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PART II:
PREDICATE CALCULUS

So far:
e [ ogic of the connectives —,\,V,—>, <>, ...

(as used in mathematics).
e Logical validity in terms of truth tables.
e Found axioms and rule of inference
yielding a sound and complete proof
system. Deduced compactness.

Now:
e Look more deeply into the structure of

propositions used in mathematics.

e Analyse grammatically correct use of
functions, relations, constants, variables
and quantifiers.

e Define logical validity in this refined
language.

e Isolate axioms and rules of inference
(beyond those of propositional calculus)
used in mathematical arguments.

e Prove: soundness, completeness,
compactness.
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8. The language of (first-order)
predicate calculus

A countable first-order language L consists
of the following disjoint sets:

e for each k > 1, a countable set of k-ary
predicate (or relation) symbols;

e for each kK > 1, a countable set of k-ary
function symbols;

e a countable set of constant symbols.

These symbols are called the non-logical
symbols of L.

The alphabet of £ consists of its non-logical
symbols along with the following disjoint set
of logical symbols:

Connectives: —, —
Quantifier: ¥ (‘for all’)
Variables: xg,x1,xo,...

3 punctuation marks: , ()
Equality symbol: =
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8.1 Definition

(a) The terms of L are defined recursively as
follows:
(i) Every variable is a term.
(ii) Every constant symbol is a term.
(iii) If f is a k-ary function symbol, and
t1,...,tr are terms, then so is the string

flte, - tg).
(b) An atomic formula of £ is any string of
the form

P(t1,...,tg) or t1 = to

where k> 1, P € L is a k-ary relation
symbol, and all t; are terms.
(c) The formulas of £ are defined recursively
as follows:
(i) Any atomic formula is a formula.
(ii) If ¢,4 are formulas, then so are —¢ and
(¢ = ).
(iii) If ¢ is a formula, then for any variable
x; SO IS Vx;0.
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8.2 Examples The most general countable
language has a countably infinite set of
symbols of each type:

: k k
Lpred = {(Pi( ))i,k>07 (fi( ))i,k>0a (ci)i>0}
where each P,L.(k) IS a k-ary predicate symbol,

each fz.(k) IS a k-ary function symbol,
and each ¢; is a constant symbol.

e The following are all Lyeg-terms:

ez w5 £ £ (1, £ (esn)
o f2(3)(a:1,:1:2) is not a term (wrong arity).

3 2
o PSP (w4, c0, 57 (c1,22)) and
fl(z)(c5,a?2) = x3 are atomic formulas.

o Vx1f§2)(:1:1,07) = x5 and V:CQPl(l)(:Eg,) are
non-atomic formulas.

8.3 EXxercise
We have unique readability for terms, for
atomic formulas, and for formulas.
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A more typical example of a language
appearing in mathematics is

Loring = 1<+, —,0,1},

where < is a binary relation symbol,

..+, and — are binary function symbols,
and 0 and 1 are constant symbols.

We call this the language of ordered rings.

When dealing with binary symbols, we will
allow ourselves to use infix notation as an
abbreviation, so e.qg.

Vag xg < zo+1

abbreviates the Lg ring-formula

Vzg <(xq, +(zg,1)).
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3.4 Interpretations and logical validity
(Informal discussion)

e Consider the following {f}-formula, with f
a unary function symbol:

¢1 : VxiVro(ry = 20 — f(x1) = f(22)).

Interpreting = as equality, V as ‘for all’,
and f as some unary function,

¢1 Should always be true.

We write

= ¢1

and say ‘g7 is logically valid’.

e Consider the following {g}-formula, with g
a binary function symbol:

¢o : Vr1Veo(g(z1,z2) = g(x0,21) — 1 = x2)

Then ¢> may be true or false, depending
on the situation:
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- If we interpret g as 4+ on N,
then ¢o becomes false,
since e.g. 142=2-+41, but 1 £+ 2.

So in this interpretation, ¢- is false and
—¢o IS true. Write

(N; +) = —¢o

- If we interpret g as subtraction on R,
then ¢o becomes true:
if x1 —xo0 = xo — 1, then 2x1 = 2x-, and
hence x1 = x».
So

(R; =) = ¢2
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8.5 Free and bound variables
(Informal discussion)

There is a further complication: Consider the
{P}-formula

¢3 . VxoP(x1,z0).
Specifying the interpretation is not enough to
determine whether or not ¢3 holds.

For example, in (N; <):
- If we put 1 = 0 then ¢3 is true;
- if we put 1 = 2 then ¢3 is false.

So it depends on the value we assign to z1
(like in propositional calculus: the truth value
of (po A p1) depends on the valuation).

In ¢3 we can assign a value to x1 because x;
occurs free in ¢3.

For xg, however, it makes no sense to assign
a particular value; because zg is bound in ¢3
by the quantifier Vx.
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