B1.1 Logic Lecture 5

Martin Bays

Oxford, MT 2023

6. A deductive system for propositional calculus

- We introduced 'logical consequence' $\Gamma \models \phi$ means: whenever (each formula of) Γ is true, so is ϕ .
- But we don't know yet how to give an actual proof of ϕ from the hypotheses Γ .
- A proof of ϕ should be a finite sequence $\phi_1, \phi_2, \ldots, \phi_n$ of statements such that $\phi_n = \phi$, and for each $i = 1, \ldots, n$:
	- either $\phi_i \in \Gamma$,
	- or ϕ_i is some $\boldsymbol{\mathsf{axiom}}$ (which should clearly be true),
	- or ϕ_i should follow from previous ϕ_j 's by some rule of inference.

Lec 5 - 1/8

6.1 Definition

Let $\mathcal{L}_0 := \mathcal{L}_{\text{prop}}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the **system** L_0 consists of the following axioms and rules:

Axioms

An axiom of L_0 is any formula of the following form $(\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0))$:

A1
$$
(\alpha \rightarrow (\beta \rightarrow \alpha))
$$

\n**A2** $((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)))$
\n**A3** $((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$

Rules of inference

Just one rule, modus ponens:

MP For any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$: From α and $(\alpha \rightarrow \beta)$, infer β .

Lec 5 - 2/8

6.2 Definition

Let $\Gamma \subset \text{Form}(\mathcal{L}_0)$.

- A finite sequence $\alpha_1, \ldots, \alpha_m \in \text{Form}(\mathcal{L}_0)$ is a proof (or deduction/derivation) in L_0 of α_m from the **hypotheses** Γ if for each $i = 1, \ldots, m$, at least one of the following holds:
	- (a) α_i is an axiom of L_0 .
	- (b) $\alpha_i \in \Gamma$.
	- (c) α_i follows by MP from earlier formulas, i.e. there are $j, k < i$ such that $\alpha_i = (\alpha_k \to \alpha_i).$
- $\alpha \in \text{Form}(\mathcal{L}_0)$ is **provable** from Γ if there is a proof $\alpha_1, \ldots, \alpha_m = \alpha$ of α from Γ .

We denote this by:

$\Gamma \vdash \alpha$.

In the case $\Gamma = \emptyset$, we just write

 $\vdash \alpha$.

and we say that α is a theorem (of the system L_0).

Lec 5 - 3/8

6.3 Example For any $\phi \in \text{Form}(\mathcal{L}_0)$

 $(\phi \rightarrow \phi)$

is a theorem of L_0 .

Proof:

$$
\alpha_1 \ (\phi \rightarrow (\phi \rightarrow \phi))
$$
\n
$$
[A1 with \ \alpha = \beta = \phi]
$$
\n
$$
\alpha_2 \ (\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi))
$$
\n
$$
[A1 with \ \alpha = \phi, \ \beta = (\phi \rightarrow \phi)]
$$
\n
$$
\alpha_3 \ ((\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi))
$$
\n
$$
\rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)))
$$
\n
$$
[A2 with \ \alpha = \phi, \ \beta = (\phi \rightarrow \phi), \ \gamma = \phi]
$$
\n
$$
\alpha_4 \ ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))
$$
\n
$$
[MP \ \alpha_2, \alpha_3]
$$
\n
$$
\alpha_5 \ (\phi \rightarrow \phi)
$$
\n
$$
[MP \ \alpha_1, \alpha_4]
$$

Thus, $\alpha_1, \alpha_2, \ldots, \alpha_5$ is a deduction of $(\phi \rightarrow \phi)$ in L_0 .

> \Box Lec 5 - 4/8

6.4 Example

For any $\phi, \psi \in \text{Form}(\mathcal{L}_0)$:

$$
\{\phi,\neg\phi\} \vdash \psi
$$

Proof:

 $\alpha_1 \; (\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi))$ [A1 with $\alpha = \neg \phi, \beta = \neg \psi$] $\alpha_2 \neg \phi \in \Gamma$] α_3 $(\neg \psi \rightarrow \neg \phi)$ [MP α_1, α_2] $\alpha_4 \left((\neg \psi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow \psi) \right)$ [A3 with $\alpha = \phi, \beta = \psi$] α_5 $(\phi \rightarrow \psi)$ [MP α_3, α_4] $\alpha_6 \phi \in \Gamma$] $\alpha_7 \psi$ [MP α_5, α_6]

Lec 5 - 5/8

 \Box

6.5 The Soundness Theorem for L_0

L₀ is **sound**, i.e. for any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and for any $\alpha \in \text{Form}(\mathcal{L}_0)$:

If $\Gamma \vdash \alpha$ then $\Gamma \models \alpha$.

In particular, any theorem of L_0 is a tautology.

Proof: We show by induction on m :

(\star) If α has a proof of length m from Γ in L_0 , then $\Gamma \models \alpha$.

For $m = 0$, there is nothing to prove (no proof has length 0).

So suppose $m \geq 1$ and (\star) holds for all $m' < m$, and suppose $\alpha_1, \ldots, \alpha_m$ is a proof in L₀. We have to show that $\Gamma \models \alpha_m$.

Lec 5 - 6/8

Case 1: α_m is an axiom. One verifies by truth tables (exercise) that our axioms are tautologies, so $\Gamma \models \alpha_m$.

Case 2: $\alpha_m \in \Gamma$. Then $\Gamma \models \alpha_m$.

Case 3: α_m is obtained by MP. So say $i, j < m$ and $\alpha_j = (\alpha_i \rightarrow \alpha_m)$.

By the inductive hypothesis, since $\alpha_1, \ldots, \alpha_i$ is a proof of length $i < m$, we have $\Gamma \models \alpha_i$. Similarly $\Gamma \models \alpha_j$, i.e. $\Gamma \models (\alpha_i \rightarrow \alpha_m)$.

But $\{\alpha_i, (\alpha_i \to \alpha_m)\}\models \alpha_m$ by Lemma 3.4, and it follows (from the definition of \models) that $\Gamma \models \alpha_m.$

 \Box

Lec 5 - 7/8

For the proof of the converse

Completeness Theorem

If
$$
\Gamma \models \alpha
$$
 then $\Gamma \vdash \alpha$.

we first prove

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$:

If $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \to \beta)$.

Lec 5 - 8/8