B1.1 Logic Lecture 11

Martin Bays

Oxford, MT 2023

11. Substitution

Discussion: Let \mathcal{A} be an \mathcal{L} -structure, $\phi \in \text{Form}(\mathcal{L})$, and suppose $\mathcal{A} \models \forall x_i \phi$. If c is a constant symbol in \mathcal{L} , then $\mathcal{A} \models \phi[c/x_i]$ where $\phi[c/x_i]$ is the result of replacing each free instance of x_i in ϕ with c.

We would like to say more generally that

$$\models \forall x_i \phi \to \phi[t/x_i]$$

for a term t, but we have to be careful:

Lec 11 - 1/9

11.1 Example

Let \mathcal{L} contain a constant symbol c, and let $\phi := \exists x_0 \neg x_0 \doteq x_1$.

Then $\mathcal{A} \models \forall x_1 \phi$ for any \mathcal{L} -structure \mathcal{A} with at least two elements,

and then also $\mathcal{A} \models \phi[c/x_1] = \exists x_0 \neg x_0 \doteq c$.

However, if were to define $\phi[x_0/x_1]$ in the same way, we would obtain $\exists x_0 \neg x_0 \doteq x_0$, which does not hold in any \mathcal{A} .

Problem: the variable x_0 has become bound in the substitution.

Lec 11 - 2/9

11.2 Definition

For $\phi \in \text{Form}(\mathcal{L})$, a variable x_i , and a term $t \in \text{Term}(\mathcal{L})$, the result of **substituting** t for x_i in ϕ is the formula

$(\phi)[t/x_i]$

which is obtained by replacing each *free* occurrence of x_i in ϕ with the string t, <u>as long as</u> this does not lead to new bound occurrences of variables being introduced; if it does, we say that $(\phi)[t/x_i]$ is **undefined**.

We can restate this as a recursive definition:

- (i) If ϕ is atomic, $(\phi)[t/x_i]$ is the result of replacing each instance of x_i in ϕ with t.
- (ii) $(\neg \psi)[t/x_i] := \neg(\psi)[t/x_i]$ (undefined if $(\psi)[t/x_i]$ is).
- (iii) $((\psi \to \chi))[t/x_i] := ((\psi)[t/x_i] \to (\chi)[t/x_i])$ (undefined if $(\psi)[t/x_i]$ or $(\chi)[t/x_i]$ is).

(iv)
$$(\forall x_i \psi)[t/x_i] := \forall x_i \psi.$$

(v) If $j \neq i$, $(\forall x_j \psi)[t/x_i] := \forall x_j(\psi)[t/x_i]$ <u>unless</u> x_j occurs in t and x_i occurs free in ψ , in which case $(\forall x_j \psi)[t/x_i]$ is undefined.

Notation: When no ambiguity could result, we often write $\phi[t/x_i]$ for $(\phi)[t/x_i]$.

Lec 11 - 4/9

Let ${\mathcal L}$ be a first-order language, ${\mathcal A}$ an ${\mathcal L}\text{-structure}.$

11.3 Definition

For v an assignment in \mathcal{A} and $t \in \text{Term}(\mathcal{L})$, define

$$v_{t/x_i}(x_j) := \begin{cases} v(x_j) & \text{if } j \neq i \\ \widetilde{v}(t) & \text{if } j = i \end{cases}$$

11.4 Substitution Lemma

Let v be an assignment in an \mathcal{L} -structure \mathcal{A} . Let $\phi \in \text{Form}(\mathcal{L}), t \in \text{Term}(\mathcal{L}), and suppose <math>\phi[t/x_i]$ is defined.

Then $\mathcal{A} \models \phi[t/x_i][v]$ iff $\mathcal{A} \models \phi[v_{t/x_i}]$.

Lec 11 - 5/9

Proof: $\begin{array}{l} \underline{\textbf{Case 1 } \phi \text{ atomic}:} \\ \overline{\textbf{First, for } u \in \textbf{Term}(\mathcal{L}) \text{ define:}} \\ u[t/x_i] := \text{the term obtained by replacing} \\ & \text{ each occurrence of } x_i \text{ in } u \text{ by } t. \end{array}$

Then
$$\widetilde{v_{t/x_i}}(u) = \widetilde{v}(u[t/x_i]).$$

(Exercise)

Now if $\phi = P(t_1, \dots, t_k)$ for a k-ary relation symbol P in \mathcal{L} , then:

$$\mathcal{A} \models \phi[v_{t/x_i}]$$

iff $(\widetilde{v_{t/x_i}}(t_1), \dots, \widetilde{v_{t/x_i}}(t_k)) \in P^{\mathcal{A}}$
iff $(\widetilde{v}(t_1[t/x_i]), \dots, \widetilde{v}(t_k[t/x_i])) \in P^{\mathcal{A}}$
iff $\mathcal{A} \models P(t_1[t/x_i], \dots, t_k[t/x_i])[v]$
iff $\mathcal{A} \models \phi[t/x_i][v]$

If $\phi = t_1 \doteq t_2$, a similar argument applies.

Lec 11 - 6/9

IH: Lemma holds for shorter formulas.

Case 2 $\phi = \neg \psi$ or $\phi = (\xi \rightarrow \rho)$: Follows directly from IH.

 $\frac{\text{Case 3 } \phi = \forall x_i \psi}{\text{Then } \phi[t/x_i] = \phi}.$

 $x_i \notin \operatorname{Free}(\phi)$, so v and v_{t/x_i} agree on all $x \in \operatorname{Free}(\phi)$, so by Lemma 10.3,

 $\mathcal{A}\models \phi[v_{t/x_i}] \text{ iff } \mathcal{A}\models \phi[v] \text{ iff } \mathcal{A}\models \phi[t/x_i][v]$ as required.

Lec 11 - 7/9

Case 4 $\phi = \forall x_j \psi, \ j \neq i$: Then $\phi[t/x_i] = \forall x_j(\psi)[t/x_i]$. If x_i does not occur free in ψ , then $\phi[t/x_i] = \phi$, and we conclude exactly as in the previous case. So suppose x_i occurs free in ψ . Then since $\phi[t/x_i]$ is defined, x_j does not occur in t. Hence:

Claim: If v^* agrees with v except maybe at x_j , then $\widetilde{v^*}(t) = \widetilde{v}(t)$, so v^*_{t/x_i} agrees with v_{t/x_i} except maybe at x_j . Conversely, if v' agrees with v_{t/x_i} except maybe at x_j then $v' = v^*_{t/x_i}$ for some such v^* .

Now: $\mathcal{A} \models \phi[t/x_i][v]$ $\Leftrightarrow \mathcal{A} \models \forall x_j(\psi)[t/x_i][v]$ $\Leftrightarrow \mathcal{A} \models \psi[t/x_i][v^*]$ for all v^* agreeing with vexcept maybe at x_j , $\Leftrightarrow \mathcal{A} \models \psi[v_{t/x_i}^*]$ for all v^* agreeing with vexcept maybe at x_j (by IH), $\Leftrightarrow \mathcal{A} \models \psi[v']$ for all v' agreeing with v_{t/x_i} except maybe at x_j (by the Claim), $\Leftrightarrow \mathcal{A} \models \phi[v_{t/x_i}]$.

Lec 11 - 8/9

11.5 Corollary

For any $\phi \in \text{Form}(\mathcal{L})$ and $t \in \text{Term}(\mathcal{L})$ such that $\phi[t/x_i]$ is defined,

$$\models (\forall x_i \phi \to \phi[t/x_i]).$$

Proof: Let v be an assignment in an \mathcal{L} -structure \mathcal{A} .

Suppose $\mathcal{A} \models \forall x_i \phi[v]$. Then $\mathcal{A} \models \phi[v_{t/x_i}]$, since v_{t/x_i} agrees with v except maybe at x_i . Hence $\mathcal{A} \models \phi[t/x_i][v]$ by the Substitution Lemma (11.4).

Lec 11 - 9/9