Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2023, Oxford

Cornelia Druțu (University of Oxford)

Part C course MT 2023, Oxford

 $\frac{1}{12}$

Finite presentability is independent of the generating set

Proposition

Assume $G = \langle S | R \rangle$ finite presentation, and $G = \langle X | T \rangle$ is such that X is finite. Then \exists finite subset $T_0 \subset T$ such that $G = \langle X | T_0 \rangle$.

Reformulation of the Proposition:

Given a short exact sequence

$$1 \rightarrow N \rightarrow F(X) \rightarrow G \rightarrow 1$$

with X finite and G finitely presented, N is normally generated by finitely many elements n_1, \ldots, n_k .

This reformulation has a generalization to arbitrary short exact sequences that will appear later on.

 $\frac{2}{12}$

Commutators

Notation

 $[x, y] = xyx^{-1}y^{-1} =$ the commutator of the elements x, y in a group G For subsets A, B in a group G, [A, B] = the subgroup of G generated by all the commutators $[a, b], a \in A, b \in B$.

For every x_1, \ldots, x_n in a group G we denote by $[x_1, \ldots, x_n]$ the n-fold left-commutator

$$[[[x_1, x_2], \ldots, x_{n-1}], x_n].$$

For subsets $A_1, \ldots A_n$ in a group G, $[A_1, \ldots, A_n] =$ the subgroup of G generated by all the commutators $[a_1, \ldots, a_n]$, $a_i \in A_i$.

 $\frac{3}{12}$

Nilpotent Groups: first definition

There are two ways of defining nilpotent groups and of measuring "how far they are from being abelian".

First definition: from the group downwards. The lower central series of a group G,

$$C^1G \trianglerighteq C^2G \trianglerighteq \ldots \trianglerighteq C^nG \trianglerighteq \ldots,$$

is defined inductively by:

$$C^1G = G, \ C^{n+1}G = [C^nG, G].$$

Each $C^k G$ is a characteristic subgroup of G (i.e. for every automorphism $\varphi: G \to G, \varphi(C^k G) = C^k G$). $C^2 G = [G, G] = G'$ is the commutator subgroup, or the derived subgroup, of G.

Nilpotent Groups 2

Definition

G is *k*-step nilpotent if $C^{k+1}G = \{1\}$. The minimal *k* for which *G* is *k*-step nilpotent is called the (nilpotency) class of *G*.

Examples

- Every non-trivial abelian group is nilpotent of class 1.
- The group U_n(K) of upper triangular n × n matrices with 1 on the diagonal and entries in a ring K, is nilpotent of class n − 1 (see Exercise Sheet 2).

• The integer Heisenberg group $H_{2n+1}(\mathbb{Z})$ is nilpotent of class 2.

Basic properties

Lemma

If $G = \langle S \rangle$ (S not necessarily finite, G not necessarily nilpotent), then $\forall k$ the subgroup $C^k G$ is generated by the k-fold left commutators in S, together with $C^{k+1}G$.

Proof Induction on k and two formulas:

•
$$[x, yz] = [x, y] [y, [x, z]] [x, z];$$

•
$$[xy, z] = [x, [y, z]] [y, z] [x, z] = [y, z]^{x} [x, z].$$

Corollary

If $G = \langle S \rangle$ is nilpotent, then $C^n G$ is generated by all the k-fold left commutators in S, where $k \ge n$. In particular, if G is finitely generated, each subgroup $C^n G$ is finitely generated.

6 / 12 [/]

Second definition: from {1} upwards. The center Z(H) of a group H is composed of all $z \in H$ s.t. $zh = hz, \forall h \in H$.

Given a group G, define inductively an increasing sequence of normal subgroups $Z_i(G) \triangleleft G$ by:

- $Z_0(G) = \{1\}.$
- If $Z_i(G) \lhd G$ is defined and $\pi_i : G \rightarrow G/Z_i(G)$ is the quotient map, then

$$Z_{i+1}(G) = \pi_i^{-1} \left(Z(G/Z_i(G)) \right).$$

Note that $Z_{i+1}(G)$ is normal in G, as the inverse image of a normal subgroup of a quotient of G.

In particular,

$$Z_{i+1}(G)/Z_i(G)\cong Z(G/Z_i(G)).$$

Cornelia Druțu (University of Oxford)

 $\frac{7}{12}$

Proposition

G is k-step nilpotent if and only if $Z_k(G) = G$.

Proof Assume that G is nilpotent of class k. We prove by induction on $i \ge 0$ that $C^{k+1-i}G \le Z_i(G)$. For i = 0 we have equality. Assume that

$$C^{k+1-i}G \leq Z_i(G).$$

For every $g \in C^{k-i}G$ and every $x \in G$, $[g,x] \in C^{k+1-i}G \leq Z_i(G)$, whence $gZ_i(G)$ is in the center of $G/Z_i(G)$, i.e. $g \in Z_{i+1}(G)$.

For i = k the inclusion becomes $C^1G = G \leq Z_k(G)$, hence $Z_k(G) = G$.

Conversely, assume $Z_k(G) = G$.

We prove by induction on $j \ge 1$ that $C^j G \le Z_{k+1-j}(G)$.

For j = 1 the two are equal.

Assume the inclusion true for j.

 $C^{j+1}G$ generated by [c,g] with $c \in C^{j}G$ and $g \in G$. Since $c \in C^{j}G \leq Z_{k+1-j}(G)$, by the definition of $Z_{k+1-j}(G)$, the element c commutes with g modulo $Z_{k-j}(G)$, equivalently $[c,g] \in Z_{k-j}(G)$. This implies that $[c,g] \in Z_{k-j}(G)$. It follows that $C^{j+1}G \leq Z_{k-j}(G)$. For j = k + 1 this gives $C^{k+1}G \leq Z_{0}(G) = \{1\}$, hence G is k-step nilpotent.

Definition

The ascending series

$$Z_0(G) = \{1\} \lhd Z_1(G) \lhd \ldots \lhd Z_i(G) \lhd Z_{i+1}(G) \lhd \ldots$$

of normal subgroups of G is called the upper central series of G.

A group G is nilpotent if and only if there exists i such that $Z_i(G) = G$, and its nilpotency class is the minimal k such that $Z_k(G) = G$.

The following example shows that the difference between lower and upper central series of groups can be quite substantial:

Example

We start with the integer Heisenberg group H; it is 2-step nilpotent, $C^2H = H' = Z(H) \cong \mathbb{Z}$. Take $G = H \times \mathbb{Z}$, 2-step nilpotent. $C^2G = C^2H \cong \mathbb{Z}$, while $Z(G) \cong \mathbb{Z}^2$.

Nilpotent Groups: properties

Lemma

- Every subgroup of a nilpotent group is nilpotent.
- **2** If G is nilpotent and $N \triangleleft G$ then G/N is nilpotent.
- So The direct product of a family of nilpotent groups is again nilpotent.
- NB (3) not true for semidirect products. Not even for $\mathbb{Z}^n \rtimes \mathbb{Z}$.

 $\frac{11}{12}$

Nilpotent Groups: a key property

Theorem

Every subgroup H of a finitely generated nilpotent group G is finitely generated.