
B8.4 Information Theory

Sheet 3 — MT23

Section A

1. Let |X | = 100 and p the uniform distribution on X . How many codewords are there of

length l = 1, 2, · · · in a Huffman binary code?

Solution: By the Huffman procedure, we can see that there are 28 codewords of length

6 and 72 of length 7.

Another way to get these numbers is as follows:

Consider the optimization of lx for optimal code

min
100∑
i=1

pili subject to
100∑
i=1

2−li

The optimal li should be integers close to − log(pi), i.e. 6 or 7 in this question.

To prove this, write Γ = {u = (u1, · · ·u100) :
∑

2−ui ≤ 1} for the set of feasible solutions

(without integer constraint), and J(u) =
∑

ui for the objective function.

Defining u∗ = log(100) ∗ (1, 1, 1, · · · 1), A = {6, 7}100 ∩Γ, and Ā be the convex hull of A,

which is contained in Γ.

Then for any feasible solution in Ā, the segment between u and u∗ must intersect

with Ā, hence intersect with the surface of Ā. So, there exists a λ ∈ (0, 1) such that

uλ = λu + (1 − λ)u∗ is on the surface of Ā, and J(uλ) = λJ(u) + (1 − λ)J(u∗). Since

J(u∗) < J(u∗), so J(uλ) < J(u). Furthermore, u∗λ is on the surface of Ā, so there exists

a û ∈ A such that J(û) ≤ J(uλ), which implies u cannot be optimal.

2. Consider an alphabet X = {A,B,C}, with probabilities p(A) = 0.3, p(B) = 0.5, p(C) =

0.2. Consider building an arithmetic code with these probabilities (in this order). Com-

pute the interval associated with the input string ‘ABBA’ and the first 5 digits of the

string associated with the number 1/π.

Solution: To encode the string ABBA, we have the sequence of intervals (written as

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 1 of 8

B8.4 Information Theory: Sheet 3 — MT23

decimals):

A 7→ [0, 0.3)

AB 7→ [0.3× (0.3− 0), 0.8× (0.3− 0)) = [0.09, 0.24)

ABB 7→ [0.09 + 0.3× (0.24− 0.09), 0.09 + 0.8× (0.24− 0.09)) = [0.135, 0.21)

ABBA 7→ [0.135 + 0× (0.21− 0.135), 0.135 + 0.3× (0.21− 0.135)) = [0.135, 0.1575)

As our smallest probability is 0.2, after 5 iterations our interval will have width at least

0.25 = 0.00032, so 10−4 is enough accuracy for our codeword! We therefore wish to

decode 1/π ≈ 0.3183, as

0.3183 ∈ [0.3, 0.8) 7→ B

0.3183− 0.3

0.5
= 0.0366 ∈ [0, 0.3) 7→ A

0.0366− 0

0.3
= 0.122 ∈ [0, 0.3) 7→ A

0.122− 0.3

0.3
= 0.40667 ∈ [0.3, 0.8) 7→ B

0.40667− 0.3

0.5
= 0.21334 ∈ [0, 0.3) 7→ A

Hence 1/π 7→ BAABA...... Observe that we do not need to construct the full codebook,

but require high precision arithmetic here.

3. Consider a DMC with X = Y = {0, 1, 2, · · · , 10} and M = (P(Y = y|X = x))x∈X ,y∈Y .

It is known that Y = (X + Z) mod 11, where Z is independent of X and has pmf

pZ(i) =
1
3
for i ∈ {1, 2, 3}. Find the capacity of this channel and the distribution of X

that achieves the capacity.

Solution: C = maxpX{I(X, Y)}. For any pX over X ,

I(X, Y) = H(Y)−H(Y |X) = H(Y)−H(X + Z|X)

= H(Y)−H(Z|X) = H(Y)−H(Z)

= H(Y)− log(3)

≤ log(11)− log(3),

and the equality holds in the last inequality if and only if Y follows the uniform distri-

bution, which is realised when pX is the uniform distribution.

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 2 of 8

B8.4 Information Theory: Sheet 3 — MT23

Section B

4. Consider an alphabet X = A,B with pmf p(A) = 1− 2−3 and p(B) = 2−3, and binary

output alphabet Y = 0, 1.

(a) Construct the binary Shannon codes for blocks of length 1, 2 and 3.

(b) For each of these codes, determine whether it is an optimal code.

(c) Construct an optimal block code for this data with length three blocks. Compute

its average blocklength and compare with H(X), where X ∼ p.

5. Let X be uniformly distributed over a finite set X with |X | = 2n for some n ∈ N.
Given a sequence A1, A2, · · · of subsets of X we ask a sequence of questions of the form

X ∈ A1, X ∈ A2, etc.

(a) We can choose the sequence of subsets, but cannot vary them depending on the

answers to previous questions. How many questions do we need to determine the

value of X? What is the most efficient way to do so?

[Note: If we regard all questions as a mapping from X to {Yes,No}∗, we can

even think about how to design the sequence of subsets to minimise the expected

number of questions to ask to get the value of a random variable X with any given

distribution.]

(b) We now randomly (i.i.d. and uniformly) draw a sequence of sets A1, A2, · · · from

the set of all subsets of X . Fix x, y ∈ X . Conditional on {X = x}:

(i) What is the probability that x and y are indistinguishable after the first k

random questions?

(ii) What is the expected number of elements in X\{x} that are indistinguishable

from x after the first k questions?

6. Consider a DMC (X ,M,Y) with |X | = |Y| = 3 and the stochastic matrix

M =

 2/3 1/3 0

1/3 1/3 1/3

0 1/3 2/3

 .

(a) Calculate the capacity of this DMC.

(b) Give an intuitive argument why the capacity is achieved with a distribution that

places zero probability on an input symbol.

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 3 of 8

B8.4 Information Theory: Sheet 3 — MT23

7. Consider the Block Arithmetic Code (BAC) constructed in lectures. Either modify the

code provided, or develop your own implementation, which implements a version of the

BAC with a one-step Markov model. In other words, the algorithm should follow the

algorithm:

• Accept as arguments a codeblock length, unconditional probability vector, and

matrix of conditional probabilities.

• For the first character in the block, use the unconditional probability distribution

over symbols, and the BAC approximation, to split the set of codewords into initial

character subsets

• For subsequent characters, use the conditional probability distribution based on

the previous character, and the BAC approximation, to split the set of codewords.

You should have both an on-the-fly encoding and decoding method. An example of

transition probabilities (for our familiar 27 character alphabet) is given in the file

transitions.csv. This dataset is stored with the convention that entry t(i, j) is the

probability that Xt = i given Xt−1 = j. (You can check this by considering the column

associated with ‘Q’.)

Using your method, for an output block of length 8, give the length of the encodings of

QQQQ and A A , and comment on why these lengths are as expected.

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 4 of 8

B8.4 Information Theory: Sheet 3 — MT23

Section C

8. Prove the following weaker version of the Kraft-McMillan theorem (called Kraft’s the-

orem) using rooted trees

(a) Let c : X 7→ {0, · · · , d−1}∗ be a prefix code. Consider its code-tree and argue that∑
x∈X d−|c(x)| ≤ 1. [Note that the assumption that c is a prefix code is crucial here,

otherwise the code-tree cannot be defined to begin with. In the Kraft-McMillan

theorem from the lecture we only require c to be uniquely decodable].

(b) Assume that
∑

x∈X d−lx ≤ 1 with lx ∈ N. Show that there exists a prefix code c

with codeword lengths |c(x)| = lx for x ∈ X by constructing a rooted tree.

Solution: A prefix code is equivalent to a rooted tree, where each codeword corresponds

to a path from a leave to the root.

(a) We call a d-ary tree semi-complete if every non-leaf vertex has d direct descendants.

In a semi-complete d-ary tree for any leaf x, denote h(x) as the height from the

root to the tree with h(root) = 0. It is easy to check that
∑

every leaf x d
−h(x) = 1.

For the code-tree of a prefix code, it can be expanded to a semi-complete tree by

adding some leaves to a non-leave vertex. Hence
∑

every leaf x d
−h(x) ≤ 1.

(b) We call a d-ary tree complete with height h if it is semi-complete, the distance from

each leaf to the root is h.

Given lx satisfies the condition, denote h = maxx lx, then we can construct a d-ary

complete tree with maximal height h.

Suppose l1 ≤ l2 ≤ · · · ≤ lm. We mark nodes and cut branches of a complete tree

as follows:

(1) Take i = 1.

(2) Find the first non-marked node on the left of the tree with height li, cut off

its descendant vertices, and mark all ancestral vertices (including itself) and

their edges down to the root.

(3) Set i = i+ 1 and repeat (2) until i = m+ 1.

For each x, we find a vertex with height lx, cut off its descendant vertices and mark

it the leaf of x, and mark all ancestral vertices and edges between the leaf x and

the root.

By the assumption
∑m

i=1 d
−li ≤ 1, we know we can run this construction for all

k ≤ m (otherwise, if we cannot find a node with height lk at some k ≤ m, then it

must happen that
∑k

i=1 d
−lx > 1).

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 5 of 8

B8.4 Information Theory: Sheet 3 — MT23

The labels of all marked vertices and the ith leaf in the algorithm corresponds to

the codeword i.

9. For a set X = {1, ...,m} with corresponding pmf p, give a necessary and sufficient

condition on p such that there exists a d-ary code with average per-character length

Hd(X).

Solution: We know that H(X) is an upper bound on the average per-character length,

and from the source coding theorem we have equality iff there exists a code with c(x) =

− logd(p(x)) for all x ∈ X . Therefore, clearly, it is necessary that all probabilities are

(negative) powers of d.

Conversely, suppose all probabilities are negative powers of d, that is p(x) = d−lx . Let

lmax = maxx lx. We know that 1 =
∑

x d
−lx , in particular

1 =
∑
x

d−lx =
∑

x:lx<lmax

d−lx + d−lmax#{x : lx = lmax}

and hence,

dlmax−1 −
∑

x:lx<lmax

dlmax−lx−1 = d−1#{x : lx = lmax}

The left hand side of this equation is an integer, so we know that #{x : lx = lmax} is

divisible by d. We can therefore group the least likely symbols together, as in the Huff-

man construction, without using any symbols with higher probability. Repeating this

argument, we see that the Huffman construction will always yield a codeword of length

precisely lx for each codeword. Finally, we observe that
∑

x pxlx = −
∑

x px logd(px) =

Hd(X), as desired.

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 6 of 8

B8.4 Information Theory: Sheet 3 — MT23

10. (Information theory and gambling) Suppose m horses run a race, and the ith horse

wins with probability pi. An investment of one pound returns o(i) pounds if horse i

wins, otherwise the investment is lost. A gambler distributes all of his wealth across

the horses: b(i) ≥ 0 denotes the fraction of the gambler’s wealth that he bets on horse

i and
∑m

i=1 b(i) = 1. We now consider repeating this game over and over.

If Sn denotes the gambler’s wealth after the nth race, then

Sn = Πn
i=1b(Xi)o(Xi),

where Xi is the horse that wins the ith race and S0 = 1 is the start capital.

(a) If Xi are i.i.d., show that for given b = (b(1), · · · , b(m)),p = (p1, · · · , pm), the
wealth evolves exponentially, i.e. limn→+∞

1
n
log

(
Sn

2nW (b,p)

)
= 0 almost surely, where

W (b,p) is to be determined. [Hint: Strong law of large numbers.]

(b) Define W ∗(p) := maxb:∑ b(i)=1,b(i)≥0W (b,p) and find b that achieves this maxi-

mum. [Hint: You can find a candidate by using Lagrange multipliers.]

(c) (Informal.) We can regard qi :=
1

o(i)
as the “probabilities” the bookmaker implicitly

assigns to o(i) outcomes. Considering the cases
∑

qi = 1,
∑

qi < 1 and
∑

qi > 1,

discuss the fairness of the game.

Solution:

(a) Since

1

n
(log(Sn/2

nW (b,p)) =
1

n

n∑
i=1

log(b(Xi)o(Xi))−W (b,p),

and by the law of large number

lim
n→+∞

1

n

n∑
i=1

log(b(Xi)o(Xi)) = E[log(b(X1)o(X1))] =
m∑
i=1

log(b(i)o(i))pi.

Hence W (b,p) =
∑m

i=1 log(b(i)o(i))pi.

(b) By the last part, we have

W (b,p) =
m∑
i=1

log(b(i)o(i))pi

=
m∑
i=1

log(p(i)))pi +
m∑
i=1

log

(
b(i))

pi

)
pi +

m∑
i=1

log(o(i))pi

= −H(p)−D(p||b) +
m∑
i=1

log(o(i))pi

≤ −H(p) +
m∑
i=1

log(o(i))pi,

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 7 of 8

B8.4 Information Theory: Sheet 3 — MT23

and the equality in the last inequality holds iff b = p.

(c) We know W ∗(p) =
∑m

i=1 log(pio(i))pi. In terms of qi =
1

o(i)
, we can write it into

W ∗(p) =
m∑
i=1

log(pi/q(i))pi.

Denote K =
∑m

j=1 qi, then we can define q̂i =
qi
K
, with which q̂ = (q̂1, · · · , q̂m) is a

pmf, and

W ∗(p) =
m∑
i=1

log(pi/q̂(i))pi − log(K)

= D(p||q̂)− log(K).

In conclusion,

• If K < 1, then W ∗(p) > 0, which is favourable for the gambler;

• If K = 1, this game is still favourable unless q is parallel to p.

• If K > 1, then this game can be favourable for the bookmaker.

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 8 of 8

