
Initial Value Problems: ODEs
Adaptive Runge-Kutta Schemes & Linear Multistep Methods

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2023, Lecture 7

Adaptive Runge-Kutta Schemes

Explicit Runge-Kutta Schemes
We continue to study the scalar first order initial value problem:
find u(t) such that

u′(t) = f (t, u) , t > 0 ,
u(0) = u0 .

(1)

Last time we looked at explicit Runge-Kutta schemes of the form

Un+1 − Un

∆t
=

s∑
i=1

biki

where

k1 = f (tn,Un)

and

ki = f (tn + ci∆t,Un +∆t
i−1∑
j=1

ai ,jkj) ,

for i = 2, . . . , s.

Runge-Kutta Schemes — Butcher Tableaux

The coefficients of explicit Runge-Kutta schemes are often stored
as Butcher tableaux in the form

0
c2 a2,1
c3 a3,1 a3,2
...

...
...

. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

We also know that the maximum order of an s-stage Runge Kutta
scheme is p = s and that it is possible to construct schemes of this
maximal order.

Adaptivity — Motivation

If an IVP has a solution with different timescales (i.e. a region of
rapid change and a region of much less rapid change) then using a
uniform timestep can be either inaccurate or inefficient.

If the timestep is too large it may capture the slowly varying part
of the solution but not that which is rapidly varying.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

u
(t

)

Solution to ODE for 0<t<2

exact

explicit Euler

implicit Euler

2 2.5 3 3.5 4 4.5 5

t

-0.5

0

0.5

1

u
(t

)

Solution to ODE for 2<t<5

exact

explicit Euler

implicit Euler

Adaptivity — Motivation

If the timestep is small it may be very inefficient for the slowly
changing part of the solution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

u
(t

)

Solution to ODE for 0<t<5, small timestep

exact

explicit Euler

implicit Euler

Remedy: use a large timestep when the solution does not change
rapidly and a small timestep when it does.

Runge Kutta Methods and Adaptivity (1)

One step methods can easily be modified to have adaptivity of the
timestep length ∆t as the function u varies. As an example,
consider the fourth order Runge-Kutta method (RK4).

The background theory is that

Trunction error Tn ∼ K1(∆t)4u(v)

Local error |en| ∼ K2∆t|Tn|
so |en| ∼ K3(∆t)5u(v).

Runge Kutta Methods and Adaptivity (1)

Suppose we are at tn and want to use a step ∆tn

1. apply RK4 over step ∆tn to get value Ua where

Ua = un+1 + K3(∆tn)
5u(v) +O(∆t6n)

2. apply RK4 twice over step ∆tn/2 to get value Ub

Ub = un+1 + 2K3

(
∆tn
2

)5

u(v) +O(∆t6n)

Then

Ua − Ub ∼ 15

16
K3u

(v)(∆tn)
5 ∼ K4en.

Runge Kutta Methods and Adaptivity (1)

Hence for fixed ∆tn:

▶ if |Ua − Ub| is large then so is the error |Ua − un+1| so the
step length should be decreased

▶ if |Ua − Ub| is small, so is the error so we could take a larger
step.

Of course we have to do more work each step since we effectively
apply RK4 three times per timestep. The hope is that being able
to use larger timesteps compensates for this.

Runge Kutta Methods and Adaptivity (1)
Since we have

Ua − Ub ∼ 15

16
K3u

(v)(∆tn)
5 ∼ K4en,

we may write

|Ua − Ub| = c(∆tn)
5.

Hence, if we require

|Ua − Ub| ≤ TOL

then we should choose the new timestep, ∆t, to satisfy

c(∆t)5 =
|Ua − Ub|
(∆tn)5

(∆t)5 ≤ TOL

or equivalently

∆t ≤
(

TOL

|Ua − Ub|

)1/5

∆tn.

Runge Kutta Methods and Adaptivity (1)
Algorithm: User provides start time, end time, tolerance.

1. Set TOL=tolerance
2. Set t0 =start time
3. while tn ≤ end time

3.1 apply RK4 to determine Ua and Ub with current ∆tn
3.2 if |Ua − Ub| >TOL, step fails, set

∆tn =

(
TOL

|Ua − Ub|

)1/5

∆tn

and go back to 3.1. (This reduces the step and repeats.)
else |Ua − Ub| ≤TOL, set

∆tn+1 =

(
TOL

|Ua − Ub|

)1/5

∆tn (2)

Un+1 = Ub

tn+1 = tn +∆tn

n = n + 1

(this increases the step length for next step).

end while

Runge Kutta Methods and Adaptivity (1)

As we have been dealing with local error the lengthening of step
can be misleading, the global error has order (∆t)4 so in (2) above
can use

∆tn+1 =

(
TOL

|Ua − Ub|

)1/4

∆tn.

This is more robust in practice.

Runge Kutta Methods and Adaptivity (2)
An alternative to the method described above is to use two Runge
Kutta methods, one of order p and one of order p̃ ≥ p + 1.

Let Un+1 be the numerical approximation to u(tn+1) using the pth
order method and let Ũn+1 be the numerical approximation to
u(tn+1) using the p̃th order method.

Then (making error free assumption, i.e. all earlier iterates are
exact)

Un+1 = u(tn+1) + c∆tp+1 +O(∆tp+2) , (3)

Ũn+1 = u(tn+1) +O(∆tp+2) , (4)

as ∆t → 0. Here c depends on the derivative of u. Subtracting
gives

Un+1 − Ũn+1 ≈ c∆tp+1 ,

and substituting this in (3) gives

Un+1 − u(tn+1) ≈ Un+1 − Ũn+1 .

Runge Kutta Methods and Adaptivity (2)

We can use this final equation

Un+1 − u(tn+1) ≈ Un+1 − Ũn+1 ,

to determine when to refine the mesh in an adaptive algorithm.

Now the idea is to choose the ERK schemes so that the pth order
method has nodes and a matrix which are a subset of those in the
p̃th order method so that the values can be re-used. This approach
is called an embedded RK pair.

Runge Kutta Methods and Adaptivity (2)

Example 1: Choose the pair consisting of the Butcher tableaux

0
2
3

2
3
1
4

3
4

and

0
2
3

2
3

2
3 0 2

3
1
4

3
8

3
8

Runge Kutta Methods and Adaptivity (2)

Example 2: Choose the pair consisting of the Butcher tableaux

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

25/216 0 1408/2565 2197/4104 −1/5

and

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
16/135 0 6656/12825 28561/56430 −9/50 2/55

Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-0.5

0

0.5

u
(t

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

0.1

0.2

0.3

0.4

 t

Linear Multistep Methods

Linear Multistep Methods: General Form

We continue to study the scalar first order initial value problem:
find u(t) such that

u′(t) = f (t, u) , t > 0 ,
u(0) = u0 .

(5)

The general form of a linear k-step method for the solution of (5)
is

k∑
j=0

αjUn+j = ∆t
k∑

j=0

βj f (tn+j ,Un+j) ,

where {α}kj=0 and {β}kj=0 are real coefficients with αk ̸= 0 and
|α0|+ |β0| ≠ 0.

Note that if βk = 0 the method is explicit, otherwise it is implicit.

Linear Multistep Methods: Example

If we integrate (5) over the interval (tn, tn+2) we have

u(tn+2)− u(tn) =

∫ tn+2

tn

f (t, u(t))dt .

We can now approximate the integral using Simpson’s rule to give

u(tn+2)− u(tn) ≈ ∆t

3
(f (tn, u(tn)) + 4f (tn+1, u(tn+1))

+f (tn+2, u(tn+2))) .

Thus an example of a linear 2-step method is

Un+2 − Un =
∆t

3
(fn + 4fn+1 + fn+2) ,

where fn = f (tn,Un).

Linear Multistep Methods: First and Second Characteristic
Polynomials

In the same way Runge-Kutta methods are summarised with
Butcher tables, linear multistep methods can be summarised with
two polynomials

ρ(z) =
k∑

j=0

αjz
j ,

σ(z) =
k∑

j=0

βjz
j ,

known as the first and second characteristic polynomials,
respectively.

Linear Multistep Methods: Truncation Error
The truncation error is defined as

Tn =

∑k
j=0 αju(tn+j)−∆t

∑k
j=0 βj f (tn+j , u(tn+j))

∆t
∑k

j=0 βj

where
∑k

j=0 βj = σ(1) ̸= 0.

Taylor series expansions allow us to re-write this as

Tn =

∑∞
s=0 Cs∆tsu(s)(tn)

∆tσ(1)
,

where

C0 =
k∑

j=0

αj , C1 =
k∑

j=1

jαj −
k∑

j=0

βj ,

Cs =
k∑

j=1

j s

s!
αj −

k∑
j=1

j s−1

(s − 1)!
βj , s ≥ 2 .

Linear Multistep Methods: Truncation Error Example
Consider the scheme

Un+2 − Un =
∆t

3
(fn+2 + 4fn+1 + fn) .

We have σ(1) = 2 ̸= 0 and

C0 =
k∑

j=0

αj = 1− 1 = 0 ,

C1 =
k∑

j=1

jαj −
k∑

j=0

βj = 2− 1

3
(1 + 4 + 1) = 0 ,

...

C4 =
k∑

j=1

j4

4!
αj −

k∑
j=1

j3

3!
βj =

16

24
− 1

3

1

6
(8 + 4) = 0 ,

C5 =
k∑

j=1

j5

5!
αj −

k∑
j=1

j4

4!
βj =

32

120
− 1

3

1

24
(16 + 4) ̸= 0 .

Linear Multistep Methods: Truncation Error Example

Thus for this scheme we have

Tn =
C5

2
∆t4u(5)(tn) +O(∆t5) .

Linear Multistep Methods: Order

Recall that the order of a method is p if p is the largest integer
such that Tn = O(∆tp).

Hence a linear k-step method is of order p if C0 = C1 = . . .Cp = 0
and Cp+1 ̸= 0.

The scheme based on Simpson’s rule is 4th order.

Linear Multistep Methods: Stability

Recall that for Runge-Kutta schemes we defined the interval of
absolute stability as the set of values of λ∆t for which the
numerical solution Un generated by applying the scheme to the
problem

u′(t) = λu , t > 0 ,
u(0) = 1 .

with λ < 0 satisfies limn→∞ Un = 0.

The same ideas hold for linear multistep methods. Here the
numerical solution satisfies

k∑
j=0

αjUn+j = λ∆t
k∑

j=0

βjUn+j .

Linear Multistep Methods: Stability
Thus the numerical solution is

Un =

q∑
r=1

pr (n)z
n
r ,

where the zr are the distinct roots of the polynomial

k∑
j=0

(αj − λ∆tβj)z
j = ρ(z)− λ∆tσ(z) = 0 ,

and the pr (n) are polynomials in n of degree one less than the
multiplicity of the root zr .

This means that

lim
n→∞

Un = 0 ,

if all the roots of the stability polynomial ρ(z)− λ∆tσ(z) satisfy
|z | < 1.

Linear Multistep Methods: Stability
Again consider the scheme

Un+2 − Un =
∆t

3
(fn+2 + 4fn+1 + fn) .

We have

ρ(z) = z2 − 1 ,

σ(z) =
1

3
(z2 + 4z + 1) ,

and the stability polynomial is

z2 − 1− λ∆t

3
(z2 + 4z + 1) = 0 .

The roots of the stability polynomial are

z± =
2λ∆t ±

√
5(λ∆t)2 − 9

3− λ∆t
.

It can be shown that |z±| < 1 if λ∆t ∈ (−3/2, 0).

Linear Multistep Methods: Initial Conditions
The general form of a linear k-step method is

k∑
j=0

αjUn+j = ∆t
k∑

j=0

βj f (tn+j ,Un+j) .

In order to compute Un+k we need to know Un, Un+1, . . . , Un+k−1.

In particular, in order to compute Uk we need k initial conditions:
U0, U1, . . . , Uk−1. We use U0 = u0 but we need a consistent way
to approximate the remaining conditions.

Numerical initial conditions are called consistent with the initial
condition u(0) = u0 if they are of the form

Ui = ηi (∆t)

where

lim
∆t→0

ηi (∆t) = u0 ,

for i = 0, 1, . . . , k − 1.

Linear Multistep Methods: Zero Stability

A linear k-step method for the ODE (5) is said to be zero-stable if
there exists a constant K such that, for any two sequences (Un)
and (Ûn), which have been generated by the same formulae but
with different initial data U0, U1, . . . , Uk−1 and Û0, Û1, . . . ,
Ûk−1, respectively, we have

|Un − Ûn| ≤ K max
{
|U0 − Û0|, |U1 − Û1|, . . . , |Uk−1 − Ûk−1|

}
for tn ≤ Tfinal, and as ∆t tends to 0.

It can be shown that a linear multi-step method is zero-stable if,
and only if, its first characteristic polynomial has zeros inside the
closed unit disc, with any which lie on the unit circle being simple.
This is often known as the root condition.

Linear Multistep Methods: Zero Stability Example

The scheme

Un+2 − Un =
∆t

3
(fn+2 + 4fn+1 + fn) ,

has first characteristic polynomial

ρ(z) = z2 − 1 .

The roots of ρ(z) are z = ±1 which lie on the unit circle and are
simple. Thus the scheme is zero stable.

Linear Multistep Methods: Dahlquist’s Theorem

Dahlquist’s Theorem states:

For a linear multi-step method that is consistent with the ordinary
differential equation (5) where f is assumed to satisfy a Lipschitz
condition, and starting with consistent initial data, zero-stability is
necessary and sufficient for convergence.

Moreover if the solution u(t) has continuous derivative of order
p + 1 and consistency error O(∆tp), then the global error
en = u(tn)− Un is also O(∆tp).

	Adaptive Runge-Kutta Schemes
	Linear Multistep Methods

