Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2023, Oxford

Cornelia Druțu (University of Oxford)

Infinite Groups

Part C course MT 2023, Oxford

 $\frac{1}{10}$

Presentations of groups

Given $G = \langle S \rangle$, by the Universal property, \exists an onto homomorphism $\pi_S : F(S) \to G$, whence G isomorphic to $F(S) / \ker(\pi_S)$.

The elements of ker(π_S) are called relators or relations for $G = \langle S \rangle$. We are interested in minimal subsets R of ker(π_S) such that ker(π_S) is normally generated by R, that is ker(π_S) = $\langle \langle R \rangle \rangle$. We say that the elements $r \in R$ are defining relators. The pair (S, R) defines a presentation of G. We write $G = \langle S | r = 1, \forall r \in R \rangle$ or simply $G = \langle S | R \rangle$. It means G is isomorphic to $F(S)/\langle \langle R \rangle \rangle$. Equivalently:

- $\forall g \in G, g = s_1 \cdots s_n$, for some $n \in \mathbb{N}$ and $s \in S \cup S^{-1}$;
- $w \in F(S)$ satisfies $w =_G 1$ if and only if in F(S)

$$w = \prod_{i=1}^m r_i^{x_i}$$
, for some $m \in \mathbb{N}, r_i \in R, x_i \in F(S)$.

 $\frac{2}{10}$

Examples of group presentations

- $\langle a_1, \ldots, a_n \mid [a_i, a_j], 1 \leq i, j \leq n \rangle$ is a finite presentation of \mathbb{Z}^n ;
- 2 $\langle x, y \mid x^n, y^2, yxyx \rangle$ is a presentation of the finite dihedral group D_{2n} ;
- $\langle x, y \mid x^3, y^2, [y, x] \rangle$ is a presentation of the cyclic group \mathbb{Z}_6 ;
- $\langle x_1, \ldots, x_n \mid x_i^2, (x_i x_j)^{m_{ij}} \rangle$, is a presentation of a Coxeter group;
- Integer Heisenberg group:

$$H_{2n+1}(\mathbb{Z}) := \langle x_1, \ldots, x_n, y_1, \ldots, y_n, z ;$$

 $[x_i, z] = 1, [y_j, z] = 1, [x_i, x_j] = 1, [y_i, y_j] = 1, [x_i, y_j] = z^{\delta_{ij}}, 1 \leq i, j \leq n \rangle.$

The Integer Heisenberg group:

$$H_{2n+1}(\mathbb{Z}):=\langle x_1,\ldots,x_n,y_1,\ldots,y_n,z;$$

 $[x_i, z] = 1, [y_j, z] = 1, [x_i, x_j] = 1, [y_i, y_j] = 1, [x_i, y_j] = z^{\delta_{ij}}, 1 \leq i, j \leq n \rangle.$

$$H_{2n+1}(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & x_1 & x_2 & \dots & x_n & z \\ 0 & 1 & 0 & \dots & 0 & y_n \\ 0 & 0 & 1 & \dots & 0 & y_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \dots & 1 & 0 & y_2 \\ 0 & 0 & \dots & \dots & 0 & 1 & y_1 \\ 0 & 0 & \dots & \dots & 0 & 1 \end{pmatrix} ; x_i, y_j, z \in \mathbb{Z} \right\}$$

Cornelia Druțu (University of Oxford)

Part C course MT 2023, Oxford

A group G is called finitely presented if it admits a finite presentation.

NB While there are continuously many finitely generated groups, there are only countably many finitely presented groups.

Sometimes it is difficult, and even algorithmically impossible, to find a finite presentation of a finitely presented group.

Proposition (Universal Property Generalized)

Let $G = \langle S | R \rangle$. A map $\psi : S \to H$ with target a group H can be extended (uniquely) to a group homomorphism $\Phi : G \to H$ iff for every $r \in R$, $r = s_1 \dots s_n$, $\psi(s_1) \dots \psi(s_n) = 1$ in H.

Generalization of the Universal Property

Proposition

Let $G = \langle S | R \rangle$. A map $\psi : S \to H$ with target a group H can be extended (uniquely) to a group homomorphism $\Phi : G \to H$ iff for every $r \in R$, $r = s_1 \dots s_n$, $\psi(s_1) \dots \psi(s_n) = 1$ in H.

Proof. The Universal property of free groups $\Rightarrow \psi$ extends to $\tilde{\psi}: F(S) \rightarrow H$.

 $\begin{array}{l} \langle \langle R \rangle \rangle = \langle R^{F(S)} \rangle \text{ is generated by elements of the form } grg^{-1} \text{, where} \\ g \in F(S), r \in R. \\ \tilde{\psi}(grg^{-1}) = 1 \Rightarrow \langle \langle R \rangle \rangle \leqslant \ker(\tilde{\psi}) \Rightarrow \tilde{\psi} \text{ defines } \Phi : F(S) / \langle \langle R \rangle \rangle \to H. \end{array}$

Uniqueness: because every homomorphism is entirely determined by its restriction to a generating set.

Proposition

Assume $G = \langle S | R \rangle$ finite presentation, and $G = \langle X | T \rangle$ is such that X is finite. Then \exists finite subset $T_0 \subset T$ such that $G = \langle X | T_0 \rangle$.

Proof. $\forall s \in S \exists a_s(X)$ word in X s.t. $s = a_s(X)$ in G. (involves a choice) The map $i_{SX} : S \to F(X)$, $i_{SX}(s) = a_s(X)$ extends to a unique homomorphism $p : F(S) \to F(X)$ (rewriting homomorphism). We have that $\pi_S = \pi_X \circ p$. Likewise, $\forall x \in X \exists b_x(S)$ in S s.t. $x = b_x(S)$. The map $i_{XS} : X \to F(S)$, $i_{XS}(x) = b_x(S)$, extends to homomorphism $q : F(X) \to F(S)$ (another rewriting homomorphism). As previously $\pi_S \circ q = \pi_X$.

For every $x \in X$,

$$\pi_X(p(q(x))) = \pi_S(q(x)) = \pi_X(x).$$

Whence for every $x \in X$, $x^{-1}p(q(x)) \in \text{ker}(\pi_X)$. Let N be the normal subgroup of F(X) normally generated by

$$\{p(r) \mid r \in R\} \cup \{x^{-1}p(q(x)) \mid x \in X\}.$$

We have that $N \leq \ker(\pi_X)$. Goal: prove equality. There is a natural projection

$$Q:F(X)/N
ightarrow F(X)/\ker(\pi_X).$$

Let $\bar{p}: F(S) \to F(X)/N$ be the homomorphism induced by p. $\bar{p}(r) = 1$ for all $r \in R \Rightarrow \bar{p}$ induces a homomorphism

 $Q': F(S)/\ker(\pi_S) \to F(X)/N.$

Note that the domain of Q' is isomorphic to G, and Q' is onto: F(X)/N is generated by xN = p(q(x))N, and the latter is the image under Q' of $q(x) \ker(\pi_S)$. Consider the homomorphism

$$Q \circ Q' : F(S) / \ker(\pi_S) o F(X) / \ker(\pi_X)$$

The isomorphism $G \to F(S)/\ker(\pi_S)$ sends every $x \in X$ to $q(x)\ker(\pi_S)$. The isomorphism $G \to F(X)/\ker(\pi_X)$ sends every $x \in X$ to $x \ker(\pi_X)$. Note that $Q \circ Q'(q(x)\ker(\pi_S)) = Q(xN) = x \ker(\pi_X)$, whence $Q \circ Q'$ isomorphism $\Rightarrow Q'$ injective $\Rightarrow Q'$ isomorphism $\Rightarrow Q$ isomorphism $\Rightarrow N = \ker(\pi_X)$.

Cornelia Druțu (University of Oxford)

In particular, ker (π_X) is normally generated by the finite set of relators

$$\Re = \{p(r) \mid r \in R\} \cup \{x^{-1}p(q(x)) \mid x \in X\}.$$

Since $\Re \subset \langle \langle T \rangle \rangle$, every relator $\rho \in \Re$ can be written as a product

$$\prod_{i\in I_{\rho}}t_{i}^{\nu_{i}}$$

with $v_i \in F(X)$, $t_i \in T$ and I_ρ finite. Whence ker (π_X) is normally generated by the finite subset

$$T_0 = \bigcup_{\rho \in \Re} \{ t_i \mid i \in I_\rho \}$$

of T.

Cornelia Druțu (University of Oxford)