Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2023, Oxford

Cornelia Druțu (University of Oxford)

Infinite Groups

Part C course MT 2023, Oxford

 $\frac{1}{10}$

Carl Friedrich Gauss: "It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment."

Carl Friedrich Gauss: "Theory attracts practice as the magnet attracts iron."

Properties of polycyclic groups

Proposition

- Any subgroup H of a polycyclic group G is polycyclic (hence, finitely generated).
- **2** If $N \triangleleft G$, then G/N is polycyclic.
- § If $N \lhd G$ and both N and G/N are polycyclic then G is polycyclic.
- Properties (1) and (3) hold with 'polycyclic' replaced by 'poly-C_∞', but not (2): Z_k is a quotient of Z.

Proof. (1). Given a cyclic series for G as above, the intersections $H \cap N_i$ define a cyclic series for H.

 $\frac{3}{10}$

Properties of polycyclic groups 2

(2). Proof by induction on the length $\ell(G) = n$. For n = 1, G cyclic, any quotient of G is cyclic. Assume true for all $k \leq n$, consider G with $\ell(G) = n + 1$. Let N_1 be the first term $\neq G$ in a cyclic series of length n + 1.

By induction, $N_1/(N_1 \cap N) \simeq N_1 N/N$ is polycyclic.

 $N_1N/N \lhd G/N$ and $(G/N)/(N_1N/N) \simeq G/N_1N$ is cyclic, as quotient of G/N_1 . It follows that G/N is polycyclic.

(3). Consider the cyclic series

$$G/N = Q_0 \geqslant Q_1 \geqslant \cdots \geqslant Q_n = \{\overline{1}\}$$

and

$$N = N_0 \geqslant N_1 \geqslant \cdots \geqslant N_k = \{1\}.$$

Given $\pi: G \to G/N$ and $H_i := \pi^{-1}(Q_i)$, a cyclic series for G is:

 $G \ge H_1 \ge \ldots \ge H_n = N = N_0 \ge N_1 \ge \ldots \ge N_k = \{1\}.$

Two key examples of polycyclic groups

Proposition

Every finitely generated nilpotent group is polycyclic.

Proof Consider the finite descending series with terms $C^k G$.

 For every k ≥ 1, C^kG/C^{k+1}G is finitely generated abelian, hence there exists a finite subnormal descending series

$$C^k G = A_0 \geqslant A_1 \geqslant \cdots \geqslant A_n \geqslant A_{n+1} = C^{k+1} G$$

such that every quotient A_i/A_{i+1} is cyclic.

• By inserting all these finite descending series into the one defined by the *C^kG*'s, we obtain a finite subnormal cyclic series for *G*.

Proposition

Given any homomorphism $\varphi : \mathbb{Z}^n \to \operatorname{Aut}(\mathbb{Z}^m)$, the semidirect product $\mathbb{Z}^m \rtimes_{\varphi} \mathbb{Z}^n$ is poly- C_{∞} .

Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let $N \lhd G$. If both N and G/N are finitely presented then G is finitely presented.

Proof Let $N = \langle X | r_1, ..., r_k \rangle$, and $G/N = \langle \overline{Y} | \rho_1, ..., \rho_m \rangle$ be finite presentations, where Y is a finite subset of G s. t. $\overline{Y} = \{yN | y \in Y\}$. G is generated by $S = X \cup Y$. S satisfies the following relations:

$$r_i(X) = 1, 1 \leq i \leq k, \rho_j(Y) = u_j(X), 1 \leq j \leq m,$$
(1)

$$x^{y} = v_{xy}(X), x^{y^{-1}} = w_{xy}(X).$$
 (2)

We denote the above finite set of relations by T.

Cornelia Druțu (University of Oxford)

Infinite Groups

Proof continued

We claim that $G = \langle S | T \rangle$. Let $K = \langle \langle T \rangle \rangle$ in F(S). The epimorphism $\pi_S : F(S) \to G$ defines an epimorphism $\varphi : F(S)/K \to G$. Goal: to prove φ is an isomorphism. Let wK be an element in ker (φ) , w word in S. Relations (2) imply that there exist a word $w_1(X)$ in X and a word $w_2(Y)$ in Y, such that $wK = w_1(X)w_2(Y)K$. Applying the projection $\pi : G \to G/N$, we see that $\pi(\varphi(wK)) = 1$, i.e. $\pi(\varphi(w_2(Y)K)) = 1$.

Therefore $w_2(Y)$ is a product of finitely many conjugates of $\rho_i(Y)$, hence $w_2(Y)K$ is a product of finitely many conjugates of $u_j(X)K$, by (1). This and the relations (2) imply that $w_1(X)w_2(Y)K = v(X)K$ for some word v(X) in X.

Then the image $\varphi(wK) = \varphi(v(X)K)$ is in N; therefore, $\varphi(v(X)K) = 1 \Leftrightarrow v(X)$ is a product of finitely many conjugates of $r_i(X)$. This implies that v(X)K = K.

Graham Higman

Remark

G finitely presented does not imply $H \leq G$ finitely presented or G/N finitely presented, for $N \triangleleft G$.

Theorem

Every finitely generated recursively presented group can be embedded as a subgroup of some finitely presented group.

Cornelia Druțu (University of Oxford)

Infinite Groups

Part C course MT 2023, Oxford

8 10

Finite presentation continued

Proposition

Let G be a group, and $H \leq G$ such that |G : H| is finite. Then G is FP if and only if H is FP.

Proof Suppose $G = \langle X | R \rangle$ with X and R finite. We have an epimorphism $\pi : F = F(X) \rightarrow G$ with $K = \ker \pi = \langle \langle R \rangle \rangle$. Let $E = \pi^{-1}(H)$. Then |F : E| = |G : H| is finite, so E = F(Y) for some finite Y. Since $K \leq E$, each $r \in R$ satisfies $r = s_r(Y)$ for some word s_r on Y. Put

 $S = \{s_r(Y) \mid r \in R\}$. Then $\pi_1 = \pi_{|E} : E \to H$ is an epimorphism and

$$\ker \pi_1 = \mathcal{K} = \left\langle \left\langle \mathcal{S} \right\rangle \right\rangle = \left\langle \mathcal{S}^{\mathcal{F}} \right\rangle.$$

FP of finite index subgroups continued

Say
$$F = a_1 E \cup \ldots \cup a_n E$$
.
Then $S^F = (S^{a_1} \cup \ldots \cup S^{a_n})^E$ and
 $\langle S^F \rangle = \langle (S^{a_1} \cup \ldots \cup S^{a_n})^E \rangle = \langle \langle S^{a_1} \cup \ldots \cup S^{a_n} \rangle \rangle_E$

Thus $\langle Y; S^{a_1} \cup \ldots \cup S^{a_n} \rangle$ is a presentation for H.

Conversely, suppose that H is FP.

Let $N \leq H$ be a normal subgroup of finite index in G (see Revision notes).

Then |H:N| is finite, so N is FP by the first part.

Also G/N is FP because finite. Therefore G is FP.