B1.1 Logic Lecture 5

Martin Bays

Oxford, MT 2023

6. A deductive system for propositional calculus

- We introduced '*logical consequence*' − Γ ⊨ φ means: whenever (each formula of) Γ is true, so is φ.
- But we don't know yet how to give an actual proof of φ from the hypotheses Γ.
- A proof of φ should be a finite sequence φ₁, φ₂,..., φ_n of statements such that φ_n = φ, and for each i = 1,...,n:
 - either $\phi_i \in \Gamma$,
 - or ϕ_i is some **axiom** (which should *clearly* be true),
 - or ϕ_i should follow from previous ϕ_j 's by some **rule of inference**.

Lec 5 - 1/8

6.1 Definition

Let $\mathcal{L}_0 := \mathcal{L}_{prop}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the **system** L_0 consists of the following axioms and rules:

<u>Axioms</u>

An **axiom** of L_0 is any formula of the following form $(\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0))$:

A1
$$(\alpha \rightarrow (\beta \rightarrow \alpha))$$

A2 $((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)))$
A3 $((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$

Rules of inference

Just one rule, modus ponens:

MP For any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$: From α and $(\alpha \rightarrow \beta)$, infer β .

Lec 5 - 2/8

6.2 Definition

Let $\Gamma \subseteq \operatorname{Form}(\mathcal{L}_0)$.

- A finite sequence α₁,..., α_m ∈ Form(L₀) is a proof (or deduction/derivation) in L₀ of α_m from the hypotheses Γ if for each i = 1,..., m, at least one of the following holds:
 - (a) α_i is an axiom of L_0 .
 - (b) $\alpha_i \in \Gamma$.
 - (c) α_i follows by MP from earlier formulas, i.e. there are j, k < i such that $\alpha_j = (\alpha_k \to \alpha_i)$.
- $\alpha \in \text{Form}(\mathcal{L}_0)$ is **provable** from Γ if there is a proof $\alpha_1, \ldots, \alpha_m = \alpha$ of α from Γ .

We denote this by:

$\Gamma \vdash \alpha$.

In the case $\Gamma = \emptyset$, we just write

 $\vdash \alpha$,

and we say that α is a **theorem** (of the system L_0).

Lec 5 - 3/8

6.3 Example For any $\phi \in \text{Form}(\mathcal{L}_0)$

 $(\phi \rightarrow \phi)$

is a theorem of L_0 .

Proof:

$$\alpha_{1} (\phi \rightarrow (\phi \rightarrow \phi))$$
[A1 with $\alpha = \beta = \phi$]

$$\alpha_{2} (\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi))$$
[A1 with $\alpha = \phi, \beta = (\phi \rightarrow \phi)$]

$$\alpha_{3} ((\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)))$$

$$\rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)))$$
[A2 with $\alpha = \phi, \beta = (\phi \rightarrow \phi), \gamma = \phi$]

$$\alpha_{4} ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$$
[MP α_{2}, α_{3}]

$$\alpha_{5} (\phi \rightarrow \phi)$$
[MP α_{1}, α_{4}]

Thus, $\alpha_1, \alpha_2, \ldots, \alpha_5$ is a deduction of $(\phi \to \phi)$ in L_0 .

□ Lec 5 - 4/8

6.4 Example

For any $\phi, \psi \in \text{Form}(\mathcal{L}_0)$:

$$\{\phi,\neg\phi\}\vdash\psi$$

Proof:

 $\begin{array}{l} \alpha_{1} \ (\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi)) \\ \quad [A1 \text{ with } \alpha = \neg \phi, \beta = \neg \psi] \\ \alpha_{2} \ \neg \phi \ [\in \Gamma] \\ \alpha_{3} \ (\neg \psi \rightarrow \neg \phi) \ [MP \ \alpha_{1}, \alpha_{2}] \\ \alpha_{4} \ ((\neg \psi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow \psi)) \\ \quad [A3 \text{ with } \alpha = \phi, \beta = \psi] \\ \alpha_{5} \ (\phi \rightarrow \psi) \ [MP \ \alpha_{3}, \alpha_{4}] \\ \alpha_{6} \ \phi \ [\in \Gamma] \\ \alpha_{7} \ \psi \ [MP \ \alpha_{5}, \alpha_{6}] \end{array}$

Lec 5 - 5/8

6.5 The Soundness Theorem for *L*₀

 L_0 is **sound**, *i.e.* for any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and for any $\alpha \in \text{Form}(\mathcal{L}_0)$:

If $\Gamma \vdash \alpha$ then $\Gamma \models \alpha$.

In particular, any theorem of L_0 is a tautology.

Proof: We show by induction on m:

(*) If α has a proof of length m from Γ in L_0 , then $\Gamma \models \alpha$.

For m = 0, there is nothing to prove (no proof has length 0).

So suppose $m \ge 1$ and (\star) holds for all m' < m, and suppose $\alpha_1, \ldots, \alpha_m$ is a proof in L_0 . We have to show that $\Gamma \models \alpha_m$.

Lec 5 - 6/8

Case 1: α_m is an axiom. One verifies by truth tables (exercise) that our axioms are tautologies, so $\Gamma \models \alpha_m$.

Case 2: $\alpha_m \in \Gamma$. Then $\Gamma \models \alpha_m$.

Case 3: α_m is obtained by MP. So say i, j < m and $\alpha_j = (\alpha_i \rightarrow \alpha_m)$.

By the inductive hypothesis, since $\alpha_1, \ldots, \alpha_i$ is a proof of length i < m, we have $\Gamma \models \alpha_i$. Similarly $\Gamma \models \alpha_j$, i.e. $\Gamma \models (\alpha_i \rightarrow \alpha_m)$.

But $\{\alpha_i, (\alpha_i \to \alpha_m)\} \models \alpha_m$ by Lemma 3.4, and it follows (from the definition of \models) that $\Gamma \models \alpha_m$.

Lec 5 - 7/8

For the proof of the converse

Completeness Theorem

If
$$\Gamma \models \alpha$$
 then $\Gamma \vdash \alpha$.

we first prove

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$:

If $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Lec 5 - 8/8