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How to construct real numbers: Dedekind cuts

We assume that rational numbers Q@ have been constructed.

V2 ¢ Q, i.e. there is no g € Q with g> = 2.

By contradiction, if g> = 2 for g = a/b, where a, b are coprime integers,
then a? = 2b?, so a = 2a is even, so 4a® = 2b?, so 2ac = b, so b is even.
This contradicts that a, b are coprime. O

Strategy: think of “{rational numbers below v/2}" as representing /2.

Definition

A Dedekind cut L C Q is a subset of Q such that
© L is non-empty and proper: L # () and L # Q,
@ Lis "left closed”: ¢ € L = all rationals g < £ are in L,
© L has no maximum: /€ L= 3¢ € L with £ < /',




Some side-remarks about the definition

Secretly: we are defining a real number r using only rational numbers.
So Q = LU R is a disjoint union of a “left interval” L = (—o0,r)NQ,
and a “right interval” R = [r,00) N Q, where R :=Q\ L. Here (—o0,r)
means the reals < r, and [r,00) means the reals > r.

Why not allow maxima in L? Then {g < 7} would contain 7?
Adding cuts as sets in the obvious way may fail to contain the max:

V24 (=V2) = (-0, V2N Q) + (00, ~v2I N Q) = ((-0¢,0) N Q).
Also, unions of cuts can lead to a cut that may fail to contain the max:
Unsoen{g € Q:q< -1} ={qeQ:g<0}.

Both issues can be artificially fixed by declaring that rational maxima
have to be inserted back in after performing operations, but it is not an
elegant approach.



If 7 € Q, then we view  as the Dedekind cut L% ={q€Q:q9< 3}

Lﬂ::{qe(@:q<00rq2<2} is a Dedekind cut.

Poof .|
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2. |fq2<2and£<q,then€2<q2<2,soEEL\/E.

3. Want: L s has no max. Suppose g € L 5. Forsmall 0 <h<1inQ,
we claim g+ he L 4. If g <0, it is easy to see that such an h exists
(easy exercise for you to check, as we understand Q). If g° < 2, then

g < 2 (otherwise g > 2 so g2 > 4), and using h> < h (as 0 < h < 1):

t
(+h2=q>+2hqg+h <@ +2h-2+h < 2.

This holds by picking 0 < h < 1 in Q with h < (2 — ¢2)/5. O




Operations and order for Dedekind cuts

We define operations on Dedekind cuts:
L+l ={¢+0:tellel}.

Exercise: Define L- L', —L, % carefully.
We define an order on Dedekind cuts:

L<!l' means L C L.

Exercise: show {Dedekind cuts} is an ordered field (check the axioms).

R := {Dedekind cuts} satisfies the least upper bound property.

Given ) # S C R, consider the union of the Dedekind cuts s € S:

L:Us.

seS

Exercise: check L is a Dedekind cut and the least upper bound of S. [J




Let S:={-1e€Q:n#0eN}
Claim. sup S = L,.

By the Theorem, sup S = Unz0en{g € Q: g < -1} = {g € Q < 0}.
The last equality is an easy check, because we understand Q well. Ol

Let S:={q € Q: g% < 2}. (Secretly the set (—v/2,v/2) N Q).
Claim. supS =L 5.

Observe that Lsz=LoU S.

By the Theorem, L = U{s € S} is the least upper bound.

As L is an upper bound of S, we have S C L.

Observe that Lo C L (since0 € S C L). So Ls=LUSCL

But L 5 is an upper bound for 5, as S C LoUS =L 5.

As L is the least upper bound, L 5 C L implies L 5 = L. []




J only “one” ordered field with the lub property

Definition

An isomorphism f : F; — F5 of ordered fields is a bijection, preserving
operations and order: f(a+ b) = f(a) + f(b), f(a- b) = f(a)- f(b),
a< b= f(a) < f(b). Exercise: deduce f(0) =0, f(1) = 1.

For any ordered field F satisfying the least upper bound property, there
is an isomorphism f : R — F of ordered fields.

Any ordered field contains a copy of Q. Indeed, for n € N define
n:=1+-.--4+1¢€TF (the cancellation property for + and the ordered
property ensure that these n are all distinct). Then —n € F, so F
contains a copy of Z. Finally Q > § = ab~! € F.

More precisely, we built an injection ¢ : Q — F by ¢(7) = ab™1. Ol

.




End of the proof

Proof continued.
For a general Dedekind cut L € R, we define f : R — F by:

F(L) == sup &(L),

where ¢(L) := {¢(q) : g € L}.

Exercise: check sup ¢(L) is defined, then check f is an isomorphism.
Hint: ¢(L) # (0 as L # (). Also ¢(L) is bounded above by ¢(r) for

re R:=Q\ Lsince g <rforall ge Lso¢(q) < o(r). O

Remark. There are other ways of constructing R:

Decimal numbers. The disadvantage is that defining operations is
messy, and there is the frustration that decimal expansions are not
unique (e.g. 0.9999... =1.0000...).

Cauchy sequences. One thinks of r € R as a limit of g, € Q. One
demands |g, — gm| is arbitrarily small when n, m € N are sufficiently large
(this secretly ensures convergence to a limit in other constructions of R).
One uses equivalence classes: (gn) ~ (q},) if |gn — qj,| is small for large n
(this ensures they have the same limit). It is messy, but generalisable.



