B1.1 Logic Lecture 7

Martin Bays

Oxford, MT 2023

The following lemma is a key step in the proof of 6.11; it shows that L_0 implements the rule (*PC*) of the sequence calculus. It is the only place in the proof of the completeness theorem where (A3) is used.

6.12 Lemma

For any $\alpha, \beta \in Form(L_0)$,

$$\vdash ((\neg \alpha \to \neg \beta) \to ((\neg \alpha \to \beta) \to \alpha)).$$

Proof: Omitted.

7. Consistency, Completeness and Compactness

7.1 Definition

 $\Gamma \subseteq \mathsf{Form}(\mathcal{L}_0)$ is **inconsistent**

if for some formula α ,

 $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$.

Otherwise, Γ is **consistent**.

E.g. \emptyset is consistent by soundness of \mathcal{L}_0 , since for no α are both α and $\neg \alpha$ tautologies.

7.2. Lemma

If $\Gamma \not\vdash \phi$ then $\Gamma \cup \{\neg \phi\}$ is consistent.

Proof: Suppose $\Gamma \cup \{\neg\phi\}$ is inconsistent, say $\Gamma \cup \{\neg\phi\} \vdash \alpha$ and $\Gamma \cup \{\neg\phi\} \vdash \neg\alpha$.

Then by the deduction theorem, $\Gamma \vdash (\neg \phi \rightarrow \alpha)$ and $\Gamma \vdash (\neg \phi \rightarrow \neg \alpha)$.

By 6.12 and MP twice, $\Gamma \vdash \phi$.

Lec 7 - 2/11

7.3 Lemma

Suppose Γ is consistent and $\Gamma \vdash \phi$. Then $\Gamma \cup \{\phi\}$ is consistent.

Proof: Suppose not. Then for some α

$$\begin{bmatrix} \Gamma \cup \{\phi\} \vdash \alpha \\ \Gamma \cup \{\phi\} \vdash \neg \alpha \end{bmatrix} \Rightarrow_{\mathsf{DT}} \begin{bmatrix} \Gamma \vdash (\phi \to \alpha) \\ \Gamma \vdash (\phi \to \neg \alpha) \end{bmatrix}$$

$$\begin{array}{ccc} \Gamma \vdash \phi & \Gamma \vdash \alpha \\ \Rightarrow \mathsf{MP} & \Gamma \vdash \neg \alpha \end{array} ,$$

contradicting consistency of Γ .

7.4 Definition

 $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is **maximal consistent** if (i) Γ is consistent, and (ii) for *every* ϕ , either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$.

Lec 7 - 3/11

7.5 Theorem

Suppose Γ is consistent. Then there is a maximal consistent $\Gamma' \supseteq \Gamma$.

Proof: Form(\mathcal{L}_0) is countable, say

$$Form(\mathcal{L}_0) = \{\phi_1, \phi_2, \phi_3, \ldots\}.$$

Construct consistent sets

$$\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \dots$$

as follows:

- $\Gamma_0 := \Gamma$.
- Given consistent Γ_n , let

$$\Gamma_{n+1} := \begin{cases} \Gamma_n \cup \{\phi_{n+1}\} & \text{if } \Gamma_n \vdash \phi_{n+1} \\ \Gamma_n \cup \{\neg \phi_{n+1}\} & \text{if } \Gamma_n \nvDash \phi_{n+1} \end{cases}$$

Then Γ_{n+1} is consistent by 7.3 and 7.2.

Lec 7 - 4/11

Now let $\Gamma' := \bigcup_{n=0}^{\infty} \Gamma_n$.

Then Γ' is consistent:

Any proof of $\Gamma' \vdash \alpha$ and $\Gamma' \vdash \neg \alpha$ would use only finitely many formulas from Γ' , so for some n, $\Gamma_n \vdash \alpha$ and $\Gamma_n \vdash \neg \alpha$ – contradicting the consistency of Γ_n .

Finally, Γ' is maximal consistent: for all n, either $\phi_n \in \Gamma'$ or $\neg \phi_n \in \Gamma'$, so in particular either $\Gamma' \vdash \phi_n$ or $\Gamma' \vdash \neg \phi_n$.

(Note that this proof did not use Zorn's Lemma; countability of the language was crucial for this.)

Lec 7 - 5/11

7.6 Lemma

Suppose Γ is maximal consistent. Then for every $\psi, \chi \in \text{Form}(\mathcal{L}_0)$: (a) $\Gamma \vdash \neg \psi$ iff $\Gamma \not\vdash \psi$. (b) $\Gamma \vdash (\psi \rightarrow \chi)$ iff either $\Gamma \not\vdash \psi$ or $\Gamma \vdash \chi$. Proof:

- (a) '⇒': by consistency.
 '⇐': by maximality.
- (b) ' \Rightarrow ': Suppose $\Gamma \vdash (\psi \rightarrow \chi)$ but $\Gamma \vdash \psi$ and $\Gamma \not\vdash \chi$. By MP, $\Gamma \vdash \chi$, contradicting consistency.
 - '⇐': Suppose Γ $\nvdash \psi$. Then Γ ⊢ ¬ ψ by (a). Γ ⊢ (¬ $\psi \rightarrow (\psi \rightarrow \chi)$) (Problem sheet 2 Q3) ⇒_{MP} Γ ⊢ ($\psi \rightarrow \chi$).

Suppose
$$\Gamma \vdash \chi$$
.
 $\Gamma \vdash (\chi \rightarrow (\psi \rightarrow \chi))$ (Axiom A1)
 $\Rightarrow_{\mathsf{MP}} \Gamma \vdash (\psi \rightarrow \chi)$.

Lec 7 - 6/11

7.7 Theorem

Suppose Γ is maximal consistent. Then Γ is satisfiable.

Proof:

Define a valuation v by

$$v(p_i) = T \text{ iff } \Gamma \vdash p_i.$$

Claim: for all $\phi \in \text{Form}(\mathcal{L}_0)$:

$$\widetilde{v}(\phi) = T \text{ iff } \Gamma \vdash \phi.$$

Proof by induction on the length n of ϕ .

If n = 1, then $\phi = p_i$ for some *i* and we are done by the definition of *v*.

Lec 7 - 7/11

Suppose $n = \text{length}(\phi) > 1$. IH: Claim true for all n' < n.

Case 1:
$$\phi = \neg \psi$$

 $\tilde{v}(\phi) = T$ iff $\tilde{v}(\psi) = F$ tt \neg
iff $\Gamma \not\vdash \psi$ IH
iff $\Gamma \vdash \neg \psi$ 7.6(a)
iff $\Gamma \vdash \phi$

Case 2:
$$\phi = (\psi \to \chi)$$

 $\tilde{v}(\phi) = T$ iff $\tilde{v}(\psi) = F$ or $\tilde{v}(\chi) = T$ tt \to
iff $\Gamma \not\vdash \psi$ or $\Gamma \vdash \chi$ IH
iff $\Gamma \vdash (\psi \to \chi)$ 7.6(b)
iff $\Gamma \vdash \phi$

So $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$, i.e. v satisfies Γ .

Lec 7 - 8/11

7.8 Corollary

Let $\Gamma \subset \text{Form}(\mathcal{L}_0)$. Then Γ is consistent if and only if Γ is satisfiable.

Proof:

 \Rightarrow : By 7.5 + 7.7:

If Γ is consistent, then by 7.5 it extends to a maximal consistent set, which by 7.7 is satisfiable,

hence also Γ is satisfiable.

 \Leftarrow : By soundness: Suppose Γ inconsistent, say Γ⊢ α and Γ⊢ ¬α. Then Γ⊨ α and Γ⊨ ¬α by soundness, so Γ is not satisfiable.

Lec 7 - 9/11

7.9 The Completeness Theorem If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Proof:

Suppose $\Gamma \not\vdash \phi$.

- \Rightarrow by 7.2, $\Gamma \cup \{\neg \phi\}$ is consistent
- \Rightarrow by 7.8, $\Gamma \cup \{\neg \phi\}$ is satisfiable
- ⇒ there is some valuation v such that $\tilde{v}(\psi) = T$ for $\psi \in \Gamma$, but $\tilde{v}(\phi) = F$ ⇒ $\Gamma \not\models \phi$. □

7.10 Corollary (7.9 Completeness + 6.5 Soundness)

 $\Gamma \models \phi \text{ iff } \Gamma \vdash \phi$

Lec 7 - 10/11

7.11 The Compactness Theorem for \mathcal{L}_0

 $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is satisfiable iff every finite subset of Γ is satisfiable.

Proof: By 7.8, this is equivalent to: $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is consistent iff every finite subset of Γ is consistent.

But indeed, by finiteness of proofs, $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$ iff already $\Gamma_0 \vdash \alpha$ and $\Gamma_0 \vdash \neg \alpha$ for some finite $\Gamma_0 \subseteq \Gamma$.

Lec 7 - 11/11