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About Maths again

William Thurston: “Experience has shown repeatedly that a mathematical
theory with a rich internal structure generally turns out to have significant
implications for the understanding of the real world, often in ways no one
could have envisioned before the theory was developed.”
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Nilpotent Groups: a key property

Theorem

Every subgroup H of a finitely generated nilpotent group G is finitely
generated.

Proof by induction on the class of nilpotency k of G .
For k = 1, G is abelian finitely generated. Assume the assertion true for k.
Let G be nilpotent of class k + 1, let H 6 G .
By the inductive assumption, H1 = H ∩ C 2G is finitely generated.
H2 = H/(H ∩ C 2G ) is finitely generated because subgroup of G/C 2G ,
abelian finitely generated.
Thus, H fits into the short exact sequence

1→ H1 → H
π→ H2 → 1,

where H1,H2 are finitely generated.
Therefore H is also finitely generated.
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Nilpotent Groups

We generalize
[
C iG ,G

]
= C i+1G to: the lower central series is graded,

that is

Proposition

For every i , j > 1 [
C iG ,C jG

]
6 C i+jG . (1)

First, recall that [a, b]−1 = [b, a], whence [A,B] = [B,A].

Lemma

If A,B,C normal subgroups in G , then [A,B,C ] C G and it is generated
by [a, b, c] with a ∈ A, b ∈ B, c ∈ C .
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Generation of [A,B ,C ]

Proof. [A,B,C ] C G follows from [x , y ]g = [xg , yg ].

[A,B,C ] generated by [k , c], c ∈ C , k product of n commutators [a, b] or
inverses.

We prove, by induction on n, that [k, c] is a product of finitely many
[a, b, c] and inverses.

n = 1: consider the case [t−1, c], where t = [a, b].

[t−1, c] = [c , t]t
−1

= [ct
−1
, t] = [c ′, t] = [t, c ′]−1 = [a, b, c ′]−1.
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Generation of [A,B ,C ] 2

Assume the statement is true for n, let k = k1t, where t is [a, b] or
[a, b]−1 = [b, a], and k1 product of n commutators.

[k1t, c] = [t, c]k1 [k1, c] .

Both [t, c]k1 and [k1, c] are products of commutators [a, b, c] and inverses,
by the induction assumption and the fact that A,B,C are normal subgps.
�

Exercise

Prove the same result for [H1, . . . ,Hn], where all Hi are normal subgroups
of G .
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Second Key Lemma

Lemma

Assume that A,B,C are normal subgroups in G . Then

[A,B,C ] 6 [B,C ,A][C ,A,B] . (2)

Proof Uses the previous Lemma and the Hall identity:[
x−1, y , z

]x [
z−1, x , y

]z [
y−1, z , x

]y
= 1 . (3)

The latter identity implies

[a, b, c]a
−1
6 [B,C ,A][C ,A,B].

�
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Proof of Proposition

We prove by induction on i > 1 that for every j > 1,[
C iG ,C jG

]
6 C i+jG . (4)

For i = 1: definition of C j+1G .

Assume true for i and prove for i + 1.

Consider j > 1 arbitrary.

[C i+1G ,C jG ] = [C iG ,G ,C jG ] 6 [G ,C jG ,C iG ][C jG ,C iG ,G ] 6

[C j+1G ,C iG ][C j+iG ,G ] = [C iG ,C j+1G ]C j+i+1G 6 C j+i+1G ,

since [C iG ,C j+1G ] 6 C j+i+1G by the inductive assumption.
�
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Back to a more global picture

We study the following classes of groups:

Nilpotent finitely generated ⊂ Polycyclic ⊂ Solvable finitely generated

Definition

Given a class X of groups, a group G is said to be poly-X if it admits a
subnormal descending series:

G = G0 . G1 . . . . . Gk . Gk+1 = {1},

such that each Gi/Gi+1 belongs to the class X .

Polycyclic if X = all cyclic groups.

Poly-C∞ if X = {Z}.

Solvable if X = all abelian groups.
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Differences and similarities

Nilpotent finitely generated groups= the only groups with polynomial
growth.
Polycyclic (hence also nilpotent f.g.) groups = finitely presented, linear
(therefore residually finite) while solvable groups are not necessarily finitely
presented, linear or residually finite.
A different behaviour of the torsion:

TorG = {g ∈ G | ∃n ≥ 1 s.t. gn = 1}.

When G nilpotent, TorG is a characteristic subgroup of G .

When G nilpotent and moreover f.g., TorG is a finite characteristic
subgroup of G .

When G polycyclic, TorG not necessarily a subgroup of G , nor a finite
subset of G . Examples in Ex. Sheet 2.
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Torsion for nilpotent groups

Theorem

When G is nilpotent (not necessarily finitely generated), TorG is a
characteristic subgroup.

Proof by induction on the nilpotency class.

A key result for this induction:

Lemma

Let G be nilpotent of class k. For every x ∈ G the subgroup H generated
by x and C 2G is a normal subgroup, nilpotent of class 6 k − 1.
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Proof that H = 〈x ,C 2G 〉 of class 6 k − 1.

Since C 2G C G ,
H = {xmc | m ∈ Z, c ∈ C 2G}.

H normal: ∀g ∈ G , and h ∈ H, h = xmc , ghg−1 = xm[x−m, g ]gcg−1.
The last two factors are in C 2G ⇒ the product is in H.
We prove C 2H 6 C 3G (implying H is of class 6 k − 1).
Let h = xmc1, h′ = xnc2 with ci ∈ C 2G .

[h, h′] = [h, xnc2] = [h, xn] [xn, [h, c2]] [h, c2].

The last term is in C 3G , hence the middle term is in C 4G .
The first term can be rewritten as

[h, xn] = [xmc1, x
n] = [xm, [c1, x

n]][c1, x
n].

The last term is in C 3G and the first in C 4G . �
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Torsion for nilpotent groups

Theorem

When G is nilpotent (not necessarily finitely generated), TorG is a
characteristic subgroup.

Proof by induction on the nilpotency class, using:

Lemma

Let G be nilpotent of class k. For every x ∈ G the subgroup H generated
by x and C 2G is a normal subgroup, nilpotent of class 6 k − 1.
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