Initial Value Problems: ODEs

Simple Numerical Methods

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2023, Lecture 5

The Problem

We wish to solve the first order initial value problem: find u(t)
such that

du

— = f(t
dt (t.u),

for t > 0 with u(0) = up.

The Problem

The study of vector-valued first order problems also allows us to
solve (scalar) higher order problems. For example, suppose we wish
to solve

u(e) = (£ (), (), 0" (0), . i)
for t > 0 with u(0), «/(0), u”(0), ..., ul1(0) all given.
We can then set uy(t) = u(t), and uy(t) = u*=1(t) for

k =2,...,n. This gives u}(t) = uk41 so that we have a system:
up = u(t)
uy = us(t)
Upy = un(t)
u = f(t,u(t), ua(t), ..., up_1(t))

with u1(0), u2(0), ..., u,(0) all given.

Scalar Problem

We shall write everything in terms of the scalar problem: find u(t)
such that

du
— = f(t
dt (t.u),

for t > 0 with u(0) = up, but all methods are easily generalised to
the case where the solution is a vector.

Existence and Uniqueness of Solution to Scalar Problem
Theorem: Picard
Suppose that f(t, u) is a continuous function of t and u in a
region Q = [0, T) x [uo — v, up + «] of the (t, u) plane and that
there exists L > 0 such that

1f(t,u) = f(t,v)] < Llu—v|, Y(t,u), (t,v)eQ.

L is called a Lipschitz constant and this a Lipschitz condition.
Suppose also that

MT <«

—)

where M = maxgq |f|. Then there exists a unique continuously
differentiable function u(t) defined on [0, T) satisfying

du
— = f(t 0<t<T
T (t,u), <t<T,

u(0) = wup.

Numerical Methods

Suppose we want to solve

u'(t) i f(t,u), t>0, (1)

In order to solve (1) numerically over the time interval [0, T], we
define a set of time points at which we wish to approximate the
solution. We set t, = nAt for n=0,1,..., N where At = T/N.

Then we can integrate (1) to get
tn+1
u(tnt1) = u(tn) +/ f(t,u(t))dt . (2)
tn

Using different approximations to the integral in (2) leads to
different numerical schemes.

Simplest Methods — Euler Methods

Perhaps the simplest numerical methods are the explicit and
implicit Euler methods (also known as forward and backward
Euler).

Here we let U, be the numerical approximation to u(ty).

For explicit (or forward) Euler we use

tht1
/ f(t,u(t))dt =~ Atf(tn, u(ty)) .
tn
(Recall tp41 — t, = At.)

This gives the numerical scheme
Un+]_ - Un + Atf(tn, Un) ;

or equivalently
Un+1 - Un
At
forn=20,1,...,N —1 and with Uy = wp.

f(tn, Un)

Simplest Methods — Euler Methods

For implicit Euler we use

tht1
/ F(Eu(D)dt ~ Atf(trsr, u(tnn)) |
th

This gives the numerical scheme
Un+]_ == Un + Atf(tn+1, Un+1) 5

or equivalently

Un+1 - Un
At

forn=0,1,...,N—1 and with Uy = ug.

- f(tn+17 Un+1)

Simplest Methods — Euler Methods

Explicit Euler is particularly simple. Given Uy = ug and the
function f we compute

Upt1 = U, + Atf(tn, Uy)
forn=0,1,....

Implicit Euler is more complex in the sense that if we are given
Uo = up and the function f we compute U,11 as the solution to
the nonlinear equation

Un+1 = Up+ Atf—(tn—&-la Un+1)

for n=0,1,.... The solution to this nonlinear equation can be
computed by (say) Newton's method. At timestep n+ 1, a good
starting guess for Newton's method is U,.

Trapezium Rule/Crank Nicolson Scheme

Another option is to use the trapezium rule to approximate the
integral via

[et = B () + e)

This gives rise to a numerical scheme known as the trapezium rule
or the Crank Nicolson scheme

At
- (F(tn, Un) + f(tnt1, Unt1))

Un+1 = Un+ 5

or equivalently

Un+1 - Un
At

forn=0,1,...,N—1 and with Uy = ug.

(f(tn, Un) + f(tnt1, Unt1))

N~

Generalisation — 6-Methods

Both the explicit and implicit Euler methods, as well as the Crank
Nicolson method, are specific cases of the #-method which is given
by
Un - Un
T = Ot Una) + (1= O (tn, Un) (3)
for n=20,1,... and with Uy = ug. Special cases are

» 0 =0 — explicit Euler
» 0 =1— implicit Euler
» 0 =1/2 — Crank Nicolson method

For all non-zero values of 8, the method is implicit and a nonlinear
equation must be solved at each time-step.

Example 1

Consider the problem

J(t) = u, t>0,
u(0) = 1.

The numerical schemes for this are:

» Explicit Euler: Up11 = U, + AAtU, = (1 + AAL) U,
» Implicit Euler: Upy1 = Uy 4+ AAtU,41, or equivalently

Un

U1 1— AL

» O-method: Upy1 = U, + AAt((1 — 0)U, + 0Up41), or
equivalently

1+ (1 - 0)AAL
1— OAAT

All are for n=10,1,..., N — 1 and with Uy = 1.

Un+1 Un .

Example 1 Results

Solution with N=10 and lambda=1 .Error with N=10 and lambda=1
28 n — :)
——exact solution error in .explfc!t Euler
**[l—explicit Euler 1 fl—error in implicit Euler
241 l—implicit Euler oo | [errOrin Crank Nicolson
22l—Crank Nicolson
s ¢ g 0
18 (0]
16 -0.05
14
-0.1
12
1 -0.15
0 0.2 0.4 06 0.8 1 o 0.2 0.4 0.6 08

Example 1 Results

Solution with N=100 and lambda=1 , Error with N=100 and lambda=1
25 {{—exact solution —error in explicit Euler
24 [|—explicit Euler oot error in implicit Euler
implici ——error in Crank Nicolson
22 implicit Euler 5005
—Crank Nicolson
: S
3, s
16 -0.005
14
-0.01
12
1 -0.015
0 02 04 06 08 1 o 0.2 0.4 06 08

Example 1 Results

Solution with N=10 and lambda=-25 Error with N=10 and lambda=-25

- —error in explicit Euler
7 [|—oxaat solution . grrgr in ?mpligit Eﬁlzr
40 |[—explicit Euler 4 ! Cp Niool
w0 ||—implicit Euler a0 error in Crank Nicolson

error

20 ||—Crank Nicolson 20
S0 10
. /\ .

A
\ . \ \/

0 02 04 06 0.8 1 0 02 0.4

Example 2

Consider the system

J(t) = —v, u(0)=1
V/(t) u, v(0)=0

which has exact solution u(t) = cost and v(t) = sint. The system
also has a conserved quantity u? + v2 = 1.

Let (Up, V) denote the approximation to (u(ty), v(t,)), then the
6-method takes the form

Un+1_Un

St 2 gV — (1—0)V,,

Vn—',-l_vn

A= EEEL L n 1-0)U,,
At OUnt1 + (0U

or equivalently, on re-arranging

1 OAt Unt1 _ 1 —(1—-0)At U,
—0At 1 Vot - (1-0)At 1 Vi
forn=20,1,...,N—1and with Up =1 and Vy = 0.

Example 2 Results

-0.5

——explicit Euler
——implicit Euler
——Crank Nicolson

U2+V 2

0.9

0.8

——explicit Euler

——implicit Euler

t |——Crank Nicolson

-0.5

06

Example 2 Explanation

To explain the results, note that it can be shown that

(1-20)At?
U5+1 + Vr12+1 = <1 + m (UZ+V7)

Thus if Uy =1 and V5 = 0 we have

— 2\ "
U2+ V2 = (1+(1 29)“)

(1+ 62At2)
and so

> U2+ V2> 1forf<1/2,
> U2+ V2=1forf=1/2
> U2+ V2 <1forf>1)2.

(Symplectic integrators preserve conserved quantities for
Hamiltonian systems.)

Euler Derivations Using Taylor Series
The explicit and implicit Euler schemes can also be motivated
using Taylor series expansions. Consider expanding u(t,+1) about
the point t,. We have

u(tor1) = u(ty) + Atd'(t,) + O(AL?) .

We can rearrange this to get

u’(t,,) — u(tn-i-l)A; U(tn) —l—O(At).

Substituting this expression into the differential Equation (1)
evaluated at t,, namely

U'(tn) = f(tn, u(ty)),

gives

U(tn 1) - U(tn) —
+T +O0(At) = f(tn, u(tn)) -

Euler Derivations Using Taylor Series

If we approximate u(t,) by U, and ignore the O(At) term in

U(fn+1)A;U(tn)+(9(At) = f(tp, u(tn)),

we recover the explicit Euler scheme

At ns nj) -
Similarly, if we expand u(t,) about t,41, rearrange, substitute into
Equation (1) evaluated at t,4+1, and ignore the O(At) term, we
can recover the implicit Euler scheme.

Truncation Error

As we have just seen, the Euler methods can be derived by
truncating Taylor series and the truncation error measures the error
committed by doing this. The truncation error for the §-method is
defined as

Uny1 — Up

Ty
At

— Of(tnt1, Unt1) — (L= 0)F(tn,un), (4)
where u, = u(ty) is the exact solution at the point t,. The
truncation error can be computed using Taylor series expansions
about an appropriately chosen time point.

For & = 0 (i.e. explicit Euler), the expansions are usually performed
about t = t,, while for # =1 (i.e. implicit Euler), the expansions
are usually performed about t = t,11. For general values of 0 it is
standard to expand about t, 15 = (ty + tat1)/2 = ta + At/2.

Truncation Error — Explicit Euler Scheme

For the explicit Euler scheme we thus have

Upy1 — Up
T, = —— —f(ty,u,). 5
T~ f(tn, o) (5)
We have
Upy1 = U(tpr1) = u(ts + At)

— u(tn)—i—Atu’(tn)—l—%Atzuu(Tn)a (6)

for some 7, € [tn, tht1]

Truncation Error — Explicit Euler Scheme

Substituting (6) in (5) gives

u(ts U (tn) + 38620 (10) — u(ty
—— (tn) + At (t)+A2tAf (7n) (t)_f(t,,,u(tn))

— () — F(tn u(t)) + %Atu”(r,,) .

Finally we recall the original ODE was v/(t) = f(t, u(t)) so the
O(1) terms cancel and we are left with

1
Tn = EAtU”(Tn) y

as the truncation error for the explicit Euler scheme.

Truncation Error — 6-Method
Note that since u'(t,) = f(tn, u(tn)), we may re-write the
expression for the truncation error

Ty = T) (Ot
Upy1 — Up
= () — (1 0)u(8) (7)

We have
u(tn) = u(tpr12 — At/2)
At INAG
= u(tpr12) — 7“’(fn+1/2) +5 <2> u"(tni1/2)
+O(AL%) .
Similarly,
At IINA
u(tnt1) = U(fn+1/2)+2U/(fn+1/2)+2<2> u"(tpy1/2)
+0(At3) .

Truncation Error — 6-Method
We can also expand the first derivatives in Equation (7):

At

U/(tn) = U/(tn+1/2) — 7U//(tn+1/2) + O(At2) ,
At

U(tns1) = U'(tari) + 7U//(tn+1/2) +0(A8%) .

Substituting these four expansions into (7) gives

1 At 1/At\?
T, = At{(U(l‘nJrl/2)+21/(1“n+1/2)+2 <2> ””(tn+1/2)>

At 1 (A2
- (U(tn+1/2) - TU/(th/z) + 5 <2> U"(tn+1/2)> }

At
—0 (U'(fn+1/2) + 2“//(tn+1/2))
At

—(1-0) <U/(tn+1/2) - 2U//(tn+1/2)) +0(At%). (8)

Truncation Error — 0-Method

Many of the terms in (8) cancel so the truncation error simplifies to

A
T, — 7t(1—29)u"(tn+1/2)+(9(At2).

It can be shown by writing out the O(At?) terms in full, that they
do not cancel for any value of 6.

Thus we have shown that for constant 6

T O(At) for§#1/2
no O(At?) for =1/2

so that the truncation error of the Crank Nicolson scheme
converges twice as fast as that of all other §-methods.

Truncation Error — 0-Method

In fact, we can be more precise using the approach we used for the
truncation error of the explicit Euler scheme.

We can show that
Aztu”((1)) for 6 =0
T, = Alé u" (T (2)) for 6 =1/2
Azt UH(T,(73)) for 6 =1

where T,, € [tn, th+1] for i =1,2,3.

Order of a Method

The order of a method is defined to be p where p is the largest

integer such that T, = O(AtP). Alternatively we may call the
method pth order.

We have

» If 6 # 1/2, the f-method is 1st order.
» If § =1/2, the #-method is 2nd order.

Pointwise Errors

Recall the definition of the #-method (3) and the corresponding
truncation error (4):

% = Of(tns1, Upp1) + (1 = 0)F(tn, Un)
T, = % — OF (tns1, tns1) — (1 — O)F (tn, up) -
We re-arrange both of these to get
Untr = Un+ At (0F(tns1, Un1) + (1 = 0)F(tn, Un)) (9)
and

Upt1 = up+ At (0Ff(tnt1, unt1) + (L —0)f(tn,un)) + AtT, . (10)

Now consider subtracting (9) from (10), taking the modulus, and

applying the triangle inequality. This gives

‘Un—i—l - Un—s—l‘ < ‘Un - Un| + eAt‘f(tn—l—l? Un+1) - f(tn+17 Un—l—l)‘
+(1 — O)At|f(tn, un) — f(tn, Un)| + At| Th| . (11)

Pointwise Errors
Next suppose that the right-hand-side function f(t, u) satisfies a
Lipschitz condition in its second argument, with Lipschitz constant
L, so that

\f(t,u) —f(t,v)] < Llu—v|, V(tu), (t,v)eQ.
We can use this in (11) to get
lun+1 — Upta| < fun — Un| + 0AtL|ups1 — Unia
+(1 — 0)AtL|u, — Up| + At| T, -
We can re-arrange this to get (for At sufficiently small)
(1= LOAY)|upt1 — Unt1] < (1 + L(1 = 0)At)|up — U,
+At| T,
(1+ L(1 = 0)At)|up — Uy
+AtThax , (12)

IA

where Trmax = maxo<p<n | Tnl is an upper bound on the absolute
value of the truncation error.

Pointwise Errors

Now let e, = up, — U, denote the error at time t,. Then (12) can
be written as

1+ L(1-6)At At Tax
< .
leniil = Ay 1ol T (13)
We can show by induction that
o 1+ L(1—0)At "| |
e 1 LOAt @
AtTmax o= (14 L(1—0)At\"*
+1—L9At§< 1— LOAt >
1+ L(1—-6)At\" T max 1+ L(1—-0)At\"
S + () |e0’ 4 a + () o 1 ’
1— LOAt L 1— LOAL

where the final line comes from evaluating the sum and
simplifying. This holds for n=10,1,..., N.

Pointwise Errors
In practice, we usually set Uy = ug which means that g = 0.
We also have

1+ L(1-0)At 14 LAt
1— LOAt B 1— LOAt

LAt
TP\1"1ont)
In turn this means
1+ L(1—0)At\" LAt "
1— LOAt 1— LOAt

nLAt
FP\ 1 1oAr

oo (LT
P\1-10nc) -

IN

IN

IN

Pointwise Errors

Thus we have

Tinax LT
o < ~1, 14
leal = = [eXp <1 - LHAt)] (14)

forn=0,1,..., N.

This shows that the pointwise error has the same order as the
truncation error.

Summary
» For the initial value problem

J(t) = f(t,u), te(0,T],
u(0) = up,

the 6-method approximates the solution u(t) at the discrete
points t, = nAt, n=0,1,...., N. Specifically the method
approximates u(t,) by U, which solves

Un+1 - Un
At

forn=0,1,...,N —1, with Uy = wp.
> If 0 =0, the method is explicit.

af(tn-f—l? Un+1) + (1 - H)f(tnv Un)

> If & > 0, the method is implicit and a nonlinear system must
be solved at each timestep.

» If & = 1/2 the method is second order accurate, otherwise the
error is first order accurate.

