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How to construct real numbers: Dedekind cuts

We assume that rational numbers Q have been constructed.

Lemma
√
2 /∈ Q, i.e. there is no q ∈ Q with q2 = 2.

Proof.

By contradiction, if q2 = 2 for q = a/b, where a, b are coprime integers,
then a2 = 2b2, so a = 2α is even, so 4α2 = 2b2, so 2α = b, so b is even.
This contradicts that a, b are coprime.

Strategy: think of “{rational numbers below
√
2}” as representing

√
2.

Definition

A Dedekind cut L ⊆ Q is a subset of Q such that

1 L is non-empty and proper: L ̸= ∅ and L ̸= Q,

2 L is “left closed”: ℓ ∈ L ⇒ all rationals q ≤ ℓ are in L,

3 L has no maximum: ℓ ∈ L ⇒ ∃ℓ′ ∈ L with ℓ < ℓ′.



Some side-remarks about the definition

Secretly: we are defining a real number r using only rational numbers.
So Q = L ⊔ R is a disjoint union of a “left interval” L = (−∞, r) ∩Q,
and a “right interval” R = [r ,∞) ∩Q, where R := Q \ L. Here (−∞, r)
means the reals < r , and [r ,∞) means the reals ≥ r .

Why not allow maxima in L? Then {q ≤ a
b} would contain a

b?
Adding cuts as sets in the obvious way may fail to contain the max:

√
2 + (−

√
2) = ((−∞,

√
2] ∩Q) + ((−∞,−

√
2] ∩Q) = ((−∞, 0) ∩Q).

Also, unions of cuts can lead to a cut that may fail to contain the max:

∪n ̸=0∈N{q ∈ Q : q ≤ − 1
n} = {q ∈ Q : q < 0}.

Both issues can be artificially fixed by declaring that rational maxima
have to be inserted back in after performing operations, but it is not an
elegant approach.



Examples

If a
b ∈ Q, then we view a

b as the Dedekind cut L a
b
= {q ∈ Q : q < a

b}.

Lemma

L√2 := {q ∈ Q : q < 0 or q2 < 2} is a Dedekind cut.

Proof.

1. 0 ∈ L√2, 2 /∈ L√2, so L√2 ̸= ∅,Q.

2. If q2 < 2 and ℓ < q, then ℓ2 < q2 < 2, so ℓ ∈ L√2.
3. Want: L√2 has no max. Suppose q ∈ L√2. For small 0 < h < 1 in Q,
we claim q + h ∈ L√2. If q < 0, it is easy to see that such an h exists

(easy exercise for you to check, as we understand Q). If q2 < 2, then
q < 2 (otherwise q ≥ 2 so q2 ≥ 4), and using h2 ≤ h (as 0 < h < 1):

(q + h)2 = q2 + 2hq + h2 < q2 + 2h · 2 + h
want
< 2.

This holds by picking 0 < h < 1 in Q with h < (2− q2)/5.



Operations and order for Dedekind cuts

We define operations on Dedekind cuts:

L+ L′ = {ℓ+ ℓ′ : ℓ ∈ L, ℓ′ ∈ L′}.

Exercise: Define L · L′, −L, 1
L carefully.

We define an order on Dedekind cuts:

L ≤ L′ means L ⊆ L′.

Exercise: show {Dedekind cuts} is an ordered field (check the axioms).

Theorem

R := {Dedekind cuts} satisfies the least upper bound property.

Proof.

Given ∅ ≠ S ⊆ R, consider the union of the Dedekind cuts s ∈ S :

L =
⋃
s∈S

s.

Exercise: check L is a Dedekind cut and the least upper bound of S .



Example

Let S := {− 1
n ∈ Q : n ̸= 0 ∈ N}.

Claim. supS = L0.

Proof.

By the Theorem, sup S = ∪n ̸=0∈N{q ∈ Q : q < − 1
n} = {q ∈ Q < 0}.

The last equality is an easy check, because we understand Q well.

Let S := {q ∈ Q : q2 < 2}. (Secretly the set (−
√
2,
√
2) ∩Q).

Claim. supS = L√2.

Proof.

Observe that L√2 = L0 ∪ S .
By the Theorem, L = ∪{s ∈ S} is the least upper bound.
As L is an upper bound of S , we have S ⊆ L.
Observe that L0 ⊆ L (since 0 ∈ S ⊆ L). So L√2 = L0 ∪ S ⊆ L.
But L√2 is an upper bound for S , as S ⊆ L0 ∪ S = L√2.
As L is the least upper bound, L√2 ⊆ L implies L√2 = L.



∃ only “one” ordered field with the lub property

Definition

An isomorphism f : F1 → F2 of ordered fields is a bijection, preserving
operations and order: f (a+ b) = f (a) + f (b), f (a · b) = f (a) · f (b),
a ≤ b ⇒ f (a) ≤ f (b). Exercise: deduce f (0) = 0, f (1) = 1.

Theorem

For any ordered field F satisfying the least upper bound property, there
is an isomorphism f : R → F of ordered fields.

Proof.

Any ordered field contains a copy of Q. Indeed, for n ∈ N define
n := 1 + · · ·+ 1 ∈ F (the cancellation property for + and the ordered
property ensure that these n are all distinct). Then −n ∈ F, so F
contains a copy of Z. Finally Q ∋ a

b = ab−1 ∈ F.
More precisely, we built an injection ϕ : Q → F by ϕ( ab ) = ab−1.



End of the proof

Proof continued.

For a general Dedekind cut L ∈ R, we define f : R → F by:

f (L) := supϕ(L),

where ϕ(L) := {ϕ(q) : q ∈ L}.
Exercise: check supϕ(L) is defined, then check f is an isomorphism.
Hint: ϕ(L) ̸= ∅ as L ̸= ∅. Also ϕ(L) is bounded above by ϕ(r) for
r ∈ R := Q \ L since q < r for all q ∈ L so ϕ(q) < ϕ(r).

Remark. There are other ways of constructing R:
Decimal numbers. The disadvantage is that defining operations is
messy, and there is the frustration that decimal expansions are not
unique (e.g. 0.9999 . . . = 1.0000 . . .).
Cauchy sequences. One thinks of r ∈ R as a limit of qn ∈ Q. One
demands |qn − qm| is arbitrarily small when n,m ∈ N are sufficiently large
(this secretly ensures convergence to a limit in other constructions of R).
One uses equivalence classes: (qn) ∼ (q′n) if |qn − q′n| is small for large n
(this ensures they have the same limit). It is messy, but generalisable.


