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1D Parabolic PDEs



1D Heat Equation

Last week we considered the simplest parabolic PDE in the form of
the heat equation:

∂u

∂t
=

∂2u

∂x2
,

for t > 0 and x ∈ [a, b] with an initial condition

u(x , 0) = u0(x) ,

for x ∈ [a, b]. We began by considering Dirichlet boundary
conditions

u(a, t) = ua(t) ,

u(b, t) = ub(t) ,

for t > 0.



Finite Difference Schemes

Common finite difference schemes are

▶ Forward Euler (or Explicit Euler)

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

∆x2

▶ Backward Euler (or Implicit Euler)

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

▶ θ-Method (Crank Nicolson when θ = 1/2)

Um+1
j − Um

j

∆t
= θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

+(1− θ)
Um
j+1 − 2Um

j + Um
j−1

∆x2



Finite Difference Schemes
All these finite difference schemes hold for j = 1, . . . ,N − 1 and
m = 0, 1, . . ..

We must also discretise the initial and boundary conditions as

U0
j = u0(xj) , j = 0, 1, . . . ,N

Um
0 = ua(tm) , m = 1, 2, . . .

Um
N = ub(tm) , m = 1, 2, . . .

For the θ-method for θ > 0 we have to solve a linear system at
each timestep of the form

(I − µθA)Um+1 = (I ′ + µ(1− θ)A)Um + gm+1 .

Here, µ = ∆t/∆x2, Um = (Um
0 ,Um

1 , . . . ,Um
N )T , I is the

(N + 1)× (N + 1) identity matrix, I ′ is the (N + 1)× (N + 1)
identity matrix but with the (1, 1) and (N + 1,N + 1) entries being
zero, and gm+1 = (ua(tm+1), 0, . . . , 0, ub(tm+1))

T .



2D Parabolic PDEs



2D Heat Equation

The heat equation in 2D is given by

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
,

for t > 0 and x ∈ Ω ⊂ R2 with an initial condition

u(x , y , 0) = u0(x , y) ,

for x ∈ Ω. We consider Dirichlet boundary conditions

u(x , y , t) = uD(x , y , t) for (x , y) ∈ ∂Ω , t > 0.



The Mesh

We define a sequence of uniform timesteps by

tm = m∆t

for m = 0, 1, 2, . . . where ∆t > 0 is the constant timestep size.

For the spatial mesh, we assume that the domain Ω is a rectangle,
namely Ω = (a, b)× (c, d) so that x ∈ [a, b] and y ∈ [c , d ]. We
then define a set of uniform mesh points by

xi = a+ i∆x ,

yj = c + j∆y ,

for i = 0, 1, . . . ,Nx , j = 0, 1, . . . ,Ny and with the meshsizes
∆x = (b − a)/Nx and ∆y = (d − c)/Ny .

We write u(xi , yj , tm) = umi ,j and seek to approximate umi ,j by Um
i ,j

for i = 0, 1, . . . ,Nx , j = 0, 1, . . . ,Ny and m = 0, 1, 2, . . ..



Finite Difference Schemes

We can write down finite difference schemes in an analogous way
to the 1D case. First define

δ2xUi ,j = Ui+1,j − 2Ui ,j + Ui−1,j ,

δ2yUi ,j = Ui ,j+1 − 2Ui ,j + Ui ,j−1 .

Then we may write

▶ Forward Euler (or Explicit Euler)

Um+1
i ,j − Um

i ,j

∆t
=

δ2xU
m
i ,j

∆x2
+

δ2yU
m
i ,j

∆y2

▶ Backward Euler (or Implicit Euler)

Um+1
i ,j − Um

i ,j

∆t
=

δ2xU
m+1
i ,j

∆x2
+

δ2yU
m+1
i ,j

∆y2



Finite Difference Schemes

▶ θ-Method (Crank Nicolson when θ = 1/2)

Um+1
i ,j − Um

i ,j

∆t
=

θδ2xU
m+1
i ,j + (1− θ)δ2xU

m
i ,j

∆x2

+
θδ2yU

m+1
i ,j + (1− θ)δ2yU

m
i ,j

∆y2
(1)



Finite Difference Schemes

All these finite difference schemes hold for i = 1, . . . ,Nx − 1,
j = 1, . . . ,Ny − 1 and m = 0, 1, . . ..

We must also discretise the initial and boundary conditions as

U0
i ,j = u0(xi , yj) , i = 0, 1, . . . ,Nx , j = 0, 1, . . . ,Ny

Um
0,j = uD(a, y , tm) , j = 0, 1, . . . ,Ny , m = 1, 2, . . .

Um
Nx ,j = uD(b, y , tm) , j = 0, 1, . . . ,Ny , m = 1, 2, . . .

Um
i ,0 = uD(x , c , tm) , i = 1, . . . ,Nx − 1, m = 1, 2, . . .

Um
i ,Ny

= uD(x , d , tm) , i = 1, . . . ,Nx − 1, m = 1, 2, . . .



Forward Euler Scheme

The forward Euler scheme is

Um+1
i ,j − Um

i ,j

∆t
=

δ2xU
m
i ,j

∆x2
+

δ2yU
m
i ,j

∆y2

for i = 1, . . . ,Nx − 1, j = 1, . . . ,Ny − 1 and m = 0, 1, . . .. Writing
µx = ∆t/∆x2 and µy = ∆t/∆y2, we may re-arrange the scheme
to get

Um+1
i ,j = Um

i ,j + µx(U
m
i+1,j − 2Um

i ,j + Um
i−1,j)

+µy (U
m
i ,j+1 − 2Um

i ,j + Um
i ,j−1)

for i = 1, . . . ,Nx − 1, j = 1, . . . ,Ny − 1 and m = 0, 1, . . ..

As in 1D, this is very simple to implement.



θ-Method

The θ-method is

Um+1
i ,j − Um

i ,j

∆t
=

θδ2xU
m+1
i ,j + (1− θ)δ2xU

m
i ,j

∆x2

+
θδ2yU

m+1
i ,j + (1− θ)δ2yU

m
i ,j

∆y2
.

(Recall this includes the backward Euler scheme if we take θ = 1.)

We may re-arrange the scheme to get

−µxθ(U
m+1
i+1,j + Um+1

i−1,j)− µyθ(U
m+1
i,j+1 + Um+1

i,j−1) + (1 + 2θ(µx + µy ))U
m+1
i,j

= µx(1− θ)(Um
i+1,j + Um

i−1,j) + µy (1− θ)(Um
i,j+1 + Um

i,j−1)

+(1− 2(1− θ)(µx + µy ))U
m
j

for i = 1, . . . ,Nx − 1, j = 1, . . . ,Ny − 1 and m = 0, 1, . . ..



θ-Method — Linear System

In the case of homogeneous Dirichlet boundary conditions we have
Um+1
0,j = Um+1

Nx ,j
= Um+1

i ,0 = Um+1
i ,Ny

= 0 and we may write the vector
of unknowns as

Um+1 = (Um+1
1,1 ,Um+1

1,2 , . . .Um+1
1,Ny−1,U

m+1
2,1 . . .Um+1

Nx−1,Ny−1)
T .

We may then write a linear system

(I − θA)Um+1 = (I + (1− θ)A)Um ,

where A is a matrix with (Nx − 1)(Ny − 1) rows and columns and
I is the identity matrix of the same size.



θ-Method — Linear System

The structure of A is

A =


B C
C B C

. . .
. . .

. . .

C B C
C B




Nx − 1 blocks

where B,C ∈ R(Ny−1)×(Ny−1) are given by

B =


−2(µx + µy ) µy

µy −2(µx + µy ) µy

. . .
. . .

. . .

µy −2(µx + µy )

 ,

and C = µx INy−1 with INy−1 being the identity matrix of size
Ny − 1.



Truncation Error
The truncation error for the θ-method is given by

Tm
i ,j =

um+1
i ,j − umi ,j

∆t
−

θδ2xu
m+1
i ,j + (1− θ)δ2xu

m
i ,j

∆x2

−
θδ2yu

m+1
i ,j + (1− θ)δ2yu

m
i ,j

∆y2
.

It is standard to perform Taylor series approximations about the
point (xi , yj , tm+1/2). This gives

Tm
i ,j =

(
1

2
− θ

)
∆tutt −

1

12
(∆t2uttt +∆x2uxxxx +∆y2uyyyy ) .

Thus for θ independent of ∆t and ∆x :

▶ in general, the θ-method is first order in ∆t and second order
in ∆x and ∆y ;

▶ for the particular case θ = 1/2, the Crank Nicolson method is
second order in ∆t, ∆x and ∆y .



Stability

Stability can be assessed by inserting the Fourier mode
Um
i ,j = [λ(kx , ky )]

m ei(kxxi+kyyj ) into the numerical scheme. The
scheme is then practically stable if |λ(kx , ky )| ≤ 1. Substituting
such a Fourier mode into the θ-method (1) and simplifying gives

λ(kx , ky ) =
1− 4(1− θ)(µx sin

2(kx∆x/2) + µy sin
2(ky∆y/2))

1 + 4θ(µx sin
2(kx∆x/2) + µy sin

2(ky∆y/2))

for kx ∈ [−π/∆x , π/∆x ] and ky ∈ [−π/∆y , π/∆y ] and where
µx = ∆t/∆x2 and µy = ∆t/∆y2.

Clearly this satisfies λ(kx , ky ) ≤ 1 for all kx and ky . For
λ(kx , ky ) ≥ −1 we require

2(µx sin
2(kx∆x/2) + µy sin

2(ky∆y/2))(1− 2θ) ≤ 1 .

This is clearly true for all θ ≥ 1/2, but for θ < 1/2 this gives a
restriction on ∆t.



Stability

Thus for the θ-method we have

▶ If θ ≥ 1/2 the method is unconditionally stable. In particular
this means that the backward Euler and Crank-Nicolson
schemes are unconditionally stable.

▶ If θ < 1/2 the method is only conditionally stable. The values
of ∆t, ∆x and ∆y must be chosen so that

∆t ≤ ∆x2∆y2

∆x2 +∆y2
1

2(1− 2θ)
.

In particular this means that the forward Euler method is only
conditionally stable and, in the case where ∆x = ∆y , the
condition for stability is that ∆t ≤ ∆x2/4.



ADI Method

Consider the Crank Nicolson scheme for the 2D heat equation:

Um+1
i ,j − Um

i ,j

∆t
=

1

2

δ2xU
m+1
i ,j + δ2xU

m
i ,j

∆x2
+

1

2

δ2yU
m+1
i ,j + δ2yU

m
i ,j

∆y2
,

or equivalently(
1− 1

2
µxδ

2
x −

1

2
µyδ

2
y

)
Um+1
i ,j =

(
1 +

1

2
µxδ

2
x +

1

2
µyδ

2
y

)
Um
i ,j .

ADI schemes are based on approximately factorising the operators
on the left and right of this equation.



ADI Method

We write this approximation as(
1− 1

2
µxδ

2
x

)(
1− 1

2
µyδ

2
y

)
Um+1
i,j =

(
1 +

1

2
µxδ

2
x

)(
1 +

1

2
µyδ

2
y

)
Um
i,j .

By introducing an intermediate time level Um+1/2 we may write
this in an equivalent form(

1− 1

2
µxδ

2
x

)
U

m+1/2
i ,j =

(
1 +

1

2
µyδ

2
y

)
Um
i ,j ,(

1− 1

2
µyδ

2
y

)
Um+1
i ,j =

(
1 +

1

2
µxδ

2
x

)
U

m+1/2
i ,j .

The advantage of doing this is that, instead of one large system of
equations, we have many smaller tridiagonal systems.



ADI Method: Truncation Error

It can be shown that the truncation error for the ADI method is

Tm
i ,j = − 1

12

(
∆t2uttt +∆x2uxxxx +∆y2uyyyy

)
+

1

4
∆t2uxxyyt

(i.e. the terms of the truncation error for Crank Nicolson with one
extra term added coming from the fact that the approximation of
Crank Nicolson is inexact).



ADI Method: Stability

Inserting the Fourier mode Um
i ,j = [λ(kx , ky )]

m ei(kxxi+kyyj ) into the
numerical scheme gives

λ(kx , ky ) =
(1− 2µxσ

2
x)(1− 2µyσ

2
y )

(1 + 2µxσ2
x)(1 + 2µyσ2

y )
,

where

σ2
x = sin2

(
kx∆x

2

)
,

σ2
y = sin2

(
ky∆y

2

)
.

It is easy to see that |λ(kx , ky )| ≤ 1 for all values of µx and µy so
that the scheme is unconditionally stable.



Example

Solve the heat equation ut = uxx + uyy in the unit square [0, 1]2

with homogeneous Dirichlet boundary conditions and initial
condition

u(x , y , 0) = sin(πx) sin(3πy) .

The exact solution is

u(x , y , t) = e−10π2t sin(πx) sin(3πy) .



Results with ∆x2 = ∆y 2 and ∆t = ∆x2/4
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Coupled Problems
Can use the types of methods already discussed to solve coupled
systems of PDEs.

Recall that for the heat equation with homogeneous Dirichlet
boundary conditions, we can write the θ-method in matrix form as

(I − θA)Um+1 = (I + (1− θ)A)Um.

Now suppose we want to solve a coupled system of the form

∂u

∂t
= ∇2u + αv ,

∂v

∂t
= ∇2v + βu

for t > 0, and x ∈ Ω ⊂ R2, with homogeneous Dirichlet boundary
conditions on both u and v , and initial conditions

u(x , y , 0) = u0(x , y), v(x , y , 0) = v0(x , y)

for x ∈ Ω.



Coupled Problems

Using the same mesh and timestep as before, we can write a
θ-method for the u equation as

Um+1
i ,j − Um

i ,j

∆t
=

θδ2xU
m+1
i ,j + (1− θ)δ2xU

m
i ,j

∆x2

+
θδ2yU

m+1
i ,j + (1− θ)δ2yU

m
i ,j

∆y2

+θαVm+1
i ,j + (1− θ)αVm

i ,j ,

which can be written in matrix form as

(I − θA)Um+1 − θα∆tVm+1 = (I + (1− θ)A)Um

+(1− θ)α∆tVm.



Coupled Problems

Writing a similar finite difference equation for v also leads to a
matrix form

(I − θA)Vm+1 − θβ∆tUm+1 = (I + (1− θ)A)Vm

+(1− θ)β∆tUm.

This can be written as a big matrix system(
I − θA −θα∆tI
−θβ∆tI I − θA

)(
Um+1

Vm+1

)
=

(
I + (1− θ)A (1− θ)α∆tI
(1− θ)β∆tI I + (1− θ)A

)(
Um

Vm

)
.



Nonlinear Problems

We can also extend these ideas to nonlinear problems. Consider a
problem of the form

∂u

∂t
= ∇2u + f (u),

for t > 0, and x ∈ Ω ⊂ R2, with homogeneous Dirichlet boundary
conditions, and initial condition

u(x , y , 0) = u0(x , y),

for x ∈ Ω.



Nonlinear Problems

We can write a finite difference scheme of the form

Um+1
i ,j − Um

i ,j

∆t
=

θδ2xU
m+1
i ,j + (1− θ)δ2xU

m
i ,j

∆x2

+
θδ2yU

m+1
i ,j + (1− θ)δ2yU

m
i ,j

∆y2

+θf (Um+1
i ,j ) + (1− θ)f (Um

i ,j),

along with the usual initial and boundary conditions. The
drawback to this is that, unless the function f is linear, we now
have to solve a very large nonlinear system at each timestep. This
nonlinear system takes the form

(I − θA)Um+1 − θ∆tf (Um+1) = (I + (1− θ)A)Um

+(1− θ)∆tf (Um).



Nonlinear Problems

An alternative is to treat the linear terms implicitly and the
nonlinear terms explicitly so that the finite difference scheme
becomes, in matrix form,

(I − A)Um+1 = Um +∆tf (Um).

This has the advantage of only requiring a linear solve at each
timestep. The approach often works well in practice and it is
possible to use a larger timestep size than the simple explicit Euler
scheme would have required.



Coupled Nonlinear Example

We consider the Cahn-Hilliard equation which was originally
proposed to model phase separation in binary alloys. This is a 4th
order problem but can be written as a system of two 2nd order
equations

∂c

∂t
−∇2w = 0

w − 1

ϵ
Φ′(c) + ϵ∇2c = 0

with homogeneous Neumann boundary conditions for both c and
w . Usually Φ is a double well potential, e.g. Φ(c) = (1− c2)2/4.

Here c has steady state ±1 corresponding to pure phase A and
pure phase B. In addition, ϵ represents the thickness of the
interface between areas where c = 1 and areas where c = −1.



Coupled Nonlinear Example
If we let A be the matrix representing the Laplacian operator with
Neumann boundary conditions (so a slightly different matrix to
earlier) then we can use the method of lines to write

dC

dt
− AW = 0

W − 1

ϵ
Φ′(C) + ϵAC = 0.

Using an implicit scheme for the linear terms and an explicit
scheme for the nonlinear terms, we must solve

Cm+1 − Cm

∆t
− AWm+1 = 0

Wm+1 − 1

ϵ
Φ′(Cm) + ϵACm+1 = 0,

or, as a system we can write this as(
I −∆tA
ϵA I

)(
Cm+1

Wm+1

)
=

(
Cm

Φ′(Cm)/ϵ

)
.



Coupled Nonlinear Example

We can take an initial condition where c = 1 in a cross in the
centre of the domain and c = −1 outside this region.



Coupled Nonlinear Example

The edges of the cross smooth out.



Coupled Nonlinear Example

The steady state has an interface in the shape of a circle.



Coupled Nonlinear Example

Alternatively we can take a random initial condition. At each grid
point we set c to be a number drawn from a normal distribution
with mean zero and variance one, then scaled by 0.1.



Coupled Nonlinear Example

The solution has patches where it is 1 and patches where it is -1
and the boundaries of these regions are preferentially straight edges
or circles.



Coupled Nonlinear Example

The solution has patches where it is 1 and patches where it is -1
and the boundaries of these regions are preferentially straight edges
or circles.



Coupled Nonlinear Example

The steady state solution (for this initial data) is -1 in the left half
of the domain and 1 in the right half of the domain with an
interface of size ϵ.
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