A brief introduction to Dedekind cuts

Alexander F. Ritter
Mathematical Institute, Oxford

October 21, 2023.

How to construct real numbers: Dedekind cuts

We assume that rational numbers \mathbb{Q} have been constructed.

Lemma

$\sqrt{2} \notin \mathbb{Q}$, i.e. there is no $q \in \mathbb{Q}$ with $q^{2}=2$.

Proof.

By contradiction, if $q^{2}=2$ for $q=a / b$, where a, b are coprime integers, then $a^{2}=2 b^{2}$, so $a=2 \alpha$ is even, so $4 \alpha^{2}=2 b^{2}$, so $2 \alpha=b$, so b is even. This contradicts that a, b are coprime.

Strategy: think of "\{rational numbers below $\sqrt{2}\}$ " as representing $\sqrt{2}$.

Definition

A Dedekind cut $L \subseteq \mathbb{Q}$ is a subset of \mathbb{Q} such that
(1) L is non-empty and proper: $L \neq \emptyset$ and $L \neq \mathbb{Q}$,
(2) L is "left closed": $\ell \in L \Rightarrow$ all rationals $q \leq \ell$ are in L,
(3) L has no maximum: $\ell \in L \Rightarrow \exists \ell^{\prime} \in L$ with $\ell<\ell^{\prime}$.

Some side-remarks about the definition

Secretly: we are defining a real number r using only rational numbers. So $\mathbb{Q}=L \sqcup R$ is a disjoint union of a "left interval" $L=(-\infty, r) \cap \mathbb{Q}$, and a "right interval" $R=[r, \infty) \cap \mathbb{Q}$, where $R:=\mathbb{Q} \backslash L$. Here $(-\infty, r)$ means the reals $<r$, and $[r, \infty)$ means the reals $\geq r$.

Why not allow maxima in L ? Then $\left\{q \leq \frac{a}{b}\right\}$ would contain $\frac{a}{b}$? Adding cuts as sets in the obvious way may fail to contain the max:

$$
\sqrt{2}+(-\sqrt{2})=((-\infty, \sqrt{2}] \cap \mathbb{Q})+((-\infty,-\sqrt{2}] \cap \mathbb{Q})=((-\infty, 0) \cap \mathbb{Q})
$$

Also, unions of cuts can lead to a cut that may fail to contain the max:

$$
\cup_{n \neq 0 \in \mathbb{N}}\left\{q \in \mathbb{Q}: q \leq-\frac{1}{n}\right\}=\{q \in \mathbb{Q}: q<0\} .
$$

Both issues can be artificially fixed by declaring that rational maxima have to be inserted back in after performing operations, but it is not an elegant approach.

Examples

If $\frac{a}{b} \in \mathbb{Q}$, then we view $\frac{a}{b}$ as the Dedekind cut $L_{\frac{a}{b}}=\left\{q \in \mathbb{Q}: q<\frac{a}{b}\right\}$.

Lemma

$L_{\sqrt{2}}:=\left\{q \in \mathbb{Q}: q<0\right.$ or $\left.q^{2}<2\right\}$ is a Dedekind cut.

Proof.

1. $0 \in L_{\sqrt{2}}, 2 \notin L_{\sqrt{2}}$, so $L_{\sqrt{2}} \neq \emptyset, \mathbb{Q}$.
2. If $q^{2}<2$ and $\ell<q$, then $\ell^{2}<q^{2}<2$, so $\ell \in L_{\sqrt{2}}$.
3. Want: $L_{\sqrt{2}}$ has no max. Suppose $q \in L_{\sqrt{2}}$. For small $0<h<1$ in \mathbb{Q}, we claim $q+h \in L_{\sqrt{2}}$. If $q<0$, it is easy to see that such an h exists (easy exercise for you to check, as we understand \mathbb{Q}). If $q^{2}<2$, then $q<2$ (otherwise $q \geq 2$ so $q^{2} \geq 4$), and using $h^{2} \leq h($ as $0<h<1)$:

$$
(q+h)^{2}=q^{2}+2 h q+h^{2}<q^{2}+2 h \cdot 2+h \stackrel{\text { want }}{<} 2 .
$$

This holds by picking $0<h<1$ in \mathbb{Q} with $h<\left(2-q^{2}\right) / 5$.

Operations and order for Dedekind cuts

We define operations on Dedekind cuts:

$$
L+L^{\prime}=\left\{\ell+\ell^{\prime}: \ell \in L, \ell^{\prime} \in L^{\prime}\right\} .
$$

Exercise: Define $L \cdot L^{\prime},-L, \frac{1}{L}$ carefully.
We define an order on Dedekind cuts:

$$
L \leq L^{\prime} \text { means } L \subseteq L^{\prime}
$$

Exercise: show \{Dedekind cuts\} is an ordered field (check the axioms).

Theorem

$\mathbb{R}:=\{$ Dedekind cuts $\}$ satisfies the least upper bound property.

Proof.

Given $\emptyset \neq S \subseteq \mathbb{R}$, consider the union of the Dedekind cuts $s \in S$:

$$
L=\bigcup_{s \in S} s
$$

Exercise: check L is a Dedekind cut and the least upper bound of S.

Example

Let $S:=\left\{-\frac{1}{n} \in \mathbb{Q}: n \neq 0 \in \mathbb{N}\right\}$.
Claim. $\sup S=L_{0}$.

Proof.

By the Theorem, $\sup S=\cup_{n \neq 0 \in \mathbb{N}}\left\{q \in \mathbb{Q}: q<-\frac{1}{n}\right\}=\{q \in \mathbb{Q}<0\}$. The last equality is an easy check, because we understand \mathbb{Q} well.

Let $S:=\left\{q \in \mathbb{Q}: q^{2}<2\right\}$. (Secretly the set $\left.(-\sqrt{2}, \sqrt{2}) \cap \mathbb{Q}\right)$.
Claim. $\sup S=L_{\sqrt{2}}$.

Proof.

Observe that $L_{\sqrt{2}}=L_{0} \cup S$.
By the Theorem, $L=\cup\{s \in S\}$ is the least upper bound.
As L is an upper bound of S, we have $S \subseteq L$.
Observe that $L_{0} \subseteq L$ (since $0 \in S \subseteq L$). So $L_{\sqrt{2}}=L_{0} \cup S \subseteq L$.
But $L_{\sqrt{2}}$ is an upper bound for S, as $S \subseteq L_{0} \cup S=L_{\sqrt{2}}$.
As L is the least upper bound, $L_{\sqrt{2}} \subseteq L$ implies $L_{\sqrt{2}}=L$.

\exists only "one" ordered field with the lub property

Definition

An isomorphism $f: F_{1} \rightarrow F_{2}$ of ordered fields is a bijection, preserving operations and order: $f(a+b)=f(a)+f(b), f(a \cdot b)=f(a) \cdot f(b)$, $a \leq b \Rightarrow f(a) \leq f(b)$. Exercise: deduce $f(0)=0, f(1)=1$.

Theorem

For any ordered field F satisfying the least upper bound property, there is an isomorphism $f: \mathbb{R} \rightarrow F$ of ordered fields.

Proof.

Any ordered field contains a copy of \mathbb{Q}. Indeed, for $n \in \mathbb{N}$ define $n:=1+\cdots+1 \in \mathbb{F}$ (the cancellation property for + and the ordered property ensure that these n are all distinct). Then $-n \in \mathbb{F}$, so \mathbb{F} contains a copy of \mathbb{Z}. Finally $\mathbb{Q} \ni \frac{a}{b}=a b^{-1} \in \mathbb{F}$. More precisely, we built an injection $\phi: \mathbb{Q} \rightarrow F$ by $\phi\left(\frac{a}{b}\right)=a b^{-1}$.

End of the proof

Proof continued.

For a general Dedekind cut $L \in \mathbb{R}$, we define $f: \mathbb{R} \rightarrow \mathbb{F}$ by:

$$
f(L):=\sup \phi(L),
$$

where $\phi(L):=\{\phi(q): q \in L\}$.
Exercise: check sup $\phi(L)$ is defined, then check f is an isomorphism. Hint: $\phi(L) \neq \emptyset$ as $L \neq \emptyset$. Also $\phi(L)$ is bounded above by $\phi(r)$ for $r \in R:=\mathbb{Q} \backslash L$ since $q<r$ for all $q \in L$ so $\phi(q)<\phi(r)$.

Remark. There are other ways of constructing \mathbb{R} :
Decimal numbers. The disadvantage is that defining operations is messy, and there is the frustration that decimal expansions are not unique (e.g. $0.9999 \ldots=1.0000 \ldots$).
Cauchy sequences. One thinks of $r \in \mathbb{R}$ as a limit of $q_{n} \in \mathbb{Q}$. One demands $\left|q_{n}-q_{m}\right|$ is arbitrarily small when $n, m \in \mathbb{N}$ are sufficiently large (this secretly ensures convergence to a limit in other constructions of \mathbb{R}). One uses equivalence classes: $\left(q_{n}\right) \sim\left(q_{n}^{\prime}\right)$ if $\left|q_{n}-q_{n}^{\prime}\right|$ is small for large n (this ensures they have the same limit). It is messy, but generalisable.

