B1.1 Logic Lecture 10

Martin Bays

Oxford, MT 2023

10. Free and bound variables

Recall Example 9.3: The formula

$$
\phi=\forall x_{0} \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)
$$

- is true in $\langle\mathbb{Z} ; \cdot\rangle$ under any assignment v with $v\left(x_{2}\right)=2$,
- but false when $v\left(x_{2}\right)=0$.

Whether or not $\mathcal{A} \models \phi[v]$ depends on $v\left(x_{2}\right)$ but not on $v\left(x_{0}\right)$ or $v\left(x_{1}\right)$.

This is because all occurrences of x_{0} and x_{1} in ϕ are subordinate to the corresponding quantifiers $\forall x_{0}$ and $\forall x_{1}$.
We say that these occurrences are bound, while the occurrence of x_{2} is free.

10.1 Definition

Let \mathcal{L} be a first-order language, ϕ an \mathcal{L}-formula, and $x \in\left\{x_{0}, x_{1}, \ldots\right\}$ a variable.

An occurrence of x in ϕ is free, if
(i) ϕ is atomic; or
(ii) $\phi=\neg \psi$ resp. $\phi=(\chi \rightarrow \rho)$,
and the occurrence of x is free in ψ resp.
in χ or in ρ; or
(iii) $\phi=\forall x_{i} \psi$, and $x \neq x_{i}$, and the occurrence of x is free in ψ.

The variables which occur free in ϕ are called the free variables of ϕ,
Free $(\phi):=\left\{x_{i}: x_{i}\right.$ occurs free in $\left.\phi\right\}$.
An occurrence which is not free is bound.
In particular, if $\phi=\forall x_{i} \psi$, then any occurrence of x_{i} in ϕ is bound.

10.2 Example

$(\exists x_{0} P(\underbrace{x_{0}}_{\text {bnd }}, \underbrace{x_{1}}_{\text {free }}) \vee \forall x_{1}(P(\underbrace{x_{0}}_{\text {free }}, \underbrace{x_{1}}_{\text {bnd }}) \rightarrow \exists x_{0} P(\underbrace{x_{0}}_{\text {bnd }}, \underbrace{x_{1}}_{\text {bnd }})))$

10.3 Lemma

Let \mathcal{L} be a language, let \mathcal{A} be an \mathcal{L}-structure, let v_{1}, v_{2} be assignments in \mathcal{A}, and let ϕ be an \mathcal{L}-formula.

Suppose $v_{1}\left(x_{i}\right)=v_{2}\left(x_{i}\right)$ for every variable x_{i} with a free occurrence in ϕ.

Then

$$
\mathcal{A} \models \phi\left[v_{1}\right] \text { iff } \mathcal{A} \models \phi\left[v_{2}\right] .
$$

Proof:
For ϕ atomic: exercise.
Now use induction on the length of ϕ. If $\phi=\neg \psi$ or $\phi=(\chi \rightarrow \rho)$, this is straightforward.

So say $\phi=\forall x_{i} \psi$.
IH: Assume the Lemma holds for ψ.
Suppose $\mathcal{A} \vDash \forall x_{i} \psi\left[v_{1}\right]$.
We want to show $\mathcal{A} \vDash \forall x_{i} \psi\left[v_{2}\right]$. So suppose v_{2}^{\star} agrees with v_{2} except possibly at x_{i};
we want to show $\mathcal{A} \vDash \psi\left[v_{2}^{\star}\right]$.
Let $v_{1}^{\star}\left(x_{j}\right):= \begin{cases}v_{1}\left(x_{j}\right) & \text { if } j \neq i \\ v_{2}^{\star}\left(x_{i}\right) & \text { if } j=i\end{cases}$
Then v_{1}^{\star} agrees with v_{1} except possibly at x_{i}. So by (\star), $\mathcal{A} \models \psi\left[v_{1}^{\star}\right]$.

Now suppose x_{j} occurs free in ψ.
We show $v_{2}^{\star}\left(x_{j}\right)=v_{1}^{\star}\left(x_{j}\right)$.
If $j=i$, this is by definition of v_{1}^{\star}.
If $j \neq i$, then x_{j} occurs free in ϕ, so

$$
v_{2}^{\star}\left(x_{j}\right)=v_{2}\left(x_{j}\right)=v_{1}\left(x_{j}\right)=v_{1}^{\star}\left(x_{j}\right)
$$

So by $\mathrm{IH}, \mathcal{A} \vDash \psi\left[v_{2}^{\star}\right]$, as required

10.4 Corollary

Let \mathcal{L} be a language, and let $\alpha, \beta \in \operatorname{Form}(\mathcal{L})$. Assume the variable x_{i} has no free occurrence in α (i.e. $x_{i} \notin \operatorname{Free}(\alpha)$). Then

$$
\vDash\left(\forall x_{i}(\alpha \rightarrow \beta) \rightarrow\left(\alpha \rightarrow \forall x_{i} \beta\right)\right)
$$

Proof:
Let \mathcal{A} be an \mathcal{L}-structure and let v be an assignment in \mathcal{A} such that
$\mathcal{A} \vDash \forall x_{i}(\alpha \rightarrow \beta)[v]$.
To show: $\mathcal{A} \vDash\left(\alpha \rightarrow \forall x_{i} \beta\right)[v]$.
So suppose $\mathcal{A} \vDash \alpha[v]$.
To show: $\mathcal{A} \vDash \forall x_{i} \beta[v]$.
So let v^{\star} be an assignment agreeing with v except possibly at x_{i}.
To show: $\mathcal{A} \vDash \beta\left[v^{\star}\right]$.
x_{i} is not free in $\alpha \Rightarrow_{10.3} \mathcal{A} \models \alpha\left[v^{\star}\right]$
$(\star) \Rightarrow \mathcal{A} \vDash(\alpha \rightarrow \beta)\left[v^{\star}\right]$
$\Rightarrow \mathcal{A} \models \beta\left[v^{\star}\right]$.

10.5 Definition

A formula σ with no free (occurrences of)
variables is called a statement or a sentence.

Then (by 10.3) for any \mathcal{L}-structure \mathcal{A}, whether or not $\mathcal{A} \vDash \sigma[v]$ does not depend on the choice of assignment v.

So we write

$$
\mathcal{A} \vDash \sigma
$$

if $\mathcal{A} \vDash \sigma[v]$ for some/all v.

Say: σ is true in \mathcal{A}, or \mathcal{A} is a model of σ.
(\sim 'Model Theory')

10.6 Example

Let $\mathcal{L}=\{f, c\}$ be a language, where f is a binary function symbol, and c is a constant symbol.

Consider the sentences (writing x, y, z for x_{0}, x_{1}, x_{2})

$$
\begin{aligned}
& \sigma_{1}: \forall x \forall y \forall z f(x, f(y, z)) \doteq f(f(x, y), z) \\
& \sigma_{2}: \forall x \exists y(f(x, y) \stackrel{y}{=} c \wedge f(y, x) \doteq c) \\
& \sigma_{3}: \forall x(f(x, c) \stackrel{y}{=} x \wedge f(c, x) \stackrel{y}{=} x)
\end{aligned}
$$

and let $\sigma=\left(\sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right)$

Let $\mathcal{A}=\langle A ; \cdot, e\rangle$ be an \mathcal{L}-structure (i.e. . is an interpretation of f, and e is an interpretation of c).

Then $\mathcal{A} \models \sigma$ iff \mathcal{A} is a group.

10.7 Example

Let $\mathcal{L}=\{E\}$ with E a binary relation symbol. Consider

$$
\begin{aligned}
& \tau_{1}: \forall x E(x, x) \\
& \tau_{2}: \quad \forall x \forall y(E(x, y) \leftrightarrow E(y, x)) \\
& \tau_{3}: \quad \forall x \forall y \forall z(E(x, y) \rightarrow(E(y, z) \rightarrow E(x, z)))
\end{aligned}
$$

Then for any \mathcal{L}-structure $\langle A ; R\rangle$: $\langle A ; R\rangle \vDash \wedge_{i} \tau_{i}$ iff R is an equivalence relation on A.

Note: Many mathematical concepts can be naturally expressed by first-order formulas.

10.8 Example

Let $<$ be a binary predicate symbol,
$\mathcal{L}:=\{<\}$. Consider the sentence

$$
\begin{aligned}
\sigma:=\forall x \forall y \forall z & (\neg x<x \\
& \wedge(x<y \vee x \doteq y \vee y<x) \\
& \wedge((x<y \wedge y<z) \rightarrow x<z) \\
& \wedge(x<y \rightarrow \exists w(x<w \wedge w<y)) \\
& \wedge \exists w w<x \\
& \wedge \exists w x<w)
\end{aligned}
$$

This axiomatises a dense linear order
without endpoints. In particular, $\langle\mathbb{Q} ;<\rangle \vDash \sigma$ and $\langle\mathbb{R} ;<\rangle \vDash \sigma$.

But: ‘Completeness' of $\langle\mathbb{R} ;<\rangle$ is not captured by the first-order language \mathcal{L}, but rather in second-order terms, meaning that we also allow quantification over subsets of \mathbb{R} :

$$
\forall A, B \subseteq \mathbb{R}(A<B \rightarrow \exists c \in \mathbb{R}(A \leq\{c\} \leq B))
$$

writing $A<B$ to mean that $a<b$ for every $a \in A$ and every $b \in B$, similarly for $A \leq B$.

