B1.1 Logic Lecture 10

Martin Bays

Oxford, MT 2023

10. Free and bound variables

Recall Example 9.3: The formula

 $\phi = \forall x_0 \forall x_1 (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)$

- is true in $\langle \mathbb{Z}; \cdot \rangle$ under any assignment v with $v(x_2) = 2$,
- but false when $v(x_2) = 0$.

Whether or not $\mathcal{A} \models \phi[v]$ depends on $v(x_2)$ but not on $v(x_0)$ or $v(x_1)$.

This is because all occurrences of x_0 and x_1 in ϕ are subordinate to the corresponding quantifiers $\forall x_0$ and $\forall x_1$. We say that these occurrences are **bound**, while the occurrence of x_2 is **free**.

Lec 10 - 1/9

10.1 Definition

Let \mathcal{L} be a first-order language, ϕ an \mathcal{L} -formula, and $x \in \{x_0, x_1, \ldots\}$ a variable.

An occurrence of x in ϕ is **free**, if

- (i) ϕ is atomic; or
- (ii) $\phi = \neg \psi$ resp. $\phi = (\chi \rightarrow \rho)$, and the occurrence of x is free in ψ resp. in χ or in ρ ; or
- (iii) $\phi = \forall x_i \psi$, and $x \neq x_i$, and the occurrence of x is free in ψ .

The variables which occur free in ϕ are called the **free variables of** ϕ , Free $(\phi) := \{x_i : x_i \text{ occurs free in } \phi\}$.

An occurrence which is not free is **bound**. In particular, if $\phi = \forall x_i \psi$, then any occurrence of x_i in ϕ is bound.

10.2 Example

 $(\exists x_0 P(\underbrace{x_0}_{bnd}, \underbrace{x_1}_{free}) \lor \forall x_1 (P(\underbrace{x_0}_{free}, \underbrace{x_1}_{bnd}) \to \exists x_0 P(\underbrace{x_0}_{bnd}, \underbrace{x_1}_{bnd})))$

Lec 10 - 2/9

10.3 Lemma

Let \mathcal{L} be a language, let \mathcal{A} be an \mathcal{L} -structure, let v_1 , v_2 be assignments in \mathcal{A} , and let ϕ be an \mathcal{L} -formula.

Suppose $v_1(x_i) = v_2(x_i)$ for every variable x_i with a free occurrence in ϕ .

Then

$$\mathcal{A} \models \phi[v_1]$$
 iff $\mathcal{A} \models \phi[v_2]$.

Proof:

For ϕ atomic: exercise.

Now use induction on the length of ϕ . If $\phi = \neg \psi$ or $\phi = (\chi \rightarrow \rho)$, this is straightforward.

Lec 10 - 3/9

So say $\phi = \forall x_i \psi$. **IH:** Assume the Lemma holds for ψ .

Suppose $\mathcal{A} \models \forall x_i \psi[v_1]$. (*) We want to show $\mathcal{A} \models \forall x_i \psi[v_2]$. So suppose v_2^{\star} agrees with v_2 except possibly at x_i ; we want to show $\mathcal{A} \models \psi[v_2^{\star}]$.

Let
$$v_1^{\star}(x_j) := \begin{cases} v_1(x_j) & \text{if } j \neq i \\ v_2^{\star}(x_i) & \text{if } j = i \end{cases}$$

Then v_1^{\star} agrees with v_1 except possibly at x_i .
So by (\star), $\mathcal{A} \models \psi[v_1^{\star}]$.

Now suppose x_j occurs free in ψ . We show $v_2^{\star}(x_j) = v_1^{\star}(x_j)$. If j = i, this is by definition of v_1^{\star} . If $j \neq i$, then x_j occurs free in ϕ , so

$$v_2^{\star}(x_j) = v_2(x_j) = v_1(x_j) = v_1^{\star}(x_j).$$

So by IH, $\mathcal{A} \models \psi[v_2^{\star}]$, as required

Lec 10 - 4/9

10.4 Corollary

Let \mathcal{L} be a language, and let $\alpha, \beta \in \text{Form}(\mathcal{L})$. Assume the variable x_i has no free occurrence in α (i.e. $x_i \notin \text{Free}(\alpha)$). Then

$$\models (\forall x_i(\alpha \to \beta) \to (\alpha \to \forall x_i\beta)).$$

Proof:

Let \mathcal{A} be an \mathcal{L} -structure and let v be an assignment in \mathcal{A} such that $\mathcal{A} \models \forall x_i (\alpha \rightarrow \beta)[v].$

To show:
$$\mathcal{A} \models (\alpha \rightarrow \forall x_i \beta)[v].$$

So suppose
$$\mathcal{A} \models \alpha[v]$$
.
To show: $\mathcal{A} \models \forall x_i \beta[v]$.

So let v^* be an assignment agreeing with vexcept possibly at x_i . To show: $\mathcal{A} \models \beta[v^*]$.

 $x_i \text{ is not free in } \alpha \Rightarrow_{10.3} \mathcal{A} \models \alpha[v^*]$ $(\star) \Rightarrow \mathcal{A} \models (\alpha \to \beta)[v^*]$ $\Rightarrow \mathcal{A} \models \beta[v^*].$

Lec 10 - 5/9

 (\star)

10.5 Definition

A formula σ with no free (occurrences of) variables is called a **statement** or a **sentence**.

Then (by 10.3) for any \mathcal{L} -structure \mathcal{A} , whether or not $\mathcal{A} \models \sigma[v]$ does not depend on the choice of assignment v.

So we write

$$\mathcal{A} \models \sigma$$

if $\mathcal{A} \models \sigma[v]$ for some/all v.

Say: σ is **true** in A, or A is a **model** of σ .

(\sim 'Model Theory')

Lec 10 - 6/9

10.6 Example

Let $\mathcal{L} = \{f, c\}$ be a language, where f is a binary function symbol, and c is a constant symbol.

Consider the sentences (writing x, y, z for x_0, x_1, x_2)

$$\sigma_{1} : \forall x \forall y \forall z f(x, f(y, z)) \doteq f(f(x, y), z)$$

$$\sigma_{2} : \forall x \exists y (f(x, y) \doteq c \land f(y, x) \doteq c)$$

$$\sigma_{3} : \forall x (f(x, c) \doteq x \land f(c, x) \doteq x)$$

and let $\sigma = (\sigma_1 \wedge \sigma_2 \wedge \sigma_3)$

Let $\mathcal{A} = \langle A; \cdot, e \rangle$ be an \mathcal{L} -structure (i.e. \cdot is an interpretation of f, and e is an interpretation of c).

Then $\mathcal{A} \models \sigma$ iff \mathcal{A} is a group.

Lec 10 - 7/9

10.7 Example

Let $\mathcal{L} = \{E\}$ with E a binary relation symbol. Consider

- au_1 : $\forall x E(x, x)$
- $\tau_2: \quad \forall x \forall y (E(x,y) \leftrightarrow E(y,x))$
- $\tau_{3}: \forall x \forall y \forall z (E(x,y) \rightarrow (E(y,z) \rightarrow E(x,z)))$

Then for any \mathcal{L} -structure $\langle A; R \rangle$:

 $\langle A; R \rangle \models \bigwedge_i \tau_i$ iff R is an equivalence relation on A.

Note: Many mathematical concepts can be naturally expressed by first-order formulas.

10.8 Example

Let < be a binary predicate symbol, $\mathcal{L} := \{<\}$. Consider the sentence

$$\sigma := \forall x \forall y \forall z \ (\neg x < x \\ \land (x < y \lor x \doteq y \lor y < x) \\ \land ((x < y \land y < z) \rightarrow x < z) \\ \land (x < y \rightarrow \exists w \ (x < w \land w < y)) \\ \land \exists w \ w < x \\ \land \exists w \ x < w).$$

This axiomatises a **dense linear order** without endpoints. In particular, $\langle \mathbb{Q}; < \rangle \models \sigma$ and $\langle \mathbb{R}; < \rangle \models \sigma$.

But: 'Completeness' of $\langle \mathbb{R}; < \rangle$ is not captured by the first-order language \mathcal{L} , but rather in second-order terms, meaning that we also allow quantification over subsets of \mathbb{R} :

 $\forall A, B \subseteq \mathbb{R}(A < B \rightarrow \exists c \in \mathbb{R}(A \leq \{c\} \leq B)),$ writing A < B to mean that a < b for every $a \in A$ and every $b \in B$, similarly for $A \leq B$. Lec 10 - 9/9