Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2023, Oxford

Cornelia Druțu (University of Oxford)

Part C course MT 2023, Oxford

 $\frac{1}{15}$

An example of ping-pong

Example

For any real number $r \ge 2$ the matrices

$$g_1=\left(egin{array}{cc} 1 & r \ 0 & 1 \end{array}
ight)$$
 and $g_2=\left(egin{array}{cc} 1 & 0 \ r & 1 \end{array}
ight)$

generate a free subgroup of $SL(2, \mathbb{R})$.

Note that for
$$I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, we can write $g_2 = I \circ g_1^{-1} \circ I^{-1}$.

Why is $\langle g_1, g_2 \rangle$ free.

The group $SL(2, \mathbb{R})$ acts on the upper half plane $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \Im(z) > 0\}$ by linear fractional transformations

$$z\mapsto rac{az+b}{cz+d}$$
.

 $g_1(z) = z + r, \ g_2(z) = \frac{z}{rz+1}.$ Define quarter-planes

$$B_1^+ = \{z \in \mathbb{H}^2 : \Re(z) \geqslant r/2\}, \quad B_1^- = \{z \in \mathbb{H}^2 : \Re(z) \leqslant -r/2\}$$

and half-disks $B_2^+ := \left\{ z \in \mathbb{H}^2 : |z - \frac{1}{r}| \leqslant \frac{1}{r} \right\} = I(B_1^-)$ and

$$B_2^-:=\left\{z\in\mathbb{H}^2:|z+\frac{1}{r}|\leqslant\frac{1}{r}\right\}=I(B_1^+).$$

Example of ping-pong.

 $\begin{array}{l} g_1(\mathbb{H}^2 \setminus B_1^-) \subset B_1^+, \ g_1^{-1}(\mathbb{H}^2 \setminus B_1^+) \subset B_1^-. \\ g_2 = I \circ g_1^{-1} \circ I^{-1}. \ I(B_1^+) = B_2^- \ \text{and} \ I(B_1^-) = B_2^+. \ \text{Therefore} \\ g_2(\mathbb{H}^2 \setminus B_2^-) \subset B_2^+, \ g_2^{-1}(\mathbb{H}^2 \setminus B_2^+) \subset B_2^-. \end{array}$

Example of ping-pong.

Take a reduced word in $\{g_1^{\pm 1}, g_2^{\pm 1}\}$, say $g_1g_2^{-1}g_1g_2$. $B_2^+ \sqcup B_1^- \sqcup B_1^+ \xrightarrow{g_2} B_2^+ \xrightarrow{g_1} B_1^+ \xrightarrow{g_2^{-1}} B_2^- \xrightarrow{g_1} B_1^+$

General Ping-pong Lemma

Let $g_1, g_2 \in Bij(X)$ ("ping-pong partners") and $B_i^{\pm} \subset X$, i = 1, 2. Given $i \in \{1, 2\}$, let j be such that $\{i, j\} = \{1, 2\}$. Define

$$C_i^+ := B_i^+ \cup B_j^- \cup B_j^+, C_i^- := B_i^- \cup B_j^- \cup B_j^+$$

Assume that: $C_i^{\pm} \not\subset B_j^{\pm}$ and $C_i^{\pm} \not\subset B_j^{\mp}$ for all choices of i, j and +, -.

Theorem (Ping-pong, or table-tennis, lemma)

lf

$$g_i^{\pm 1}(C_i^{\pm}) \subset B_i^{\pm}, \quad i=1,2,$$

then the bijections g_1, g_2 generate a free subgroup of Bij(X).

Proof of General Ping-pong Lemma

Let w be a non-empty reduced word in $\{g_1, g_1^{-1}, g_2, g_2^{-1}\}$, of length at least 2.

w has the form

$$w=g_i^{\pm 1}ug_j^{\pm 1}.$$

We prove by induction on the length of w that

$$w(C_j^{\pm}) \subset B_i^{\pm}$$
, hence $w \neq id$.

Length 2.
$$w = g_i^{\pm 1} g_j^{\pm 1}$$

 $C_j^{\pm} \xrightarrow{g_j^{\pm 1}} B_j^{\pm} \xrightarrow{g_i^{\pm 1}} B_i^{\pm}$

The last transformation is true because the word is reduced, hence $B_i^{\pm} \neq B_i^{\mp}$, hence B_i^{\pm} is contained in C_i^{\pm} .

Cornelia Druţu (University of Oxford)

Part C course MT 2023, Oxford

Proof of General Ping-pong Lemma 2

Suppose it is true for all words w' of length n, we prove it for words w of length n + 1.

Such a w has the form

$$w = g_i^{\pm 1} w', \quad \text{length}(w') = n.$$

In its turn w' can be written as

$$w' = g_j^{\pm 1} u g_k^{\pm 1}, \quad g_j^{\pm 1} \neq g_i^{\mp 1}.$$

By the induction hypothesis

$$w'(C_k^{\pm})\subset B_j^{\pm}.$$

Since $g_j^{\pm 1} \neq g_i^{\mp 1}$, we have that $B_j^{\pm} \neq B_i^{\mp}$, therefore $B_j^{\pm} \subset C_i^{\pm}$ and $w(C_k^{\pm})) = g_i^{\pm 1} w'(C_k^{\pm}) \subset g_i^{\pm 1}(C_i^{\pm}) \subset B_i^{\pm}$.

Cayley graphs

Goal: to endow a group with a geometry, so first of all a metric. Let $G = \langle S \rangle$, with $1 \notin S$ and $s^{-1} \in S$ for every $s \in S$. We write the latter condition as $S^{-1} = S$. The Cayley graph of G with respect to S is the directed/oriented graph Cayley_{dir}(G, S) with

- set of vertices G;
- set of oriented edges (g, gs), with $s \in S$.

We label the oriented edge (g, gs) by s. The underlying non-oriented graph Cayley(G, S) of $Cayley_{dir}(G, S)$ is the graph with

- set of vertices *G*;
- set of edges $\{g, h\}$ such that h = gs, with $s \in S$.

It is also called the Cayley graph of G with respect to S. Occasionally, we will use the notation \overline{gh} and [g, h] for the edge $\{g, h\}$. Part C course MT 2023, Oxford

Cayley graphs 2

- The definition of the graph makes sense for every $S \subset G$.
- $1 \notin S$ prevents edges from composing loops (monogons).
- $S^{-1} = S$ ensures that every edge in Cayley(G, S) appears in Cayley_{dir}(G, S) with both orientations.
- By definition Cayley(G, S) is a simplicial graph if 1 ∉ S (i.e. no monogons, no two edges with same endpoints).
- The valency of every vertex g in Cayley(G, S) (i.e. number of edges having g as an endpoint) is k = card(S). Thus Cayley(G, S) is k-regular (all vertices of same valency k).

Lemma

Cayley(G, S) is connected (i.e. every two vertices can be joined by an edge path) if and only if S generates G.

Cayley graphs of \mathbb{Z}^2

Example

Consider
$$\mathbb{Z}^2$$
 and $S = \{a = (1,0), b = (0,1), a^{-1}, b^{-1}\}.$

The Cayley graph of \mathbb{Z}^2 with respect to $\{\pm(1,0),\pm(1,1)\}$ has the same set of vertices as the above, but the vertical lines are replaced by diagonal lines. 11 /

Cornelia Druțu (University of Oxford)

Cayley graph of a free non-abelian group

Example

Let G be the free group on two generators a, b. Take $X = \{a, b\}$, G = F(X) and $S = X \sqcup X^{-1}$. The Cayley graph Cayley(G, S) is the 4-valent tree.

A tree is a simplicial connected graph with no circuits. A k-valent tree is a k-regular tree. Cornelia Drutu (University of Oxford) Infinite Groups Part C course MT 2023, Oxford 12 / 15

Word metric

Convention

When talking about Cayley graphs, the group G is always assumed to be finitely generated, and S is always assumed to be finite.

We endow Cayley(G, S) with a distance such that edges have length 1.

 $dist_S(x, y) = length of the shortest path joining x, y.$

The restriction of dist_S to $G \times G$ is called word metric.

Exercise

Prove that for every $g, h \in G$, dist_S(g, h) is the length k of the shortest word $w = s_1 \dots s_k$, where $s_i \in S, \forall i$, such that g = hw.

Word metric 2

Notation

- We denote by $|g|_S$ the distance dist_S(1, g), that is the shortest word in S representing g.
- We denote by B_S(x, r) the closed ball centred in x ∈ Cayley(G, S) and of radius r > 0 with respect to dist_S.

Proposition

The action of G on itself by multiplications to the left is an action by isometries, that is for every $g \in G$

$$\operatorname{dist}(gx,gy) = \operatorname{dist}_{\mathcal{S}}(x,y), \forall x,y \in G.$$

It extends to an action by isometries on Cayley(G, S)

Word metric 3

Exercise

• Prove that if S and \overline{S} are two finite generating sets of G, then the word metrics dist_S and dist_{\overline{S}} on G are bi-Lipschitz equivalent, i.e. there exists L > 0 such that

 $\frac{1}{L} \operatorname{dist}_{\mathcal{S}}(g,g') \leqslant \operatorname{dist}_{\bar{\mathcal{S}}}(g,g') \leqslant L \operatorname{dist}_{\mathcal{S}}(g,g'), \forall g,g' \in G.$ (1)

Prove that an isomorphism between two finitely generated groups is a bi-Lipschitz map when the two groups are endowed with word metrics.

Proposition

A finite index subgroup of a finitely generated group is finitely generated.