B1.1 Logic Lecture 8

Martin Bays

Oxford, MT 2023

PART II: PREDICATE CALCULUS

- So far:
 - Logic of the connectives ¬, ∧, ∨, →, ↔, ... (as used in mathematics).
 - Logical validity in terms of truth tables.
 - Found axioms and rule of inference yielding a sound and complete proof system. Deduced compactness.

Now:

- Look *more deeply into* the structure of propositions used in mathematics.
- Analyse grammatically correct use of *functions, relations, constants, variables* and *quantifiers*.
- Define *logical validity* in this refined language.
- Isolate axioms and rules of inference (beyond those of propositional calculus) used in mathematical arguments.
- Prove: soundness, completeness, compactness.

Lec 8 - 1/8

8. The language of (first-order) predicate calculus

A countable first-order language \mathcal{L} consists of the following disjoint sets:

- for each $k \ge 1$, a countable set of k-ary predicate (or relation) symbols;
- for each k ≥ 1, a countable set of k-ary function symbols;
- a countable set of constant symbols.

These symbols are called the **non-logical** symbols of \mathcal{L} .

The alphabet of \mathcal{L} consists of its non-logical symbols along with the following disjoint set of **logical symbols**:

- Connectives: \rightarrow, \neg
- *Quantifier:* ∀ ('for all')
- Variables: $x_0, x_1, x_2, ...$
- 3 punctuation marks: , ()
- Equality symbol: \doteq

Lec 8 - 2/8

8.1 Definition

- (a) The **terms** of \mathcal{L} are defined recursively as follows:
 - (i) Every variable is a term.
 - (ii) Every constant symbol is a term.
 - (iii) If f is a k-ary function symbol, and t_1, \ldots, t_k are terms, then so is the string

 $f(t_1,\ldots,t_k).$

(b) An **atomic formula** of \mathcal{L} is any string of the form

 $P(t_1,\ldots,t_k)$ or $t_1 \doteq t_2$

where $k \ge 1$, $P \in \mathcal{L}$ is a k-ary relation symbol, and all t_i are terms.

- (c) The **formulas** of \mathcal{L} are defined recursively as follows:
 - (i) Any atomic formula is a formula.
 - (ii) If ϕ, ψ are formulas, then so are $\neg \phi$ and $(\phi \rightarrow \psi)$.
 - (iii) If ϕ is a formula, then for any variable x_i so is $\forall x_i \phi$.

Lec 8 - 3/8

8.2 Examples The most general countable language has a countably infinite set of symbols of each type:

$$\mathcal{L}_{\text{pred}} := \{ (P_i^{(k)})_{i,k>0}, (f_i^{(k)})_{i,k>0}, (c_i)_{i>0} \},\$$

where each $P_i^{(k)}$ is a *k*-ary predicate symbol, each $f_i^{(k)}$ is a *k*-ary function symbol, and each c_i is a constant symbol.

- The following are all \mathcal{L}_{pred} -terms: $c_3 \quad x_5 \quad f_3^{(1)}(c_2) \quad f_1^{(2)}(x_1, f_1^{(1)}(c_{37}))$
- $f_2^{(3)}(x_1, x_2)$ is *not* a term (wrong arity).
- $P_2^{(3)}(x_4, c_2, f_3^{(2)}(c_1, x_2))$ and $f_1^{(2)}(c_5, x_2) \doteq x_3$ are atomic formulas.
- $\forall x_1 f_2^{(2)}(x_1, c_7) \doteq x_2$ and $\forall x_2 P_1^{(1)}(x_3)$ are non-atomic formulas.

8.3 Exercise

We have **unique readability** for terms, for atomic formulas, and for formulas.

Lec 8 - 4/8

A more typical example of a language appearing in mathematics is

$$\mathcal{L}_{o.ring} := \{<, \cdot, +, -, \overline{0}, \overline{1}\},\$$

where < is a binary relation symbol, \cdot , +, and - are binary function symbols, and $\overline{0}$ and $\overline{1}$ are constant symbols. We call this the *language of ordered rings*.

When dealing with binary symbols, we will allow ourselves to use infix notation as an abbreviation, so e.g.

$$\forall x_0 \ x_0 < x_0 + \overline{1}$$

abbreviates the $\mathcal{L}_{o,ring}$ -formula

$$\forall x_0 < (x_0, +(x_0, \overline{1})).$$

Lec 8 - 5/8

8.4 Interpretations and logical validity (Informal discussion)

• Consider the following $\{f\}$ -formula, with f a unary function symbol:

 $\phi_1: \forall x_1 \forall x_2 (x_1 \doteq x_2 \rightarrow f(x_1) \doteq f(x_2)).$

Interpreting \doteq as equality, \forall as 'for all', and f as some unary function, ϕ_1 should always be true. We write

$$\models \phi_1$$

and say ' ϕ_1 is **logically valid**'.

• Consider the following $\{g\}$ -formula, with g a binary function symbol:

 $\phi_2: \forall x_1 \forall x_2 (g(x_1, x_2) \doteq g(x_2, x_1) \rightarrow x_1 \doteq x_2)$

Then ϕ_2 may be true or false, depending on the situation:

Lec 8 - 6/8

- If we interpret g as + on \mathbb{N} , then ϕ_2 becomes false, since e.g. 1+2=2+1, but $1 \neq 2$.

So in this *interpretation*, ϕ_2 is false and $\neg \phi_2$ is true. Write

$$\langle \mathbb{N}; + \rangle \models \neg \phi_2$$

- If we interpret g as subtraction on \mathbb{R} , then ϕ_2 becomes true: if $x_1 - x_2 = x_2 - x_1$, then $2x_1 = 2x_2$, and hence $x_1 = x_2$. So

$$\langle \mathbb{R}; - \rangle \models \phi_2$$

Lec 8 - 7/8

8.5 Free and bound variables (Informal discussion)

There is a further complication: Consider the $\{P\}$ -formula

 $\phi_{\mathsf{3}}: \forall x_{\mathsf{0}} P(x_{\mathsf{1}}, x_{\mathsf{0}}).$

Specifying the interpretation is not enough to determine whether or not ϕ_3 holds.

For example, in $\langle \mathbb{N}; \leq \rangle$: - If we put $x_1 = 0$ then ϕ_3 is true; - if we put $x_1 = 2$ then ϕ_3 is false.

So it depends on the value we assign to x_1 (like in propositional calculus: the truth value of $(p_0 \wedge p_1)$ depends on the valuation).

In ϕ_3 we *can* assign a value to x_1 because x_1 occurs **free** in ϕ_3 .

For x_0 , however, it makes no sense to assign a particular value; because x_0 is **bound** in ϕ_3 by the quantifier $\forall x_0$.

Lec 8 - 8/8