Parabolic PDEs: Finite Difference Methods

M.Sc. in Mathematical Modelling & Scientific Computing, Practical Numerical Analysis

Michaelmas Term 2023, Lecture 9

1D Parabolic PDEs

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

1D Heat Equation

Last week we considered the simplest parabolic PDE in the form of the heat equation:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2},$$

for t > 0 and $x \in [a, b]$ with an initial condition

$$u(x,0) = u_0(x) ,$$

for $x \in [a, b]$. We began by considering Dirichlet boundary conditions

$$u(a, t) = u_a(t),$$

 $u(b, t) = u_b(t),$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for t > 0.

Common finite difference schemes are

Forward Euler (or Explicit Euler)

$$\frac{U_{j}^{m+1} - U_{j}^{m}}{\Delta t} = \frac{U_{j+1}^{m} - 2U_{j}^{m} + U_{j-1}^{m}}{\Delta x^{2}}$$

Backward Euler (or Implicit Euler)

$$\frac{U_j^{m+1} - U_j^m}{\Delta t} = \frac{U_{j+1}^{m+1} - 2U_j^{m+1} + U_{j-1}^{m+1}}{\Delta x^2}$$

• θ -Method (Crank Nicolson when $\theta = 1/2$)

$$\frac{U_{j}^{m+1} - U_{j}^{m}}{\Delta t} = \theta \frac{U_{j+1}^{m+1} - 2U_{j}^{m+1} + U_{j-1}^{m+1}}{\Delta x^{2}} + (1 - \theta) \frac{U_{j+1}^{m} - 2U_{j}^{m} + U_{j-1}^{m}}{\Delta x^{2}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

All these finite difference schemes hold for j = 1, ..., N - 1 and m = 0, 1, ...

We must also discretise the initial and boundary conditions as

$$\begin{array}{rcl} U_j^0 &=& u_0(x_j) \;, & j=0,1,\ldots,N \\ U_0^m &=& u_a(t_m) \;, & m=1,2,\ldots \\ U_N^m &=& u_b(t_m) \;, & m=1,2,\ldots \end{array}$$

For the $\theta\text{-method}$ for $\theta>0$ we have to solve a linear system at each timestep of the form

$$(I - \mu \theta A) \mathbf{U}^{m+1} = (I' + \mu (1 - \theta) A) \mathbf{U}^m + \mathbf{g}^{m+1}$$

Here, $\mu = \Delta t / \Delta x^2$, $\mathbf{U}^m = (U_0^m, U_1^m, \dots, U_N^m)^T$, *I* is the $(N+1) \times (N+1)$ identity matrix, *I'* is the $(N+1) \times (N+1)$ identity matrix but with the (1,1) and (N+1, N+1) entries being zero, and $\mathbf{g}^{m+1} = (u_a(t_{m+1}), 0, \dots, 0, u_b(t_{m+1}))^T$.

2D Parabolic PDEs

2D Heat Equation

The heat equation in 2D is given by

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} ,$$

for t > 0 and $x \in \Omega \subset \mathbb{R}^2$ with an initial condition

$$u(x, y, 0) = u_0(x, y)$$
,

for $x \in \Omega$. We consider Dirichlet boundary conditions

$$u(x,y,t) = u_D(x,y,t) \text{ for } (x,y) \in \partial \Omega, \quad t > 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Mesh

We define a sequence of uniform timesteps by

$$t_m = m\Delta t$$

for m = 0, 1, 2, ... where $\Delta t > 0$ is the constant timestep size.

For the spatial mesh, we assume that the domain Ω is a rectangle, namely $\Omega = (a, b) \times (c, d)$ so that $x \in [a, b]$ and $y \in [c, d]$. We then define a set of uniform mesh points by

$$\begin{array}{rcl} x_i &=& a+i\Delta x \ , \\ y_j &=& c+j\Delta y \ , \end{array}$$

for $i = 0, 1, ..., N_x$, $j = 0, 1, ..., N_y$ and with the meshsizes $\Delta x = (b - a)/N_x$ and $\Delta y = (d - c)/N_y$.

We write $u(x_i, y_j, t_m) = u_{i,j}^m$ and seek to approximate $u_{i,j}^m$ by $U_{i,j}^m$ for $i = 0, 1, ..., N_x$, $j = 0, 1, ..., N_y$ and m = 0, 1, 2, ...

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

We can write down finite difference schemes in an analogous way to the 1D case. First define

Then we may write

Forward Euler (or Explicit Euler)

$$\frac{U_{i,j}^{m+1} - U_{i,j}^{m}}{\Delta t} = \frac{\delta_x^2 U_{i,j}^m}{\Delta x^2} + \frac{\delta_y^2 U_{i,j}^m}{\Delta y^2}$$

Backward Euler (or Implicit Euler)

$$\frac{U_{i,j}^{m+1} - U_{i,j}^{m}}{\Delta t} = \frac{\delta_x^2 U_{i,j}^{m+1}}{\Delta x^2} + \frac{\delta_y^2 U_{i,j}^{m+1}}{\Delta y^2}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

• θ -Method (Crank Nicolson when $\theta = 1/2$)

$$\frac{U_{i,j}^{m+1} - U_{i,j}^{m}}{\Delta t} = \frac{\theta \delta_{x}^{2} U_{i,j}^{m+1} + (1-\theta) \delta_{x}^{2} U_{i,j}^{m}}{\Delta x^{2}} + \frac{\theta \delta_{y}^{2} U_{i,j}^{m+1} + (1-\theta) \delta_{y}^{2} U_{i,j}^{m}}{\Delta y^{2}}$$
(1)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

All these finite difference schemes hold for $i = 1, ..., N_x - 1$, $j = 1, ..., N_y - 1$ and m = 0, 1, ...

We must also discretise the initial and boundary conditions as

$$\begin{array}{rcl} U_{i,j}^{0} &=& u_{0}(x_{i},y_{j}) \,, & i=0,1,\ldots,N_{x}, \, j=0,1,\ldots,N_{y} \\ U_{0,j}^{m} &=& u_{D}(a,y,t_{m}) \,, & j=0,1,\ldots,N_{y}, \, m=1,2,\ldots \\ U_{N_{x},j}^{m} &=& u_{D}(b,y,t_{m}) \,, & j=0,1,\ldots,N_{y}, \, m=1,2,\ldots \\ U_{i,0}^{m} &=& u_{D}(x,c,t_{m}) \,, & i=1,\ldots,N_{x}-1, \, m=1,2,\ldots \\ U_{i,N_{y}}^{m} &=& u_{D}(x,d,t_{m}) \,, & i=1,\ldots,N_{x}-1, \, m=1,2,\ldots \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Forward Euler Scheme

The forward Euler scheme is

$$\frac{U_{i,j}^{m+1} - U_{i,j}^m}{\Delta t} = \frac{\delta_x^2 U_{i,j}^m}{\Delta x^2} + \frac{\delta_y^2 U_{i,j}^m}{\Delta y^2}$$

for $i = 1, ..., N_x - 1$, $j = 1, ..., N_y - 1$ and m = 0, 1, ... Writing $\mu_x = \Delta t / \Delta x^2$ and $\mu_y = \Delta t / \Delta y^2$, we may re-arrange the scheme to get

$$U_{i,j}^{m+1} = U_{i,j}^{m} + \mu_x (U_{i+1,j}^{m} - 2U_{i,j}^{m} + U_{i-1,j}^{m}) \\ + \mu_y (U_{i,j+1}^{m} - 2U_{i,j}^{m} + U_{i,j-1}^{m})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for $i = 1, ..., N_x - 1$, $j = 1, ..., N_y - 1$ and m = 0, 1, ...

As in 1D, this is very simple to implement.

θ -Method

The θ -method is

$$\frac{U_{i,j}^{m+1} - U_{i,j}^m}{\Delta t} = \frac{\theta \delta_x^2 U_{i,j}^{m+1} + (1-\theta) \delta_x^2 U_{i,j}^m}{\Delta x^2} + \frac{\theta \delta_y^2 U_{i,j}^{m+1} + (1-\theta) \delta_y^2 U_{i,j}^m}{\Delta y^2}$$

(Recall this includes the backward Euler scheme if we take $\theta = 1$.) We may re-arrange the scheme to get

$$\begin{aligned} -\mu_{x}\theta(U_{i+1,j}^{m+1}+U_{i-1,j}^{m+1}) - \mu_{y}\theta(U_{i,j+1}^{m+1}+U_{i,j-1}^{m+1}) + (1+2\theta(\mu_{x}+\mu_{y}))U_{i,j}^{m+1} \\ &= \mu_{x}(1-\theta)(U_{i+1,j}^{m}+U_{i-1,j}^{m}) + \mu_{y}(1-\theta)(U_{i,j+1}^{m}+U_{i,j-1}^{m}) \\ &+ (1-2(1-\theta)(\mu_{x}+\mu_{y}))U_{j}^{m} \end{aligned}$$

for $i = 1, ..., N_x - 1$, $j = 1, ..., N_y - 1$ and m = 0, 1, ...

θ -Method — Linear System

In the case of homogeneous Dirichlet boundary conditions we have $U_{0,j}^{m+1} = U_{N_x,j}^{m+1} = U_{i,0}^{m+1} = U_{i,N_y}^{m+1} = 0$ and we may write the vector of unknowns as

$$\mathbf{U}^{m+1} = (U_{1,1}^{m+1}, U_{1,2}^{m+1}, \dots, U_{1,N_y-1}^{m+1}, U_{2,1}^{m+1}, \dots, U_{N_x-1,N_y-1}^{m+1})^T$$

We may then write a linear system

$$(I- heta A)\mathbf{U}^{m+1} = (I+(1- heta)A)\mathbf{U}^m$$

where A is a matrix with $(N_x - 1)(N_y - 1)$ rows and columns and I is the identity matrix of the same size.

θ -Method — Linear System

The structure of A is

$$A = \begin{pmatrix} B & C & & \\ C & B & C & & \\ & \ddots & \ddots & \ddots & \\ & & C & B & C \\ & & & C & B \end{pmatrix} \} N_x - 1 \text{ blocks}$$

where $B, C \in \mathbb{R}^{(N_y-1) \times (N_y-1)}$ are given by

$$B = \begin{pmatrix} -2(\mu_{x} + \mu_{y}) & \mu_{y} & \\ \mu_{y} & -2(\mu_{x} + \mu_{y}) & \mu_{y} \\ \vdots & \vdots & \ddots & \vdots \\ & & \mu_{y} & -2(\mu_{x} + \mu_{y}) \end{pmatrix}$$

and $C = \mu_x I_{N_y-1}$ with I_{N_y-1} being the identity matrix of size $N_y - 1$.

Truncation Error

The truncation error for the θ -method is given by

$$T_{i,j}^{m} = \frac{u_{i,j}^{m+1} - u_{i,j}^{m}}{\Delta t} - \frac{\theta \delta_{x}^{2} u_{i,j}^{m+1} + (1-\theta) \delta_{x}^{2} u_{i,j}^{m}}{\Delta x^{2}} - \frac{\theta \delta_{y}^{2} u_{i,j}^{m+1} + (1-\theta) \delta_{y}^{2} u_{i,j}^{m}}{\Delta y^{2}}.$$

It is standard to perform Taylor series approximations about the point $(x_i, y_j, t_{m+1/2})$. This gives

$$T^m_{i,j} = \left(\frac{1}{2} - \theta\right) \Delta t u_{tt} - \frac{1}{12} (\Delta t^2 u_{ttt} + \Delta x^2 u_{xxxx} + \Delta y^2 u_{yyyy}) .$$

Thus for θ independent of Δt and Δx :

- in general, the θ-method is first order in Δt and second order in Δx and Δy;
- ► for the particular case $\theta = 1/2$, the Crank Nicolson method is second order in Δt , Δx and Δy .

Stability

Stability can be assessed by inserting the Fourier mode $U_{i,j}^m = [\lambda(k_x, k_y)]^m e^{i(k_x x_i + k_y y_j)}$ into the numerical scheme. The scheme is then practically stable if $|\lambda(k_x, k_y)| \le 1$. Substituting such a Fourier mode into the θ -method (1) and simplifying gives

$$\lambda(k_x, k_y) = \frac{1 - 4(1 - \theta)(\mu_x \sin^2(k_x \Delta x/2) + \mu_y \sin^2(k_y \Delta y/2))}{1 + 4\theta(\mu_x \sin^2(k_x \Delta x/2) + \mu_y \sin^2(k_y \Delta y/2))}$$

for $k_x \in [-\pi/\Delta x, \pi/\Delta x]$ and $k_y \in [-\pi/\Delta y, \pi/\Delta y]$ and where $\mu_x = \Delta t/\Delta x^2$ and $\mu_y = \Delta t/\Delta y^2$.

Clearly this satisfies $\lambda(k_x, k_y) \leq 1$ for all k_x and k_y . For $\lambda(k_x, k_y) \geq -1$ we require

$$2(\mu_x \sin^2(k_x \Delta x/2) + \mu_y \sin^2(k_y \Delta y/2))(1-2\theta) \le 1.$$

This is clearly true for all $\theta \ge 1/2$, but for $\theta < 1/2$ this gives a restriction on Δt .

Stability

Thus for the θ -method we have

- If θ ≥ 1/2 the method is unconditionally stable. In particular this means that the backward Euler and Crank-Nicolson schemes are unconditionally stable.
- If θ < 1/2 the method is only conditionally stable. The values of Δt, Δx and Δy must be chosen so that

$$\Delta t \leq \frac{\Delta x^2 \Delta y^2}{\Delta x^2 + \Delta y^2} \frac{1}{2(1-2\theta)}$$

In particular this means that the forward Euler method is only conditionally stable and, in the case where $\Delta x = \Delta y$, the condition for stability is that $\Delta t \leq \Delta x^2/4$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

ADI Method

Consider the Crank Nicolson scheme for the 2D heat equation:

$$\frac{U_{ij}^{m+1} - U_{ij}^{m}}{\Delta t} = \frac{1}{2} \frac{\delta_x^2 U_{ij}^{m+1} + \delta_x^2 U_{ij}^m}{\Delta x^2} + \frac{1}{2} \frac{\delta_y^2 U_{ij}^{m+1} + \delta_y^2 U_{ij}^m}{\Delta y^2} ,$$

or equivalently

$$\left(1 - \frac{1}{2}\mu_x \delta_x^2 - \frac{1}{2}\mu_y \delta_y^2\right) U_{i,j}^{m+1} = \left(1 + \frac{1}{2}\mu_x \delta_x^2 + \frac{1}{2}\mu_y \delta_y^2\right) U_{i,j}^m \,.$$

ADI schemes are based on approximately factorising the operators on the left and right of this equation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ADI Method

We write this approximation as

$$\left(1 - \frac{1}{2}\mu_{x}\delta_{x}^{2}\right)\left(1 - \frac{1}{2}\mu_{y}\delta_{y}^{2}\right)U_{i,j}^{m+1} = \left(1 + \frac{1}{2}\mu_{x}\delta_{x}^{2}\right)\left(1 + \frac{1}{2}\mu_{y}\delta_{y}^{2}\right)U_{i,j}^{m}$$

By introducing an intermediate time level $U^{m+1/2}$ we may write this in an equivalent form

$$\begin{pmatrix} 1 - \frac{1}{2}\mu_x \delta_x^2 \end{pmatrix} U_{i,j}^{m+1/2} = \left(1 + \frac{1}{2}\mu_y \delta_y^2 \right) U_{i,j}^m , \\ \left(1 - \frac{1}{2}\mu_y \delta_y^2 \right) U_{i,j}^{m+1} = \left(1 + \frac{1}{2}\mu_x \delta_x^2 \right) U_{i,j}^{m+1/2}$$

The advantage of doing this is that, instead of one large system of equations, we have many smaller tridiagonal systems.

ADI Method: Truncation Error

It can be shown that the truncation error for the ADI method is

$$T^{m}_{i,j} = -\frac{1}{12} \left(\Delta t^2 u_{ttt} + \Delta x^2 u_{xxxx} + \Delta y^2 u_{yyyy} \right) + \frac{1}{4} \Delta t^2 u_{xxyyt}$$

(i.e. the terms of the truncation error for Crank Nicolson with one extra term added coming from the fact that the approximation of Crank Nicolson is inexact).

ADI Method: Stability

Inserting the Fourier mode $U_{i,j}^m = [\lambda(k_x, k_y)]^m e^{i(k_x x_i + k_y y_j)}$ into the numerical scheme gives

$$\lambda(k_x, k_y) = \frac{(1 - 2\mu_x \sigma_x^2)(1 - 2\mu_y \sigma_y^2)}{(1 + 2\mu_x \sigma_x^2)(1 + 2\mu_y \sigma_y^2)},$$

where

$$\begin{split} \sigma_x^2 &= \sin^2\left(\frac{k_x\Delta x}{2}\right) \ , \\ \sigma_y^2 &= \sin^2\left(\frac{k_y\Delta y}{2}\right) \ . \end{split}$$

It is easy to see that $|\lambda(k_x, k_y)| \leq 1$ for all values of μ_x and μ_y so that the scheme is unconditionally stable.

Example

Solve the heat equation $u_t = u_{xx} + u_{yy}$ in the unit square $[0,1]^2$ with homogeneous Dirichlet boundary conditions and initial condition

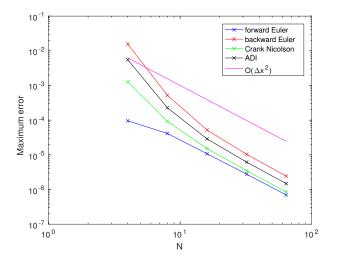
$$u(x,y,0) = \sin(\pi x)\sin(3\pi y)$$
.

The exact solution is

$$u(x, y, t) = e^{-10\pi^2 t} \sin(\pi x) \sin(3\pi y)$$
.

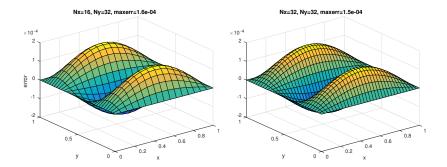
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Results with $\Delta x^2 = \Delta y^2$ and $\Delta t = \Delta x^2/4$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Solution $\Delta x \neq \Delta y$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Coupled Problems

Can use the types of methods already discussed to solve coupled systems of PDEs.

Recall that for the heat equation with homogeneous Dirichlet boundary conditions, we can write the θ -method in matrix form as

$$(I - \theta A)\mathbf{U}^{m+1} = (I + (1 - \theta)A)\mathbf{U}^m.$$

Now suppose we want to solve a coupled system of the form

$$\frac{\partial u}{\partial t} = \nabla^2 u + \alpha v, \frac{\partial v}{\partial t} = \nabla^2 v + \beta u$$

for t > 0, and $x \in \Omega \subset \mathbb{R}^2$, with homogeneous Dirichlet boundary conditions on both u and v, and initial conditions

$$u(x, y, 0) = u_0(x, y),$$
 $v(x, y, 0) = v_0(x, y)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for $x \in \Omega$.

Coupled Problems

Using the same mesh and timestep as before, we can write a θ -method for the u equation as

$$\frac{U_{i,j}^{m+1} - U_{i,j}^m}{\Delta t} = \frac{\theta \delta_x^2 U_{i,j}^{m+1} + (1-\theta) \delta_x^2 U_{i,j}^m}{\Delta x^2} + \frac{\theta \delta_y^2 U_{i,j}^{m+1} + (1-\theta) \delta_y^2 U_{i,j}^m}{\Delta y^2} + \theta \alpha V_{i,j}^{m+1} + (1-\theta) \alpha V_{i,j}^m,$$

which can be written in matrix form as

$$(I - \theta A)\mathbf{U}^{m+1} - \theta \alpha \Delta t \mathbf{V}^{m+1} = (I + (1 - \theta)A)\mathbf{U}^{m} + (1 - \theta)\alpha \Delta t \mathbf{V}^{m}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Coupled Problems

Writing a similar finite difference equation for v also leads to a matrix form

$$(I - \theta A)\mathbf{V}^{m+1} - \theta \beta \Delta t \mathbf{U}^{m+1} = (I + (1 - \theta)A)\mathbf{V}^m + (1 - \theta)\beta \Delta t \mathbf{U}^m.$$

This can be written as a big matrix system

$$\begin{pmatrix} I - \theta A & -\theta \alpha \Delta t I \\ -\theta \beta \Delta t I & I - \theta A \end{pmatrix} \begin{pmatrix} \mathbf{U}^{m+1} \\ \mathbf{V}^{m+1} \end{pmatrix}$$

= $\begin{pmatrix} I + (1-\theta)A & (1-\theta)\alpha \Delta t I \\ (1-\theta)\beta \Delta t I & I + (1-\theta)A \end{pmatrix} \begin{pmatrix} \mathbf{U}^m \\ \mathbf{V}^m \end{pmatrix} .$

Nonlinear Problems

We can also extend these ideas to nonlinear problems. Consider a problem of the form

$$\frac{\partial u}{\partial t} = \nabla^2 u + f(u),$$

for t > 0, and $x \in \Omega \subset \mathbb{R}^2$, with homogeneous Dirichlet boundary conditions, and initial condition

$$u(x, y, 0) = u_0(x, y),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for $x \in \Omega$.

Nonlinear Problems

We can write a finite difference scheme of the form

$$\frac{U_{i,j}^{m+1} - U_{i,j}^{m}}{\Delta t} = \frac{\theta \delta_x^2 U_{i,j}^{m+1} + (1-\theta) \delta_x^2 U_{i,j}^m}{\Delta x^2} \\ + \frac{\theta \delta_y^2 U_{i,j}^{m+1} + (1-\theta) \delta_y^2 U_{i,j}^m}{\Delta y^2} \\ + \theta f(U_{i,j}^{m+1}) + (1-\theta) f(U_{i,j}^m),$$

along with the usual initial and boundary conditions. The drawback to this is that, unless the function f is linear, we now have to solve a very large nonlinear system at each timestep. This nonlinear system takes the form

$$(I - \theta A)\mathbf{U}^{m+1} - \theta \Delta t f(\mathbf{U}^{m+1}) = (I + (1 - \theta)A)\mathbf{U}^m + (1 - \theta)\Delta t f(\mathbf{U}^m).$$

An alternative is to treat the linear terms implicitly and the nonlinear terms explicitly so that the finite difference scheme becomes, in matrix form,

$$(I-A)\mathbf{U}^{m+1} = \mathbf{U}^m + \Delta t f(\mathbf{U}^m).$$

This has the advantage of only requiring a linear solve at each timestep. The approach often works well in practice and it is possible to use a larger timestep size than the simple explicit Euler scheme would have required.

We consider the Cahn-Hilliard equation which was originally proposed to model phase separation in binary alloys. This is a 4th order problem but can be written as a system of two 2nd order equations

$$\frac{\partial c}{\partial t} - \nabla^2 w = 0$$
$$w - \frac{1}{\epsilon} \Phi'(c) + \epsilon \nabla^2 c = 0$$

with homogeneous Neumann boundary conditions for both c and w. Usually Φ is a double well potential, e.g. $\Phi(c) = (1 - c^2)^2/4$.

Here c has steady state ± 1 corresponding to pure phase A and pure phase B. In addition, ϵ represents the thickness of the interface between areas where c = 1 and areas where c = -1.

If we let A be the matrix representing the Laplacian operator with Neumann boundary conditions (so a slightly different matrix to earlier) then we can use the method of lines to write

$$\frac{\mathrm{d}\mathbf{C}}{\mathrm{d}t} - A\mathbf{W} = 0$$
$$\mathbf{W} - \frac{1}{\epsilon} \Phi'(\mathbf{C}) + \epsilon A\mathbf{C} = 0.$$

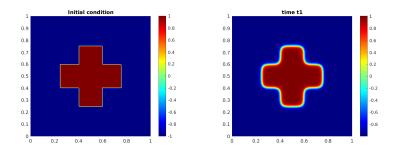
Using an implicit scheme for the linear terms and an explicit scheme for the nonlinear terms, we must solve

$$\begin{aligned} &\frac{\mathbf{C}^{m+1}-\mathbf{C}^m}{\Delta t} - A\mathbf{W}^{m+1} &= 0\\ &\mathbf{W}^{m+1} - \frac{1}{\epsilon} \Phi'(\mathbf{C}^m) + \epsilon A\mathbf{C}^{m+1} &= 0, \end{aligned}$$

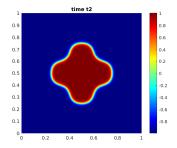
or, as a system we can write this as

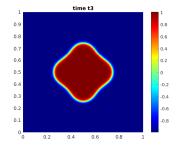
$$\begin{pmatrix} I & -\Delta tA \\ \epsilon A & I \end{pmatrix} \begin{pmatrix} \mathbf{C}^{m+1} \\ \mathbf{W}^{m+1} \end{pmatrix} = \begin{pmatrix} \mathbf{C}^m \\ \Phi'(\mathbf{C}^m)/\epsilon \end{pmatrix}.$$

We can take an initial condition where c = 1 in a cross in the centre of the domain and c = -1 outside this region.



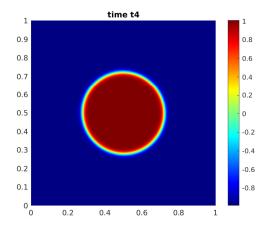
The edges of the cross smooth out.





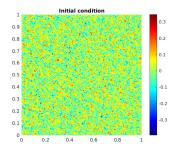
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

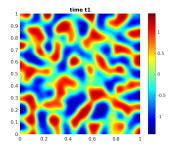
The steady state has an interface in the shape of a circle.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

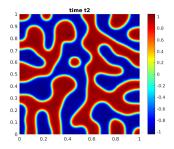
Alternatively we can take a random initial condition. At each grid point we set c to be a number drawn from a normal distribution with mean zero and variance one, then scaled by 0.1.

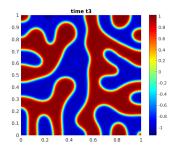




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

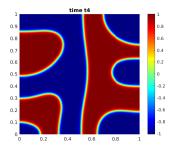
The solution has patches where it is 1 and patches where it is -1 and the boundaries of these regions are preferentially straight edges or circles.

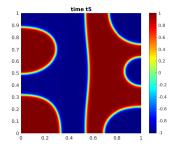




・ロト・日本・日本・日本・日本・日本

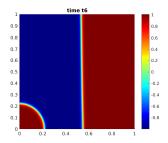
The solution has patches where it is 1 and patches where it is -1 and the boundaries of these regions are preferentially straight edges or circles.

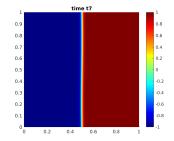




・ロト・日本・日本・日本・日本・日本

The steady state solution (for this initial data) is -1 in the left half of the domain and 1 in the right half of the domain with an interface of size ϵ .





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで