
Question 1

We will often be using the following easy Lemma:

Lemma 0.1. Suppose B is a family of open subsets of a topological space X.
B is a basis for X if and only if for every open U ⊆ X and x ∈ U there is

B ∈ B such that x ∈ B ⊆ U .

Proof. ⇒: U =
⋃
B′ for some B′ ⊆ B. Thus x ∈ B for some B ∈ B′ and then

x ∈ B ⊆ U .
⇐: If U is open, for each x ∈ U choose Bx ∈ B with x ∈ Bx ⊆ U and

observe that U =
⋃
x∈U Bx.

Countable Products

Suppose (Xn, dn) are metric spaces. From Sheet 0, we may assume all dn
are bounded by 1 (otherwise replace with min {dn, 1} which induces the same
topology) so that dH from Sheet 0 is a metric on

∏
nXn.

We need to check that the topology induced by dH coincides with the Ty-
chonoff topology.

Note that πm : (X, dH)→ (Xm, dm) is continuous since dm(xm, ym) ≤ 2md(x, y)
(for x, y ∈

∏
nXn). Since the Tychonoff product topology is the smallest topol-

ogy that makes all πm continuous, the every Tychonoff-open set must be dH -
open.

For the converse it is enough to check that for x ∈
∏
nXn and ε > 0 there

is Tychonoff-open U = Ux,ε with x ∈ U ⊆ Bε(x). Then if V is dH -open for
x ∈ V we can choose εx > 0 such that Bεx(x) ⊆ V and thus V =

⋃
x∈V Ux,εx is

Tychonoff open.
So let x ∈

∏
nXn and ε > 0 and choose N such that

∑
n≥N 2−n < ε/2. Now

let δ = ε
2(N+1) and observe that

x ∈ Bδ(x0)×Bδ(x1)× · · · ×Bδ(xN−1)×
∏
n≥N

Xn =
⋂
n<N

π−1n (Bδ(xn)) ⊆ Bε(x).

Remarks

If you live in the category of metric spaces, what should the ‘morphisms’, i.e.
the ‘structure-preserving maps’ be?

We know about the isomorphisms (namely f : (X, dX) → (Y, dY ) is an iso-
morphism if and only if f is a bijection such that for all x, x′ ∈ X we have
dY (f(x), f(x′)) = dX(x, x′).

But we also want that if f : (X, dX) → (Y, dY ), g : (X, dX) → (Y, dY ) are
morphisms with f ◦ g = idY and g ◦ f = idX then f and g are isomorphisms.
If we simply use continuous maps as morphisms, this fails (e.g. X = Y = R,
f(x) = 2x, g(x) = x/2). So the ‘right’ choice of morphism are (can be) the
‘non-expansions’, i.e. maps such that dY (f(x), f(x′)) ≤ dX(x, x′).
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Note however that πm (m > 1) is not a non-expansion from (
∏
nXn, dH)

to (Xm, dm), so dH is not the ’right‘ metric on
∏
nXn. In some sense this is

reassuring since dH is sensitive to the order of the metric spaces which ‘should
not’ happen for a product-metric.

In fact, you can check that the sup-metric d∞(x, y) = supn dn(xn, yn) is
the ‘right’ product-metric, but this (for non-trivial Xn) does not induce the
Tychonoff topology.

Uncountable Products

Let I be uncountable and for i ∈ I let Xi = {0, 1} with the discrete topology.
We will show that {0} is not a countable intersection of open sets in

∏
iXi.

But in every metric space {x} =
⋂
n∈ω B2−n(x) is a countable intersection of

open sets.
So, let Un, n ∈ ω be open sets containing 0. We shrink the Un to basic

open sets, i.e. choose finite Fn ⊆ I such that 0 ∈ Bn =
⋂
i∈Fn

π−1i (0) ⊆ Un.
Then

⋃
n Fn is a countable union of finite sets so countable and hence we can

choose i0 ∈ I \
⋃
n Fn. Let y ∈

∏
iXi be given by yi =

{
1; if i = i0

0; otherwise
. Then

0 6= y ∈
⋂
nBn ⊆

⋂
n Un as required.

Remarks

First note that the proof above works for any non-trivial Xi.
Next observe that being first countable implies every singleton being a count-

able intersection of open sets.
However, the above argument does not show that the set of continuous

real-valued functions on [0, 1], C([0, 1]), as a subspace of R[0,1] (this gives it the
topology of pointwise convergence) is non-metrizable: continuous functions on
[0, 1] are determined by their values on Q ∩ [0, 1], so f is the only continuous
function in ⋂

n∈ω,q∈Q∩[0,1]

π−1q ((f(q)− 2−n, f(q) + 2−n)).

However, the space is still not first countable: for suppose that Un, n ∈ ω is
a collection of open sets containing f .

Assume first that for each n, there is finite Fn ⊆ [0, 1] and ε > 0 such that
Un =

⋂
x∈Fn

π−1x (Bεn(f(x))). Now let y ∈ [0, 1] \
⋃
n Fn (this exists as

⋃
n Fn is

countable and [0, 1] is uncountable) and let V = π−1y ((f(x)−1, f(x)+1)) which
is open and contains f . For each n, we can construct a continuous function
gn : [0, 1] → R (in fact a polynomial) through all the (x, f(x)), x ∈ Fn and
(y, f(x) + 2). Then gn ∈ Un \ V so that Un 6⊆ V .

If the Un are not of the form above, we can shrink them to this form and
again Un 6⊆ V .

Thus we have shown: For every countable family of open sets Un 3 f , n ∈ ω
there is open V 3 f such that for every n ∈ ω Un 6⊆ V .
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Hence C([0, 1]) with the topology of pointwise convergence is not first count-
able and hence not metrizable.

Question 2

The ‘slick’ way of doing this is by using the dC from Sheet 0: if C,D are
disjoint closed then dC , dD : X → R are continuous and by disjointness and
C = d−1C (0), D = d−1D (0) we have that dC + dD is non-zero on X. Thus

f =
dC

dC + dD
: X → [0, 1]

(it is into [0, 1] since 0 ≤ dC ≤ dC +dD) is continuous and still C = f−1(0), D =
f−1(1) so that f−1([0, 1/3)), f−1((2/3, 1]) are disjoint open sets containing C
and D respectively.

Remarks

If you try this ‘manually’ you need to be careful: the two components of the
graph of 1/x2 are closed subsets of R2 but have ‘distance’ 0. So you need to
do things pointwise, i.e. for c ∈ C choose εc > 0 such that Bεc(c) ∩D = ∅ and
similarly for d ∈ D. Then you need to halve the εs and union up i.e. set

U =
⋃
c∈C

Bεc/2(c); V =
⋃
d∈D

Bεd/2(d)

and note that C ⊆ U , D ⊆ V and if x ∈ U ∩ V then there is c ∈ C and
d ∈ D such that d(c, d) ≤ d(c, x) + d(x, d) < εc/2 + εd/2 ≤ εc, εd so that either
d ∈ Bεc(c) ⊆ X \D (impossible) or c ∈ Bεd(d) ⊆ X \ C (also impossible).

Question 3

second countable implies separable

Suppose B is a countable basis. For B ∈ B choose dB ∈ B and set D =
{dB : B ∈ B}.

Clearly D is countable.
To see that it is dense, let U be a non-empty open subset of X, choose x ∈ U

then B ∈ B with x ∈ B ⊆ U . Then dB ∈ B ∩ U as required.

second countable implies Lindelöf

Let B be a countable basis.
If U is an open cover of X, for each B ∈ B choose a VB ∈ U such that

B ⊆ VB if some such VB exists.
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Then
V = {VB : B ∈ B such that VB is defined}

is a countable subcollection of U . We’ll show it covers X: if x ∈ X find U ∈ U
such that x ∈ U and then B ∈ B such that x ∈ B ⊆ U . Then VB is defined
(since B ⊆ U ∈ U) and x ∈ B ⊆ VB ∈ V as required.

Remarks

This is a typical way to see that usually (but not always) for compactness-like
properties, we may assume that the open cover is in fact a basic open cover:
shrink the open sets to basic open sets and for each such basic open set fix an
element of the cover containing it.

metric+separable implies second countable

Let D be a countable dense subset and let

B = {B2−n(d) : d ∈ D,n ∈ ω} .

Clearly B is a countable collection of open sets. We’ll verify it is a basis: let
x ∈ U open ⊆ X and choose N such that x ∈ B2−N (x) ⊆ U . Find d ∈
D ∩B2−(N+1)(x) (by density of D) and note that by symmetry and the triangle
law

x ∈ B2−(N+1)(d) ⊆ B2−N (x) ⊆ U
as required.

metric + Lindelöf implies second countable

For each n ∈ ω, note that Un = {B2−n(x) : x ∈ X} is an open cover of X so has
a countable subcover Bn.

Then B =
⋃
n Bn is a countable union of countable sets so countable and

consists of open sets. We verify it is a basis: let x ∈ U open ⊆ X and choose
N such thath x ∈ B2−N (x) ⊆ U . Choose B = B2−(N+1)(y) ∈ Bn ⊆ B (for some
y ∈ X) such that x ∈ B and as before

x ∈ B ⊆ B2−N (x) ⊆ U.

Remarks

You could be tempted to directly go from metric+separable to Lindelöf: a
typical attempt may go as follows: let D be countable dense and U be an
open cover. For d ∈ D choose Ud ∈ U such that d ∈ Ud. Now we hope that
{Ud : d ∈ D} covers X, but that fails unless you are clever about choosing the Ud
(e.g. X = R, D = Q \ {0} ,U = {(−∞, 0), (0,∞),R}, Uq = (−∞, 0) or (0,∞)).

An interesting question is under which conditions (other than metric) sep-
arable implies Lindelöf and conversely. We will see one of these later in the
course.
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Also, from the 1960s onwards, a lot of research went into the question of
whether there exists a hereditarily separable space that is not Lindelöf (called
an S-space) and whether there eixsts a hereditarily Lindelöf space that is not
separable (called an L-space). For more information see the bottom half of page
2 of http://web.mat.bham.ac.uk/C.Good/research/pdfs/ency-lind.pdf.

Question 4

metric spaces have halving operators

Define H(x,Bε(x)) = Bε/2(x) and extend as follows: if x ∈ U open ⊆ X choose
εx > 0 such that x ∈ Bεx(x) ⊆ U and set H(x, U) = H(x,Bεx(x)).

If H(x, U) meets H(y, V ) in z say then wlog εx ≤ εy and then

d(x, y) ≤ d(x, z) + d(z, y) < εx/2 + εy/2 ≤ εy

so that x ∈ Bεy (y) ⊆ V as required.

having halving operators is hereditary

Next if H is a halving operator for X and Y ⊆ X we define a halving operator
fo Y as follows: for each Y -open U ⊆ Y , choose X-open WU ⊆ X such that
U = WU ∩ Y and if x ∈ V then set HY (x, U) = H(x,WU ) ∩ Y .

If then z ∈ HY (x, U)∩HY (y, V ) = H(x,WU )∩H(y,WV )∩Y then x ∈WV

or y ∈WU . But x, y ∈ Y so x ∈WV ∩ Y = V or y ∈WU ∩ Y = U as required.

Hausdorff+halving operator implies normal

We follow the ‘manual’ proof of metric implies normal: Suppose C,D are disjoint
closed. For c ∈ C note that c ∈ X \D which is open and similarly for d ∈ D we
have d ∈ X \ C which is open (from disjointness). Thus we can set

U =
⋃
c∈C

H(c,X \D); V =
⋃
d∈D

H(d,X \ C)

and observe that these are open and C ⊆ U , D ⊆ V .
If U and V were to meet, then some H(c,X \D) meets some H(d,X \ C)

giving c ∈ X \C or d ∈ X \D a contradiction. thus U, V are disjoint as required.

Remark

When considering normality, we can view it as a function N : (C,D) 7→
(UC,D, VC,D) from the set of pairs of disjoint closed subsets to the set of pairs of
disjoint open subsets. We would expect this function to be ‘monotone’ in both
C and D, i.e. if C ⊆ C ′ (and D is disjoint from C) then UC,D ⊆ UC′,D and
VC′,D ⊆ VC,D (and similarly if D ⊆ D′). If such a monotone function exists, the
space is called monotonically normal. It turns out (see Q7) the in regular spaces,
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monotone normality is equivalent to having halving operators! It also turns out
that monotone normality is a very important property and much research has
been carried out into it.

Question 5

First note that just like for compactness,

Lemma 0.2. If X is Lindelöf and C is a closed subset of X then every X-open
cover of C has a countable subset covering C.

Proof. Let U be an X-open cover of C. Then U ∪ {X \ C} is an open cover of
X so has a countable subcover U ′. Then U ∩ U ′ = U ′ \ {X \ C} is a countable
subset of U that covers C (since the removed set X \ C does not contribute to
covering C).

So, let C,D be disjoint closed subsets of X. By regularity, for c ∈ C and
d ∈ D choose open Uc 3 c, Vd 3 d respectively such that

c ∈ Uc ⊆ Uc ⊆ X \D

and similarly
d ∈ Vd ⊆ Vd ⊆ X \ C.

Then {Uc : c ∈ C} and {Vd : d ∈ D} are open covers of C and D respectively, so
have countable subcovers U = {Un : n ∈ ω} and V = {Vn : n ∈ ω} respectively.
Now let

Ûn =
⋃
k≤n

Uk \
⋃
k≤n

Vk; V̂n =
⋃
k≤n

Vk \
⋃
k≤n

Uk.

These are open sets (finite union of closed sets are closed) and Un ∩ C ⊆ Ûn
since the removed stuff,

⋃
k≤n Vk, does not meet C and similarly Vn ∩D ⊆ V̂n.

Therefore
U =

⋃
n

Ûn ⊇
⋃
n

(Un ∩ C) = C ∩
⋃
n

Un = C

and similarly V =
⋃
n V̂n ⊇ D.

Finally, if U and V would meet, then some Ûn meets some V̂m. Wlog
n ≤ m but by the definition of V̂m, we have V̂m ⊆ X \

⋃
k≤m Uk ⊆ X \ Ûn, a

contradiction.
Thus U, V are as required showing that C,D are separated by open sets.

Remarks

This is a typical use of countability. We construct our open sets in stages and
because each stage is finite, we can use unions over closed sets in our construction
as well.
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Question 6

⇒: Suppose A,B are separated subsets of X, i.e. A ∩B = ∅ = A ∩B.
Let Y = X \ (A ∩ B). Note that A,B ⊆ Y by construction and that Y is

open in X. Now observe that

A
Y

= A
X ∩ Y ; B

Y
= B

X ∩ Y

and hence by choice of Y we have that A
Y

and B
Y

are disjoint (and of course
Y -closed).

Since Y is normal by assumption there are disjoint Y -open U ⊇ A
Y ⊇ A

and V ⊇ B
Y ⊇ B. But since Y is open in X, U and V are in fact X-open as

required.
⇐: Suppose Y ⊆ X and A,B are disjoint Y -closed subsets of Y . Then

A
X ∩B = A

X ∩ (B ∩ Y ) = (A
X ∩ Y ) ∩B = A

Y ∩B = A ∩B = ∅

and similarly

B
X ∩A = ∅

so that by assumption there are disjoint X-open U ⊇ A and V ⊇ B.
Then U ∩ Y and V ∩ Y witness separation of A,B in Y by open sets and

hence normality of Y (at A,B).

Remark

This is nice because it gives a straightforward internal definition of hereditary
normality. Also, the property that (some) separated sets are separated by open
sets is useful in many instances.

Question 7

Monotonically Normal implies existence of halving operator: For closed
C ⊆ U open write W (C,U) for the open set containing C and whose closure is
contained in U and assume W is monotonically increasing in C and monotoni-
cally decreasing in U (by setting D = X \ U).

We first make this ‘symmetric’ by replacing W (C,U) by W (C,U)\W (U,C)
so that W (C,U) ∩W (X \ U,X \ C) = ∅ (and it is still monotone in the right
ways).

Then we define H(x, U) = N({x} , U) and show this works: if x 6∈ V 3 y
and y 6∈ U 3 x then

H(x, U) ∩N(X \ U,X \ {x}) = ∅
H(y, V ) = N({y} , V ) ⊆ N(X \ U,X \ {x})

where the first line is the symmetry and the second the monotonicity (y 6∈
U means {y} ⊆ X \ U and x 6∈ V means V ⊆ X \ {x}). But this gives
H(x, U) ∩H(y, V ) = ∅ as required.
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Halving operator implies monotonically normal: Assume H(x, U) is the
halving operator.

We first make it monotone in U by replacingH(x, U) with
⋃
{H(x, V ) : x ∈ V open ⊆ U}

so that wlog x ∈ U ⊆ U ′ ⇒ H(x, U) ⊆ H(x, U ′).
If C,D are disjoint closed then set

U =
⋃
c∈C

H(c,X \D)

V =
⋃
d∈D

H(d,X \ C)

and note that these are open sets with the right monotony properties (because
H is monotonic) and if U ∩ V 6= ∅ then there is c ∈ C, d ∈ D such that
H(c,X \ D) ∩ H(d,X \ C) 6= ∅ so that c ∈ \C (contradiction) or d ∈ X \ D
(contradiction).

Totally ordered spaces are monotonically normal: We do this for a
dense total order without endpoints since we can embed every total order in
a dense total order without endpoints and subspaces of monotonically normal
spaces are monotonically normal.

Well order X by ≤̂. For a non-empty open interval (a, b) we let m(a,b) be

the ≤̂-minimal element of (a, b).
We then set H(x, (α, β)) = (m(α,x),m(x,β)) for α < x < β and claim that

this works (note that by density this is well-defined).
The relevant cases for pairs of triples α < x < β and α′ < x′ < β′ are

� x ≤ α′ and β ≤ x′

� β′ ≤ x and x′ ≤ α

(otherwise x ∈ (α′, β′) or x′ ∈ (α, β)).
So consider the first of them and assume thatH(x, (α, β)) meetsH(x′, (α′, β′))

in some z. Then x ≤ α′ < m(α′,x′) < z < m(x,β) < β ≤ x′ and so m(α′,x′) ∈
(x, β) and m(x,β) ∈ (α′, x′) which contradicts their ≤̂-minimality as they are
different.

If we now want to define H(x, U) for x ∈ U open we simply choose a, b with
x ∈ (a, b) ⊆ U and define H(x, U) = H(x, (a, b)).
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