B1.1 Logic Lecture 9

Martin Bays

Oxford, MT 2023

9. Interpretations and Assignments

9.1 Definition

Let $\mathcal L$ be a language. An interpretation of $\mathcal L$ is an $\mathcal L\text{-structure}$

$$\begin{split} \mathcal{A} &:= \langle A; (f^{\mathcal{A}})_{f \in \mathsf{Fct}(\mathcal{L})}, (P^{\mathcal{A}})_{P \in \mathsf{Pred}(\mathcal{L})}, (c^{\mathcal{A}})_{c \in \mathsf{Const}(\mathcal{L})} \rangle, \\ & \text{where:} \end{split}$$

- A is a <u>non-empty</u> set, the **domain** of \mathcal{A} ;
- For $f \in \mathcal{L}$ a k-ary function symbol, $f^{\mathcal{A}} : A^k \to A$ is a k-ary function;
- For $P \in \mathcal{L}$ a k-ary predicate symbol, $P^{\mathcal{A}}$ is a k-ary relation on A, i.e. $P^{\mathcal{A}} \subseteq A^k$;
- For $c \in \mathcal{L}$ a constant symbol, $c^{\mathcal{A}} \in A$.

9.2 Definition

Let \mathcal{L} be a language and let $\mathcal{A} = \langle A; \ldots \rangle$ be an \mathcal{L} -structure.

(1) An assignment in \mathcal{A} is a function

$$v: \{x_0, x_1, \ldots\} \to A$$

(2) v determines an assignment

$$\widetilde{v} = \widetilde{v}^{\mathcal{A}}$$
: Terms(\mathcal{L}) $\to A$

defined recursively as follows:

(i)
$$\tilde{v}(x_i) := v(x_i)$$
 for all $i = 0, 1, ...;$

- (ii) $\tilde{v}(c) := c^{\mathcal{A}}$ for each constant symbol $c \in \mathcal{L}$;
- (iii) $\tilde{v}(f(t_1, \ldots, t_k)) := f^{\mathcal{A}}(\tilde{v}(t_1), \ldots, \tilde{v}(t_k))$ for each *k*-ary function symbol $f \in \mathcal{L}$.
- (3) v determines a valuation

$$\widetilde{v} = \widetilde{v}^{\mathcal{A}}$$
: Form $(\mathcal{L}) \to \{T, F\}$

as follows:

Lec 9 - 2/8

Define \tilde{v} on formulas recursively:

- On atomic formulas:
 - For each k-ary predicate symbol $P \in \mathcal{L}$ and for all $t_i \in \text{Term}(\mathcal{L})$:

 $\widetilde{v}(P(t_1,\ldots,t_k)) = \begin{cases} T & \text{if } (\widetilde{v}(t_1),\ldots,\widetilde{v}(t_k)) \in P^{\mathcal{A}} \\ F & \text{otherwise.} \end{cases}$

- For all $t_1, t_2 \in \text{Term}(\mathcal{L})$:

$$\widetilde{v}(t_1 \doteq t_2) = \begin{cases} T & \text{if } \widetilde{v}(t_1) = \widetilde{v}(t_2) \\ F & \text{otherwise.} \end{cases}$$

•
$$\tilde{v}(\neg \psi) = T$$
 iff $\tilde{v}(\psi) = F$

•
$$\tilde{v}(\psi \to \chi) = T$$
 iff $\tilde{v}(\psi) = F$ or $\tilde{v}(\chi) = T$

ṽ(∀x_iψ) = T iff *ṽ*^{*}(ψ) = T for all
 assignments v^{*} agreeing with v except
 possibly at x_i.

Notation: Write $\mathcal{A} \models \phi[v]$ for $\tilde{v}^{\mathcal{A}}(\phi) = T$, read ' ϕ is true in \mathcal{A} under the assignment v'.

Lec 9 - 3/8

9.3 Example

Consider $\mathcal{A} = \langle \mathbb{Z}; \cdot \rangle$ as an $\{f\}$ -structure (f a binary function symbol). Let v be the assignment $v(x_i) = i \in \mathbb{Z}$ for i = 0, 1, ..., and let

 $\phi = \forall x_0 \forall x_1 (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)$ Then $\mathcal{A} \models \phi[v]$; indeed:

$$\mathcal{A} \models \phi[v]$$
iff for all v^* with $v^*(x_i) = i$ for $i \neq 0$

$$\mathcal{A} \models \forall x_1(f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)[v^*]$$

iff for all
$$v^{\star\star}$$
 with $v^{\star\star}(x_i) = i$ for $i \neq 0, 1$
$$\mathcal{A} \models (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)[v^{\star\star}]$$

iff for all
$$v^{\star\star}$$
 with $v^{\star\star}(x_i) = i$ for $i \neq 0, 1$
 $v^{\star\star}(x_0) \cdot v^{\star\star}(x_2) = v^{\star\star}(x_1) \cdot v^{\star\star}(x_2)$
implies $v^{\star\star}(x_0) = v^{\star\star}(x_1)$

iff for all $a, b \in \mathbb{Z}$, $a \cdot 2 = b \cdot 2$ implies a = b, which is true.

However, with $v'(x_i) = 0$ for all *i*, we would have finished with

... iff for all $a, b \in \mathbb{Z}$, $a \cdot 0 = b \cdot 0$ implies a = b, which is false. So $\mathcal{A} \not\models \phi[v']$.

Lec 9 - 4/8

9.4 Example

Let P be a unary predicate symbol, $\mathcal{L} = \{P\}$, A an \mathcal{L} -structure,

$$\phi = (\forall x_0 P(x_0) \to P(x_1)),$$

and v any assignment in \mathcal{A} . Then $\mathcal{A} \models \phi[v]$.

Proof:

$$\mathcal{A} \models \phi[v]$$
 iff
 $\mathcal{A} \models \forall x_0 P(x_0)[v]$ implies $\mathcal{A} \models P(x_1)[v]$.

Now suppose $\mathcal{A} \models \forall x_0 P(x_0)[v]$. Then for all v^* which agree with v except possibly at x_0 , $\mathcal{A} \models P(x_0)[v^*]$.

In particular, for $v^{\star}(x_i) = \begin{cases} v(x_i) & \text{if } i \neq 0 \\ v(x_1) & \text{if } i = 0 \end{cases}$ we have $P^{\mathcal{A}}(v^{\star}(x_0))$, and hence $v(x_1) \in P^{\mathcal{A}}$, i.e. $\mathcal{A} \models P(x_1)[v]$.

Lec 9 - 5/8

9.5 Definition

Let $\ensuremath{\mathcal{L}}$ be a language.

- An *L*-formula φ is logically valid ('⊨ φ') if *A* ⊨ φ[v] for all *L*-structures *A* and for all assignments v in *A*.
- φ ∈ Form(L) is satisfiable if A ⊨ φ[v] for some L-structure A and for some assignment v in A.
- For $\Gamma \subseteq \text{Form}(\mathcal{L})$ and $\phi \in \text{Form}(\mathcal{L})$, ϕ is a **logical consequence** of Γ , written $\Gamma \models \phi$, if for all \mathcal{L} -structures \mathcal{A} and for all assignments v in \mathcal{A} with $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma$, also $\mathcal{A} \models \phi[v]$.
- $\phi, \psi \in \text{Form}(\mathcal{L})$ are **logically equivalent** if $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

Example: $\models \phi$ for ϕ from Example 9.4.

Lec 9 - 6/8

Note:

The symbol ' \models ' is now used in two ways:

- $\Gamma \models \phi$ means: ϕ is a logical consequence of Γ .
- $\mathcal{A} \models \phi[v]$ means: ϕ is satisfied in the *L*-structure \mathcal{A} under the assignment v.

This shouldn't give rise to confusion, since it will always be clear from the context whether there is a set Γ of \mathcal{L} -formulas or an \mathcal{L} -structure \mathcal{A} in front of ' \models '.

9.6 Some abbreviations

We use	as abbreviation for
$(\alpha \lor \beta)$	$((\alpha ightarrow \beta) ightarrow \beta)$
$(\alpha \wedge \beta)$	$\neg(\neg \alpha \vee \neg \beta)$
$(\alpha \leftrightarrow \beta)$	$((\alpha ightarrow eta) \land (eta ightarrow lpha))$
$\exists x_i \phi$	$ eg \forall x_i \neg \phi$

9.7 Lemma

For any $\mathcal L\text{-structure}\ \mathcal A$ and any assignment v in $\mathcal A$ one has

$$\begin{array}{lll} \mathcal{A} \models (\alpha \lor \beta)[v] & \text{iff} & \mathcal{A} \models \alpha[v] \text{ or } \mathcal{A} \models \beta[v] \\ \mathcal{A} \models (\alpha \land \beta)[v] & \text{iff} & \mathcal{A} \models \alpha[v] \text{ and } \mathcal{A} \models \beta[v] \\ \mathcal{A} \models (\alpha \leftrightarrow \beta)[v] & \text{iff} & \widetilde{v}(\alpha) = \widetilde{v}(\beta) \\ \mathcal{A} \models \exists x_i \phi[v] & \text{iff} & \text{for some assignment} \\ v^* \text{ agreeing with } v \\ \text{except possibly at } x_i \\ \mathcal{A} \models \phi[v^*] \end{array}$$

Proof: Easy exercise.

Lec 9 - 8/8