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PART II:

PREDICATE CALCULUS

So far:
• Logic of the connectives ¬,∧,∨,→,↔, . . .

(as used in mathematics).
• Logical validity in terms of truth tables.
• Found axioms and rule of inference

yielding a sound and complete proof
system. Deduced compactness.

Now:
• Look more deeply into the structure of

propositions used in mathematics.
• Analyse grammatically correct use of

functions, relations, constants, variables
and quantifiers.
• Define logical validity in this refined

language.
• Isolate axioms and rules of inference

(beyond those of propositional calculus)
used in mathematical arguments.
• Prove: soundness, completeness,

compactness.
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8. The language of (first-order)
predicate calculus

A countable first-order language L consists
of the following disjoint sets:

• for each k ≥ 1, a countable set of k-ary
predicate (or relation) symbols;
• for each k ≥ 1, a countable set of k-ary

function symbols;
• a countable set of constant symbols.

These symbols are called the non-logical
symbols of L.

The alphabet of L consists of its non-logical
symbols along with the following disjoint set
of logical symbols:

• Connectives: →,¬
• Quantifier: ∀ (‘for all’)
• Variables: x0, x1, x2, . . .

• 3 punctuation marks: , ( )
• Equality symbol:

.
=
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8.1 Definition

(a) The terms of L are defined recursively as
follows:
(i) Every variable is a term.
(ii) Every constant symbol is a term.
(iii) If f is a k-ary function symbol, and

t1, . . . , tk are terms, then so is the string

f(t1, . . . , tk).

(b) An atomic formula of L is any string of
the form

P (t1, . . . , tk) or t1
.

= t2

where k ≥ 1, P ∈ L is a k-ary relation
symbol, and all ti are terms.

(c) The formulas of L are defined recursively
as follows:
(i) Any atomic formula is a formula.
(ii) If φ, ψ are formulas, then so are ¬φ and

(φ→ ψ).
(iii) If φ is a formula, then for any variable

xi so is ∀xiφ.
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8.2 Examples The most general countable
language has a countably infinite set of
symbols of each type:

Lpred := {(P (k)
i )i,k>0, (f

(k)
i )i,k>0, (ci)i>0},

where each P
(k)
i is a k-ary predicate symbol,

each f
(k)
i is a k-ary function symbol,

and each ci is a constant symbol.

• The following are all Lpred-terms:

c3 x5 f
(1)
3 (c2) f

(2)
1 (x1, f

(1)
1 (c37))

• f(3)
2 (x1, x2) is not a term (wrong arity).

• P (3)
2 (x4, c2, f

(2)
3 (c1, x2)) and

f
(2)
1 (c5, x2)

.
= x3 are atomic formulas.

• ∀x1f
(2)
2 (x1, c7)

.
= x2 and ∀x2P

(1)
1 (x3) are

non-atomic formulas.

8.3 Exercise
We have unique readability for terms, for
atomic formulas, and for formulas.
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A more typical example of a language

appearing in mathematics is

Lo.ring := {<, ·,+,−,0,1},

where < is a binary relation symbol,

·, +, and − are binary function symbols,

and 0 and 1 are constant symbols.

We call this the language of ordered rings.

When dealing with binary symbols, we will

allow ourselves to use infix notation as an

abbreviation, so e.g.

∀x0 x0 < x0 + 1

abbreviates the Lo.ring-formula

∀x0 <(x0,+(x0,1)).
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8.4 Interpretations and logical validity

(Informal discussion)

• Consider the following {f}-formula, with f

a unary function symbol:

φ1 : ∀x1∀x2(x1
.

= x2 → f(x1)
.

= f(x2)).

Interpreting
.

= as equality, ∀ as ‘for all’,
and f as some unary function,
φ1 should always be true.
We write

|= φ1

and say ‘φ1 is logically valid’.

• Consider the following {g}-formula, with g

a binary function symbol:

φ2 : ∀x1∀x2(g(x1, x2)
.

= g(x2, x1)→ x1
.

= x2)

Then φ2 may be true or false, depending
on the situation:
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- If we interpret g as + on N,

then φ2 becomes false,

since e.g. 1+2=2+1, but 1 6= 2.

So in this interpretation, φ2 is false and

¬φ2 is true. Write

〈N; +〉 |= ¬φ2

- If we interpret g as subtraction on R,

then φ2 becomes true:

if x1 − x2 = x2 − x1, then 2x1 = 2x2, and

hence x1 = x2.

So

〈R;−〉 |= φ2
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8.5 Free and bound variables
(Informal discussion)

There is a further complication: Consider the
{P}-formula

φ3 : ∀x0P (x1, x0).

Specifying the interpretation is not enough to
determine whether or not φ3 holds.

For example, in 〈N;≤〉:
- If we put x1 = 0 then φ3 is true;
- if we put x1 = 2 then φ3 is false.

So it depends on the value we assign to x1
(like in propositional calculus: the truth value
of (p0 ∧ p1) depends on the valuation).

In φ3 we can assign a value to x1 because x1
occurs free in φ3.

For x0, however, it makes no sense to assign
a particular value; because x0 is bound in φ3
by the quantifier ∀x0.
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