B1.1 Logic Lecture 6

Martin Bays

Oxford, MT 2023

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$:

If $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Proof: We prove by induction on m: If $\alpha_1, \ldots, \alpha_m$ is a proof in L_0 from $\Gamma \cup \{\alpha\}$ then $\Gamma \vdash (\alpha \rightarrow \alpha_i)$ for all $i \leq m$.

For m = 0, this holds trivially. So suppose m > 0.

IH: Holds for m - 1. Then $\Gamma \vdash (\alpha \rightarrow \alpha_i)$ for i < m, and we must show $\Gamma \vdash (\alpha \rightarrow \alpha_m)$.

Lec 6 - 1/8

Case 1: α_m is an Axiom Then $\vdash (\alpha \rightarrow \alpha_m)$, indeed:

1
$$\alpha_m$$
 [Axiom]
2 $(\alpha_m \rightarrow (\alpha \rightarrow \alpha_m))$ [Instance of A1]
3 $(\alpha \rightarrow \alpha_m)$ [MP 1,2]

is a proof of $(\alpha \rightarrow \alpha_m)$ from hypotheses \emptyset .

Note generally that if $\Delta \vdash \psi$ and $\Delta' \supseteq \Delta$, then also $\Delta' \vdash \psi$.

Thus $\Gamma \vdash (\alpha \rightarrow \alpha_m)$.

Case 2: $\alpha_m \in \Gamma \cup \{\alpha\}$ If $\alpha_m \in \Gamma$ then same proof as above works (with justification on line 1 changed to ' $\in \Gamma$ ').

If $\alpha_m = \alpha$, then, by Example 6.3, $\vdash (\alpha \rightarrow \alpha_m)$, hence $\Gamma \vdash (\alpha \rightarrow \alpha_m)$.

Lec 6 - 2/8

Case 3: α_m is obtained by MP from some earlier α_j, α_k , i.e. there are j, k < m such that $\alpha_j = (\alpha_k \rightarrow \alpha_m)$.

By IH, we have

$$\begin{array}{l} \Gamma \vdash (\alpha \rightarrow \alpha_k) \\ \text{and} \quad \Gamma \vdash (\alpha \rightarrow \alpha_j), \\ \text{i.e.} \quad \Gamma \vdash (\alpha \rightarrow (\alpha_k \rightarrow \alpha_m)) \end{array} \end{array}$$

Lec 6 - 3/8

So say

$$\beta_1,\ldots,\beta_{r-1},(\alpha\to\alpha_k)$$

and

$$\gamma_1, \ldots, \gamma_{s-1}, (\alpha \to (\alpha_k \to \alpha_m))$$

are proofs in L_0 from Γ .

Then

is a proof of $(\alpha \rightarrow \alpha_m)$ in L_0 from Γ . \Box

Lec 6 - 4/8

6.7 Remarks

- Only needed instances of A1, A2 and the rule MP.
 So any system that includes A1, A2 and MP satisfies the Deduction Theorem.
- Proof gives a precise algorithm for converting any proof showing Γ ∪ {α} ⊢ β into one showing Γ ⊢ (α → β).
- Converse is easy:

If $\Gamma \vdash (\alpha \rightarrow \beta)$ then $\Gamma \cup \{\alpha\} \vdash \beta$. *Proof:*

 $\begin{array}{lll} \vdots & \vdots & \text{proof from } \Gamma \\ \mathbf{r} & \alpha \rightarrow \beta \\ \mathbf{r+1} & \alpha & [\in \Gamma \cup \{\alpha\}] \\ \mathbf{r+2} & \beta & [\mathsf{MP r, r+1}] \end{array}$

Lec 6 - 5/8

6.8 Example of use of DT

If $\Gamma \vdash (\alpha \rightarrow \beta)$ and $\Gamma \vdash (\beta \rightarrow \gamma)$ then $\Gamma \vdash (\alpha \rightarrow \gamma)$.

Proof:

By the deduction theorem ('DT'), it suffices to show that $\Gamma \cup \{\alpha\} \vdash \gamma$.

÷	:	proof from Γ
r	$(\alpha \rightarrow \beta)$	
r+1	:	
÷	:	proof from Γ
r+s	$(\beta ightarrow \gamma)$	
r+s+1	lpha	$[\in \Gamma \cup \{\alpha\}]$
r+s+2	eta	[MP r, r+s+1]
r+s+3	γ	[MP r+s, r+s+2]

From now on we may treat DT as an additional inference rule in L_0 .

Lec 6 - 6/8

6.9 Definition

The **sequent calculus** SQ is the system where a **proof** (or **derivation**) of $\phi \in \text{Form}(\mathcal{L}_0)$ from $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is a finite sequence of **sequents**,

i.e. expressions of the form

$$\Delta \vdash_{SQ} \psi$$

with $\Delta \subseteq \operatorname{Form}(\mathcal{L}_0)$,

such that $\Gamma \vdash_{SQ} \phi$ is the last sequent, and each sequent is obtained from previous sequents according to the following rules:

- **Ass**: If $\psi \in \Delta$ then infer $\Delta \vdash_{SQ} \psi$.
- **MP**: From $\Delta \vdash_{SQ} \psi$ and $\Delta' \vdash_{SQ} (\psi \to \chi)$ infer $\Delta \cup \Delta' \vdash_{SQ} \chi$.
- **DT**: From $\Delta \cup \{\psi\} \vdash_{SQ} \chi$ infer $\Delta \vdash_{SQ} (\psi \to \chi)$.
- **PC**: From $\Delta \cup \{\neg \psi\} \vdash_{SQ} \chi$ and $\Delta' \cup \{\neg \psi\} \vdash_{SQ} \neg \chi$, infer $\Delta \cup \Delta' \vdash_{SQ} \psi$. ('PC' stands for *proof by contradiction*.) **Note:** no axioms.

Lec 6 - 7/8

6.10 Example of a proof in SQ

$$\begin{array}{ll} 1 & \neg\beta \vdash_{SQ} \neg\beta & [Ass] \\ 2 & (\neg\beta \rightarrow \neg\alpha) \vdash_{SQ} (\neg\beta \rightarrow \neg\alpha) & [Ass] \\ 3 & (\neg\beta \rightarrow \neg\alpha), \neg\beta \vdash_{SQ} \neg\alpha & [MP \ 1,2] \\ 4 & \alpha, \neg\beta \vdash_{SQ} \alpha & [Ass] \\ 5 & (\neg\beta \rightarrow \neg\alpha), \alpha \vdash_{SQ} \beta & [PC \ 3,4] \\ 6 & (\neg\beta \rightarrow \neg\alpha) \vdash_{SQ} (\alpha \rightarrow \beta) & [DT \ 5] \\ 7 & \vdash_{SQ} ((\neg\beta \rightarrow \neg\alpha) \rightarrow (\alpha \rightarrow \beta)) & [DT \ 6] \end{array}$$

Notation: To avoid confusion, we sometimes write $(\Gamma \vdash_{L_0} \phi)$ for $(\Gamma \vdash \phi)$ in L_0

6.11 Theorem

 L_0 and SQ are equivalent, i.e. for all Γ, ϕ :

$$\Gamma \vdash_{L_0} \phi \text{ iff } \Gamma \vdash_{SQ} \phi.$$

Proof: Exercise

Lec 6 - 8/8