t by assumption.
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Thus
dim(k[b1, . . . , bt ][x ]/ker(φ)) = t

by Corollary 11.28 in CA.

Using Theorem 1.41, we deduce that

cod(ker(φ), k[b1, . . . , bt ][x ]) = dim(k[b1, . . . , bt ][x ])− t = t + 1− t = 1.

Hence we must have ker(φ) = (P), for otherwise we would have
cod(ker(φ), k[b1, . . . , bt ][x ]) > 2.

So we conclude that k[b1, . . . , bt ][x ]/(P) ' k[b1, . . . , bt , b].

Now the bi are algebraically independent and thus the k-algebra
k[b1, . . . , bt ][x ] can be viewed as the coordinate ring of kt+1.

The ring k[b1, . . . , bt ][x ]/(P) is thus isomorphic to the coordinate ring of
an irreducible algebraic set V in kt+1, whose (prime) radical ideal is
generated by a single irreducible polynomial.

Since the function field of V is isomorphic to K as a K -algebra, it satisfies
the conclusion of the proposition (by Proposition 1.46).
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Proof. (of Proposition 1.77) We first show that Sing(X ) is closed.

Let {Ui} be an open affine covering of X . By Proposition 1.74, a point
x ∈ Ui is nonsingular in X iff it is nonsingular in Ui , ie we have
Sing(X ) ∩ Ui = Sing(Ui ).

On the other hand, the set Sing(X ) is closed iff Sing(X ) ∩ Ui is closed for
all i .

Hence we may assume that X is isomorphic to an algebraic set V ⊆ kn for
some n.

Let P1, . . . ,Pt be generators of I(V ) ⊆ k[x1, . . . , xn].

From the remark following the proof of Proposition 1.74, we have

Sing(V ) = {v̄ ∈ V | rk[(
∂

∂xj
Pi )(v̄)]ij < n − dim(V )}.
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Now recall that

rk[(
∂

∂xj
Pi )(v̄)]ij

= max{h ∈ N | there exists a h × h-submatrix M

in [(
∂

∂xj
Pi )(v̄)]ij such that det(M) 6= 0}

and hence

Sing(V ) = {v̄ ∈ V | det(M) = 0

for all the (n − dim(V ))× (n − dim(V ))-submatrices M

in [(
∂

∂xj
Pi )(v̄)]ij}

and hence Sing(V ) is the zero set of a set of polynomials and is thus
closed.
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We now prove that Sing(X ) 6= X .

Again, we only show this when char(k) = 0 (but the statement holds
without that assumption).

We may replace wlog X by any of its open subsets and so thanks to
Proposition 1.78 we may suppose that X is an algebraic set V ⊆ kn such
that I(V ) = (P), where P ∈ k[x1, . . . , xn] is an irreducible polynomial.

In this situation, we have to show that

Sing(V ) = {v̄ ∈ V | ( ∂

∂x1
P)(v̄) =

= (
∂

∂x2
P)(v̄) = · · · = (

∂

∂xn
P)(v̄) = 0} 6= V .
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Suppose for contradiction that Sing(V ) = V .

By construction, we have ∂
∂xi

P ∈ (P) for all i , since (P) is a prime ideal.

In other words, P| ∂∂xi P for all i .

Now let i0 be such that P has a monomial divisible by xi0 .

This exists since P is irreducible and in particular not constant. In that
case ∂

∂xi0
P 6= 0 (note that we use the fact that char(k) = 0 here) and

degxi0
(
∂

∂xi0
P) < degxi0

(P).

In particular, ∂
∂xi0

P is not divisible by P. This is a contradiction, so

Sing(V ) 6= V .
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Blowing up

The blow-up construction is a geometric construction, which replaces the
ambient variety of a closed subvariety by a new variety, which lies over it
and such that the inverse image of the closed subvariety is locally defined
by one equation.

This new variety often has better properties than the new one - eg the
blow-up of a variety at a singular point tends to be ”less” singular than
the original variety.

This construction is best understood in the language of schemes.

In this section, we explain in the language of varieties how to blow up an
affine variety at a point.

We can only establish few properties of such blow-ups in our setting.
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Let n > 1. Let x1, . . . , xn be variables for kn and let y1, . . . , yn be
homogenous variables for Pn−1(k).

Note that contrary to what is customary, the index of the homogenous
variables runs between 1 and n here (not 0 and n − 1).

Let Z be the subset of kn × Pn−1(k) defined by the equations
{xiyj − xjyi = 0}i ,j∈{1,...,n} (note that this makes sense because the
polynomials are homogenous in the y -variables).

The set Z is called the blow-up of kn at the origin of kn.

Let φ : Z → kn the map obtained by restricting the projection
kn × Pn−1(k)→ kn to Z .

Proposition 1.79

(1) The set Z is a closed subvariety of kn × Pn−1(k).

(2) The closed subvariety φ−1({0}) of Z is canonically isomorphic to
Pn−1(k). The points of φ−1(0) are in one-to-one correspondence with the
lines going through the origin of kn.

(3) The restriction of φ to the open subvariety φ−1(kn\{0}) of Z induces
an isomorphism φ−1(kn\{0}) ' kn\{0}. 192 / 205



Proof. (1) On the open affine subset kn × Un−1
j0

, Z is given by the
equations

{xiyj − xjyi = 0, xi − xj0yi = 0}i∈{1,...,n},j∈{1,...,j0−1,j0+1,...,n}.

The set Z ∩ kn × Un−1
j0

is thus closed in kn × Un−1
j0

. Since the kn × Un−1
j

cover kn × Pn−1(k), we see that Z is closed.

(2) It follows from the definitions that φ−1({0}) = {0} × Pn−1(k).

(3) Suppose that 〈X1, . . . ,Xn〉 6= 0. Then there is an i0 such that Xi0 6= 0.

The equations for Z then give Yj = Xj(Yi0/Xi0) for all j .

Up to multiplication of all the Yj by a non zero scalar factor, the only
solution to this set of equations is 〈X1, . . . ,Xn〉.
In particular, we have

φ−1(〈X1, . . . ,Xn〉) = {〈X1, . . . ,Xn〉} × {[X1, . . . ,Xn]}.

This shows that the morphism φ−1(kn\{0})→ kn\{0} is a bijection.
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To show that it is an isomorphism, we shall provide an inverse morphism.

For this, consider the morphism q : kn\{0} → Pn−1(k) introduced in sheet
3.

We define a map kn\{0} → Z by the formula

g := Idkn\{0}
∏

q.

By construction, this gives an inverse of the morphism

φ−1(kn\{0})→ kn\{0}.
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Let now X ⊆ kn be a closed subvariety (ie an algebraic set).

Let v̄ := 〈v1, . . . , vn〉 ∈ X and suppose that {v̄} is not an irreducible
component of X .

Let τv̄ : kn → kn be the map such that

τv̄ (〈w1, . . . ,wn〉) = 〈w1 + v1, . . . ,wn + vn〉

for all w̄ = 〈w1, . . . ,wn〉 ∈ kn.

Let Y := τ−v̄ (X ).

Note that by construction we have 0 ∈ Y .

We define the blow-up Bl(X , v̄) of X at v̄ to be the closure of
φ−1(Y \{0}) in Z .

Let b : Bl(X , v̄)→ X be the morphism τv̄ ◦ φ|Bl(X ,v̄).
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Proposition 1.80

(1) We have φ(Bl(X , v̄)) = Y .

(2) Suppose that X is irreducible.

Then Bl(X , v̄) is an irreducible component of φ−1(Y ) ⊆ kn × Pn−1(k).

The morphism b is birational.

If X 6= kn, the irreducible components of φ−1(Y ) are Bl(X , v̄) and
{0} × Pn−1(k).

The closed set b−1({v}) = Bl(X , v̄) ∩ ({0} × Pn−1(k)) is called the
exceptional divisor of Bl(X , v̄).

196 / 205



Proof. (1) Note first that v̄ lies in the closure of X\{v̄}.
To see this, let C be the irreducible component of X containing v̄ .

Then C\{v̄} is non-empty (by assumption) and it is open in C (since {v̄}
is closed).

Furthermore, C\{v̄} is not closed in C , for otherwise C would be
disconnected and hence reducible.

Thus v̄ lies in the closure of C\{0} in C (which must be C ) and hence v̄
lies in the closure of X\{v̄} in X .

Now since Pn−1(k) is complete (see Theorem 1.68), we know that
φ(Bl(X , v̄)) is closed.

By (3) of Proposition 1.79, we know that φ(Bl(X , v̄))\{0} = Y \{0} and
thus by the reasoning in the last paragraph, we see that 0 ∈ φ(Bl(X , v̄)).

In particular, φ(Bl(X , v̄)) = Y .
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(2) From (3) of Proposition 1.79 we know that the natural morphism

φ−1(Y \{0})→ Y \{0}

is an isomorphism.

Now if X is irreducible, so is Y and so is Y \{0}.
Hence Bl(X , v̄) is irreducible by sheet 2.

On the other hand, Bl(X , v̄) ⊆ φ−1(Y ) since φ−1(Y ) is closed in Z .

Since Bl(X , v̄) contains the non empty open subset set φ−1(Y \{0}) of
φ−1(Y ), we see that Bl(X , v̄) is an irreducible component of φ−1(Y ).

Since φ−1(Y \{0})→ Y \{0} is an isomorphism, the morphism b is
birational.
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On the other hand, we have by construction

φ−1(Y ) = Bl(X , v̄) ∪ ({0} × Pn−1(k)).

Now suppose that X 6= kn.

We then have {0} × Pn−1(k) 6⊆ Bl(X , v̄) because

dim({0} × Pn−1(k)) = n − 1 > dim(Bl(X , v̄)) = dim(X ) 6 n − 1

(use Proposition 1.45, sheet 2 and Theorem 1.41).

Since {0} × Pn−1(k) is irreducible (since it is isomorphic to Pn−1(k)) we
see that the irreducible components of φ−1(Y ) are

Bl(X , v̄)

and
{0} × Pn−1(k).
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Example. Let C be the curve y2 = x3 in k2.

Let b : Bl(C , 0)→ C of C be the blow-up of C at the origin.

(1) We have Bl(C , 0) ' k .

(2) The map b is a homeomorphism but is not an isomorphism.

Use the terminology of the last two propositions, letting n = 2 and
X = Z(x2

2 − x3
1 ) = Y .

We first compute φ−1(X ). Let π : kn × P1(k)→ kn be the natural
projection. By definition

φ−1(X ) = π−1(X ) ∩ Z = Z(x1y2 − x2y1, x
2
2 − x3

1 )
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Let U1 := {[1,Y2] |Y2 ∈ k} ⊂ P1(k).

In k2 × U1, we have

φ−1(X ) ∩ (k2 × U1) = Z(x1y2 − x2, x
2
2 − x3

1 )

= Z(x1y2 − x2, x
2
1y

2
2 − x3

1 ) = Z(x1y2 − x2, x1) ∪ Z(x1y2 − x2, y
2
2 − x1)

= ({0} × U1) ∪ Z(x1y2 − x2, y
2
2 − x1)

The closed set Z(x1y2 − x2, y
2
2 − x1) does not contain {0} × U1.

Also φ−1(X ) ∩ (k2 × U1) has at most two irreducible components by
Proposition 1.80 (2) so we conclude that

Z(x1y2 − x2, y
2
2 − x1) = Bl(X , 0) ∩ (k2 × U1).

On the other hand, Z(x1y2 − x2, y
2
2 − x1) ∩ ({0} × U1) = {0} × {[1, 0]}.
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We now repeat the above reasoning for U2 := {[Y1, 1] |Y1 ∈ k} ⊆ P1(k)
instead of U1. We have

φ−1(X ) ∩ (k2 × U2) = Z(x1 − x2y1, x
2
2 − x3

1 )

= Z(x1 − x2y1, x
2
2 − x3

2y
3
1 ) = Z(x1 − x2y1, x2) ∪ Z(x1 − x2y1, 1− x2y

3
2 )

= ({0} × U2) ∪ Z(x1 − x2y1, 1− x2y
3
2 )

As before, we have

Z(x1 − x2y1, 1− x2y
3
2 )) ∩ (k2 × U2) = Bl(X , 0) ∩ (k2 × U2).

On the other hand, a simple calculation shows that

Z(x1 − x2y1, 1− x2y
3
2 ) ∩ ({0} × U2) = ∅.

202 / 205



So we conclude that the exceptional divisor of Bl(X , 0) consists of the one
point {0} × {[1, 0]}.
In particular, the map b : Bl(X , 0)→ X is bijective.

Since P1(k) is complete, the morphism b sends closed sets to closed sets
(see Theorem 1.68 and Corollary 1.69) and thus (since b is bijective), b
sends open sets to open sets.

Hence b is a homeomorphism.

Taking into account (1), which we will establish below, we see that b is
not an isomorphism because k is smooth whereas X has a singularity at 0.
This establishes (2).
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We now turn to (1). We have

φ−1(X ) ∩ k2 × (P1\U1) = Z(x1y2 − x2y1, x
2
2 − x3

1 , y1)

= Z(x1, y1, x2) = {0} × {[0, 1]}

and this set is not in Bl(X , 0) by the above. Hence

Bl(X , 0) = Z(x1y2 − x2, y
2
2 − x1) ⊆ {0} × U1 ⊆ k3

We claim that the map A(t) = 〈t2, t3, t〉 gives an isomorphism between k
and Z(x1y2 − x2, y

2
2 − x1).

Indeed this map has an inverse, which is the restriction to
Z(x1y2 − x2, y

2
2 − x1) of the map B : k3 → k given by the formula

B(X1,X2,Y2) = Y2.

To verify this, note first that we clearly have A(t) ∈ Z(x1y2 − x2, y
2
2 − x1)

and B(A(t)) = t.
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Secondly, for 〈X1,X2,Y2〉 ∈ Z(x1y2 − x2, y
2
2 − x1) we have

A(B(X1,X2,Y2)) = (Y 2
2 ,Y

3
2 ,Y2)

and we have
Y 2

2 = X1, Y
3
2 = X1Y2 = X2.

We conclude that Bl(X , 0) ' k . This establishes (1).
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