
B8.4 Information Theory

Sheet 2 — MT23

Section A

1. We are given a fair coin, and want to generate a random variable X from i.i.d. sampling

from tossing the coin, such that X follows the distribution

P(X = 1) = p, P(X = 0) = 1− p

with any given constant p ∈ (0, 1).

Suppose Z1, Z2, · · · are the results of independent tossing of the coin, i.e., {Zi} is an

i.i.d. sequence of random variables with the distribution P(Z = 0) = P(Z = 1) = 1
2
.

Denote U =
∑+∞

i=1 Zi2
−i, and define

X =

{
1 if U < p

0 otherwise
.

(a) Show that U follows a uniform distribution over [0, 1), and hence show that P(X =

1) = p, P(X = 0) = 1− p.

(b) Denote I as the minimal number of n such that we can tell U < p based on

Z1, · · ·Zn. Calculate E[I] and show that E[I] ≤ 2.

Solution:

(a) For any q ∈ [0, 1), denote its binary expansion as q = 0.a1a2 · · · , i.e. q =∑+∞
i=1 ai2

−i with ai ∈ {0, 1} (with the convention that 1111 · · · is not allowed),

and define

I = min{i : Zi ̸= ai}.

Then P(U = p) = P(I = ∞) = 0, and

P(U < p) = P(I < +∞, ZI < ai)

=
+∞∑
n=1

P(I = n, Zn < an)

=
+∞∑
n=1

P{Z1 = a1, · · · , Zn=1 = an−1, and Zn < an}

=
+∞∑
n=1

2−(n−1)2−1an

= p.
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Since P(X = 1) = P(U < p) = p, we know the distribution of X is (p, 1− p).

(b) With a little abuse of notation, suppose p = 0.a1a2 · · · and I defined as above.

Then we can tell U < p at time I.

Since

P(I = n) = P(Z1 = a1, · · ·Zn−1 = an−1, Zn ̸= an)

= 2−n,

E[I] =
+∞∑
n=1

n2−n

= 2.

2. For any q ∈ [0, 1] and n ∈ N such that nq is an integer, show that

2nH(q)

n+ 1
≤

(
n

nq

)
≤ 2nH(q).

Hint: Consider the i.i.d. Bernoulli sequence X1, X2, · · · , Xn with probabilities defined

by P(X = 1) = q, P(X = 0) = 1− q.

Solution: As in the hint, construct an i.i.d. sequence X1, X2, · · · , Xn with P(X = 1) =

q, P(X = 0) = 1− q. Denote S =
∑

i Xi, and Γ = {(x1, · · · , xn) : xi ∈ {0, 1},
∑

n xi =

nq}. Then the number of elements in Γ is

|Γ| =
(
n

nq

)
.

It is easy to see that

P(S = np) =
∑

(x1,··· ,xn)∈Γ

P{(X1, · · · , Xn) = (x1, · · · , xn)}

=
∑

(x1,··· ,xn)∈Γ

qnq(1− q)n(1−q)

= |Γ|2−nH(q).

On one hand, it is trivial that P(S = nq) < 1.

On the other hand, we know S follows the binomial distribution with parameter n and

q. If we denote pk = P(S = k) =
(
n
nq

)
qk(1− q)n−k, then

pk+1

pk
=

n− k

k + 1

q

1− q
,
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so

pk+1 ≤ pk ⇔ (n− k)q ≤ (k + 1)(1− q)

⇔ nq ≤ kq + (k + 1)(1− q) = k + (1− q)

⇔ k ≥ nq − (1− q).

When nq = k0 is an integer, we can see pk is increasing over k ≤ k0 and decreasing over

k > k0, which means nq achieves the maximal value of pk, and hence

P(S = nq) ≥ 1

n+ 1
.

Together with the equality P(S = nq) = |Γ|2−nH(q), we have

2nH(q) ≥
(
n

nq

)
≥ 2nH(q)

n+ 1
.
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Section B

3. Let X1 be a random variable valued in X1 = {1, 2, · · · ,m} and X2 be a random variable

valued in X2 = {m + 1, · · · , n} for integers n > m. Let θ be a random variable with

P(θ = 1) = α, P(θ = 2) = 1− α for some α ∈ [0, 1]. Define a new random variable

X = Xθ.

Furthermore, suppose θ,X1, X2 are independent to each other.

(a) Express H(X) in terms of H(X1), H(X2) and H(θ).

(b) Show that 2H(X) ≤ 2H(X1) + 2H(X2). Can the equality hold in this inequality?

4. Let X be a random variable with pmf p over the image space X with finite elements

k = |X |, X⃗ = (X1, · · · , Xn). We label elements in X by a non-decreasing order of p(x),

such that pi = P(X = xi) is non-decreasing in i. By this labelling, we can easily rank

the probability P(X⃗ = x⃗) for all c⃗ ∈ X n, and explicitly construct the smallest set Sε
n

by greedily including the element in X n with highest probabilities one-by-one until we

have P(X⃗ ∈ Sε
n) ≥ 1− ε.

Show that for any ε > 0, there exists n0, such that for any n ≥ n0, we have

(1− 2ε)2n(H(X)−ε) ≤ |Sε
n| ≤ 2n(H(X)+ε).

Hint: For any ε1 ∈ [0, 1), ε2 ∈ [0, 1) and events A,B with P(A) ≥ 1− ε1,P(B) ≥ 1− ε2,

show that P(A ∩B) ≥ 1− ε1 − ε2. Use this inequality to estimate P(Sε
n ∩ T ε

n ).
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5. International Morse code is a ternary encoding of the Latin alphabet, traditionally

represented as dots and dashes. A version of the encoding (written in terms of digits

0,1) is given in the file IMC.csv. Here we represent a dot as ’10’, a dash as ’1110’ and

the pause between letters as ‘0000000’ (representing the typical length of the dot-dash-

pause).

(a) Explain why Morse code is a prefix code, but is not a uniquely decodable code if

the ending pauses are excluded.

(b) Using the single letter counts and the Huffman algorithm, determine a binary code

which encodes each single character as a single block.

(c) Using the single letter counts and the Huffman algorithm, determine a binary code

which encodes each pair of characters as a single block, assuming characters are

sampled independently.

(d) Using the double letter counts and the Huffman algorithm, determine a binary code

which encodes each pair of consecutive letters as a single block.

(e) Using the double letter counts, evaluate the average message lengths of each of the

codes above (including International Morse code), when used on pairs of consecutive

English characters.

Remark: You only need to submit solutions to (a,e).

Remark: To account for Morse code being a ternary code, multiply the average length

of a message by log(3), for a fair comparison with binary codes.
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Section C

6. The differential entropy of a Rn-valued random variable X with density function f(·) is
defined as

h(X) := −
∫
Rn

f(x) log(f(x))dx

with the convention 0 log(0) = 0.

(a) Calculate h(X) for the following cases with n = 1.

(1) X is uniformly distributed on an interval [a, b] ⊂ R;

(2) X is a standard normal distribution;

(3) X is exponential distributed with parameter λ > 0.

(b) For general n-dimensional case, if E[X] = 0, and Var(X) = K, (K is the variance-

covariance matrix). Show that

h(X) ≤ n log(
√
2πe) + log(

√
|K|)

with the equality hold iff X is multivariable normal.

Hint: you can firstly prove the continuous version of Gibbs’ inequality: For any two

density functions f(·) and g(·),

−
∫

f(x) log(f(x))dx ≤ −
∫

f(x) log(g(x))dx.

Also, you can try to prove (or use it without proof) the following property of the

variance-covariance matrix: If X = (X1, · · · , Xn)
⊤ has expectation 0 and variance-

covariance matrix Var(X) = K, then

E[X⊤K−1X] = n.

Solution:

(a) h(X) = −E[log(f(X)] = E[log(1/f(X))].

(a.1) f(x) = 1
b−a

for any x ∈ [a, b], and f(x) = 0 otherwise. So h(X) = E[log(b −
a)] = log(b− a).

(a.2) f(x) = 1√
2π
e−x2/2, so

h(X) = E[log(
√
2πeX

2/2)] = log(
√
2π)+E[

X2

2
log(e)] = log(

√
2π)+

1

2
log(e) = log(

√
2πe).

(a.3) f(x) = λe−λx for x ≥ 0 and f(x) = 0 for x < 0. So

h(X) = E[− log(λ) + λX log(e)] = − log(λ) + λ log(e)
1

λ
= log(e)− log(λ).
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(b) Denote X = (X1, · · · , Xn)
⊤ is a normal random vector with mean E[X] = 0 and

variance E[X⊤X] = K. Denote g as its density function, i.e.

g(x) =
1√

(2π)n|K|
e−

1
2
x⊤K−1x ∀x ∈ Rn.

We first calculate h(g).

h(g) = −E[log(g(X))]

=
1

2
log((2π)n|K|) + 1

2
log(e)E[X⊤K−1X]

=
n

2
log(2π) +

1

2
log |K|+ 1

2
log(e)n

=
n

2
log(2πe) +

1

2
log |K|

= n log(
√
2πe) + log(

√
|K|).

Then we prove that h(f) ≤ h(g) for any f with mean 0 and variance-covariance

matrix K. For any random vector Y with the density f , we have

h(f) = −E[log(f(Y )]

= −E[log(g(Y ))] + E[log(g(Y )/f(Y ))].

For the first term

−E[log(g(Y ))] =
1

2
log((2π)n|K|) + 1

2
log(e)E[Y ⊤K−1Y ]

= −E[log(g(X))] = h(g).

For the second term, by Jensen’s inequality,

E[log(g(Y )/f(Y ))] ≤ log(E[g(Y )/f(Y )])

= log(1) = 0.

So we get h(f) ≤ f(g), and the equality hold iff g(Y ) ≡ f(Y ).
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7. Consider the space of random variables X on a discrete space.

(a) Show that the function ρ : X × X → R defined by (X, Y ) 7→ H(X|Y ) +H(Y |X)

is a pseudo-metric (that is, it is positive, symmetric and satisfies the triangle in-

equality).

(b) Show that ρ(X, Y ) = 0 if and only if there exists a function f such that f(X) = Y

with probability one, and hence ρ is a metric on the corresponding equivalence

class (where X ∼ Y iff f(X) = Y for some Y )

Solution:

(a) Clearly ρ(X, Y ) ≥ 0 and ρ(X, Y ) = ρ(Y,X). For any three random variables, we

have

H(X|Y ) +H(Y |Z) ≥ H(X|Y, Z) +H(Y |Z)

= H(X, Y |Z)

= H(X|Z) +H(Y |X,Z)

≥ H(X|Z)

Therefore,

ρ(X, Y ) + ρ(Y, Z) = H(X|Y ) +H(Y |X) +H(Y |Z) +H(Z|Y )

≥ H(X|Z) +H(Z|X) = ρ(X,Z).

(b) If such an f exists, then it is easy to see that H(X|Y ) = H(Y |X) = 0, as the

conditional probabilities are trivial. Conversely, by positivity if ρ(X, Y ) = 0 then

H(Y |X) = 0, and so the conditional probability must be trivial. We can then

define the map f to be the selector: f(x) = y if P(Y = y|X = x) = 1. The result

follows.
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