Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2023, Oxford

Cornelia Druțu (University of Oxford)

Part C course MT 2023, Oxford

 $\frac{1}{12}$

Torsion for nilpotent groups

Theorem

When G is nilpotent (not necessarily finitely generated), TorG is a characteristic subgroup.

Proof by induction on the nilpotency class, using:

Lemma

Let G be nilpotent of class k. For every $x \in G$, the subgroup H generated by x and C^2G is a normal subgroup, nilpotent of class $\leq k - 1$.

For k = 1, G is abelian, statement immediate.

Tor G is a subgroup

Proof of Theorem continued.

Assume statement true for nilpotent groups of class $\leq k$, consider a (k+1)-step nilpotent group G.

For two elements a, b of finite order in G, we prove ab is of finite order. $B = \langle b, C^2 G \rangle$ is nilpotent of class $\leq k$.

The inductive assumption $\Rightarrow \text{Tor}B$ is a characteristic subgroup of B. $B \lhd G \Rightarrow \text{Tor}B \lhd G$.

Assume *a* is of order *m*.

Then

$$(ab)^m = aba^{-1}a^2ba^{-2}a^3b\cdots a^{-m+1}a^mba^{-m}.$$

The right-hand side is a product of conjugates of $b \Rightarrow$ it is in TorB. We conclude that $(ab)^m$ is of finite order.

³/₁₂/

Torsion of nilpotent f.g. groups

A torsion group G = all elements of finite order (i.e. G = Tor G).

A torsion-free group G = a group with $Tor G = \{1\}$.

Proposition

A finitely generated nilpotent torsion group is finite.

Proof by induction on the nilpotency class k.

For k = 1 it follows from the classification of f. g. abelian groups.

Assume true for nilpotent groups of class $\leq n$, consider G f. g. torsion group that is (n + 1)-step nilpotent.

 C^2G and G/C^2G are finite, by the inductive assumption, whence G finite.

Mal'cev's Theorem

Corollary

If G is nilpotent finitely generated then $\operatorname{Tor} G$ is a finite subgroup.

Proposition

If G is nilpotent then $G/\mathrm{Tor}G$ is torsion-free.

Theorem (Mal'cev)

Every finitely generated torsion-free nilpotent group G of class k embeds as a discrete subgroup in a simply-connected nilpotent Lie group L of class k, s.t. L/G compact.

Generalizes the case of finitely generated torsion-free abelian groups $\mathbb{Z}^n \leq \mathbb{R}^n$.

Another theorem of Mal'cev

Theorem (Mal'cev)

Let G be a nilpotent group. The following are equivalent:

(a) Z(G) is torsion-free;

(b) Each quotient $Z_{i+1}(G)/Z_i(G)$ is torsion-free;

(c) G is torsion-free.

Remark

The above characterization of "torsion-free" is not true if we replace the upper central series by the lower central series (Ex. Sheet 3).

Mal'cev's Theorem on torsion 2

(a) \Rightarrow (b). By induction on the nilpotency class *n* of *G*. Clear for n = 1. Assume true for nilpotent groups of class < n. We first prove that the group $Z_2(G)/Z_1(G)$ is torsion-free. We show that for each non-trivial $\bar{x} \in Z_2(G)/Z_1(G)$, there exists a homomorphism $\varphi: Z_2(G)/Z_1(G) \rightarrow Z_1(G)$ such that $\varphi(\bar{x}) \neq 1$. Let $x \in Z_2(G)$ be an element which projects to $\bar{x} \in Z_2(G)/Z_1(G)$. Thus $x \notin Z_1(G)$, therefore there exists $g \in G$ such that $[g, x] \in Z_1(G) \setminus \{1\}$. Define the map $\tilde{\varphi}: Z_2(G) \rightarrow Z_1(G)$ by:

$$\tilde{\varphi}(y) := [y,g].$$

Clearly, $\tilde{\varphi}(x) \neq 1$; $\tilde{\varphi}$ is a homomorphism (exercise). Since $Z_1(G)$ is the center of G, $\tilde{\varphi}$ descends to a homomorphism $\varphi : Z_2(G)/Z_1(G) \rightarrow Z_1(G)$. Since $Z_1(G)$ is torsion-free, $Z_2(G)/Z_1(G)$ is torsion-free.

 $\frac{7}{12}$

Mal'cev's Theorem on torsion 3

We replace G by the group $\overline{G} = G/Z_1(G)$. Since $Z_2(G)/Z_1(G)$ is torsion-free, the group \overline{G} has torsion-free center. By the inductive assumption, $Z_i(\overline{G})/Z_{i-1}(\overline{G})$ is torsion-free for every $i \ge 1$.

$$Z_i(\bar{G})/Z_{i-1}(\bar{G})\cong Z_{i+1}(G)/Z_i(G),$$

for every $i \ge 1$.

Thus, every group $Z_{i+1}(G)/Z_i(G)$ is torsion-free, proving (b). (b) \Rightarrow (c). Let *k* be the nilpotency class, i.e. $G = Z_k(G)$. $G = \bigsqcup_{i=1}^k [Z_i(G) \setminus Z_{i-1}(G)] \sqcup \{1\}$. For each *i*, each $x \in Z_i(G) \setminus Z_{i-1}(G)$ and each $m \neq 0$ we have that $x^m \notin Z_{i-1}(G)$. Thus $x^m \neq 1$. Therefore, *G* is torsion-free.

Cornelia Druţu (University of Oxford)

12

Polycyclic groups

Definition

Let \mathcal{X} be a class of groups.

G is poly- \mathcal{X} if it admits a subnormal descending series:

$$G = N_0 \triangleright N_1 \triangleright \ldots \triangleright N_k \triangleright N_{k+1} = \{1\},$$

such that each N_i/N_{i+1} belongs to \mathcal{X} , up to isomorphism.

Polycyclic if $\mathcal{X} = \text{all cyclic groups.}$ Poly- \mathcal{C}_{∞} if $\mathcal{X} = \{\mathbb{Z}\}$. Cyclic series of G= a series as in (1) with \mathcal{X} set of cyclic groups. Its length is the number of non-trivial groups. The length $\ell(G)$ of a polycyclic group is the least length of a cyclic series of G. \mathcal{C}_{∞} series of G= a series as in (1) with $\mathcal{X} = \{\mathbb{Z}\}$.

By convention, $\{1\}$ is poly- C_{∞} .

Cornelia Druţu (University of Oxford)

(1)

Properties of polycyclic groups

Remark

- If G is poly-C_∞ then N_i ≃ N_{i+1} ⋊ Z for every i ≥ 0; thus, the group G is obtained from N_n ≃ Z by successive semidirect products with Z.
- ② The above is no longer true for polycyclic groups (with ℤ replaced by "cyclic"). However: every polycyclic group contains a normal subgroup of finite index which is poly-C_∞.

Proposition

A polycyclic group has the bounded generation property. More precisely, let G be a group with a cyclic series of length n and let t_i be such that $t_i N_{i+1}$ is a generator of N_i/N_{i+1} . Then every $g \in G$ can be written as $g = t_1^{k_1} \cdots t_n^{k_n}$, with k_1, \ldots, k_n in \mathbb{Z} .

Proof by induction on the length of the series.

Properties of polycyclic groups 2

Corollary

A polycyclic torsion group is finite.

Remark

- It is not true that, for G polycyclic, Tor(G) is either a subgroup or a finite set. Example: D_{∞} .
- Interpretending of the second state of the

Definition

A group is said to have property * virtually if some finite-index subgroup of it has the property *.

 $\frac{11}{12}$

Further properties of polycyclic groups

Proposition

- Any subgroup H of a polycyclic group G is polycyclic (hence, finitely generated).
- **2** If $N \triangleleft G$, then G/N is polycyclic.
- **③** If $N \lhd G$ and both N and G/N are polycyclic then G is polycyclic.
- Properties (1) and (3) hold with 'polycyclic' replaced by 'poly-C_∞', but not (2): Z_k is a quotient of Z.

