B1.1 Logic Lecture 11

Martin Bays

Oxford, MT 2023

11. Substitution

Discussion: Let \mathcal{A} be an \mathcal{L}-structure, $\phi \in \operatorname{Form}(\mathcal{L})$, and suppose $\mathcal{A}=\forall x_{i} \phi$.
If c is a constant symbol in \mathcal{L}, then
$\mathcal{A} \vDash \phi\left[c / x_{i}\right]$ where $\phi\left[c / x_{i}\right]$ is the result of replacing each free instance of x_{i} in ϕ with c.

We would like to say more generally that

$$
\models \forall x_{i} \phi \rightarrow \phi\left[t / x_{i}\right]
$$

for a term t, but we have to be careful:

11.1 Example

Let \mathcal{L} contain a constant symbol c, and let $\phi:=\exists x_{0} \neg x_{0} \doteq x_{1}$.

Then $\mathcal{A}=\forall x_{1} \phi$ for any \mathcal{L}-structure \mathcal{A} with at least two elements, and then also $\mathcal{A} \models \phi\left[c / x_{1}\right]=\exists x_{0} \neg x_{0} \doteq c$.

However, if were to define $\phi\left[x_{0} / x_{1}\right]$ in the same way, we would obtain $\exists x_{0} \neg x_{0} \doteq x_{0}$, which does not hold in any \mathcal{A}.

Problem: the variable x_{0} has become bound in the substitution.

11.2 Definition

For $\phi \in \operatorname{Form}(\mathcal{L})$, a variable x_{i}, and a term $t \in \operatorname{Term}(\mathcal{L})$, the result of substituting t for x_{i} in ϕ is the formula

$$
(\phi)\left[t / x_{i}\right]
$$

which is obtained by replacing each free occurrence of x_{i} in ϕ with the string t, as long as this does not lead to new bound occurrences of variables being introduced; if it does, we say that (ϕ) $\left[t / x_{i}\right]$ is undefined.

We can restate this as a recursive definition:
(i) If ϕ is atomic, $(\phi)\left[t / x_{i}\right]$ is the result of replacing each instance of x_{i} in ϕ with t.
(ii) $(\neg \psi)\left[t / x_{i}\right]:=\neg(\psi)\left[t / x_{i}\right]$
(undefined if $(\psi)\left[t / x_{i}\right]$ is).
(iii) $((\psi \rightarrow \chi))\left[t / x_{i}\right]:=\left((\psi)\left[t / x_{i}\right] \rightarrow(\chi)\left[t / x_{i}\right]\right)$
(undefined if $(\psi)\left[t / x_{i}\right]$ or $(\chi)\left[t / x_{i}\right]$ is).
(iv) $\left(\forall x_{i} \psi\right)\left[t / x_{i}\right]:=\forall x_{i} \psi$.
(v) If $j \neq i,\left(\forall x_{j} \psi\right)\left[t / x_{i}\right]:=\forall x_{j}(\psi)\left[t / x_{i}\right]$ unless x_{j} occurs in t and x_{i} occurs free in ψ, in which case $\left(\forall x_{j} \psi\right)\left[t / x_{i}\right]$ is undefined.

Notation: When no ambiguity could result, we often write $\phi\left[t / x_{i}\right]$ for $(\phi)\left[t / x_{i}\right]$.

Let \mathcal{L} be a first-order language, \mathcal{A} an \mathcal{L}-structure.

11.3 Definition

For v an assignment in \mathcal{A} and $t \in \operatorname{Term}(\mathcal{L})$, define

$$
v_{t / x_{i}}\left(x_{j}\right):= \begin{cases}v\left(x_{j}\right) & \text { if } j \neq i \\ \widetilde{v}(t) & \text { if } j=i\end{cases}
$$

11.4 Substitution Lemma

Let v be an assignment in an \mathcal{L}-structure \mathcal{A}. Let $\phi \in \operatorname{Form}(\mathcal{L}), t \in \operatorname{Term}(\mathcal{L})$, and suppose $\phi\left[t / x_{i}\right]$ is defined.

Then $\mathcal{A} \vDash \phi\left[t / x_{i}\right][v]$ iff $\mathcal{A} \vDash \phi\left[v_{t / x_{i}}\right]$.

Proof:
Case 1ϕ atomic:
First, for $u \in \operatorname{Term}(\mathcal{L})$ define:
$u\left[t / x_{i}\right]:=$ the term obtained by replacing each occurrence of x_{i} in u by t.

Then $\widetilde{v_{t / x_{i}}}(u)=\widetilde{v}\left(u\left[t / x_{i}\right]\right)$.
(Exercise)

Now if $\phi=P\left(t_{1}, \ldots, t_{k}\right)$ for a k-ary relation symbol P in \mathcal{L}, then:

$$
\begin{aligned}
& \mathcal{A}=\phi\left[v_{t / x_{i}}\right] \\
& \text { iff }\left(\widetilde{v_{t / x i}}\left(t_{1}\right), \ldots, \widetilde{v_{t / x}}\left(t_{k}\right)\right) \in P^{\mathcal{A}} \\
& \text { iff }\left(\widetilde{v}\left(t_{i}\left[t / x_{i}\right]\right), \ldots, \widetilde{v}\left(t_{k}\left[t / x_{i}\right]\right)\right) \in P^{\mathcal{A}} \\
& \text { iff } \mathcal{A}=P\left(t_{1}\left[t / x_{i}\right], \ldots, t_{k}\left[t / x_{i}\right]\right)[v] \\
& \text { iff } \mathcal{A}=\phi\left[t / x_{i}\right][v]
\end{aligned}
$$

If $\phi=t_{1} \doteq t_{2}$, a similar argument applies.

IH: Lemma holds for shorter formulas.

Case $2 \phi=\neg \psi$ or $\phi=(\xi \rightarrow \rho)$:
Follows directly from IH.

Case $3 \phi=\forall x_{i} \psi$:
Then $\phi\left[t / x_{i}\right]=\phi$.
$x_{i} \notin \operatorname{Free}(\phi)$,
so v and $v_{t / x_{i}}$ agree on all $x \in \operatorname{Free}(\phi)$,
so by Lemma 10.3,

$$
\mathcal{A} \vDash \phi\left[v_{t / x_{i}}\right] \text { iff } \mathcal{A} \models \phi[v] \text { iff } \mathcal{A} \models \phi\left[t / x_{i}\right][v]
$$

as required.

Case $4 \phi=\forall x_{j} \psi, j \neq i$:
Then $\phi\left[t / x_{i}\right]=\forall x_{j}(\psi)\left[t / x_{i}\right]$.
If x_{i} does not occur free in ψ, then
$\phi\left[t / x_{i}\right]=\phi$, and we conclude exactly as in the previous case.
So suppose x_{i} occurs free in ψ.
Then since $\phi\left[t / x_{i}\right]$ is defined, x_{j} does not occur in t. Hence:

Claim: If v^{*} agrees with v except maybe at x_{j}, then $\widetilde{v^{*}}(t)=\widetilde{v}(t)$, so $v_{t / x_{i}}^{*}$ agrees with $v_{t / x_{i}}$ except maybe at x_{j}.
Conversely, if v^{\prime} agrees with $v_{t / x_{i}}$ except maybe at x_{j} then $v^{\prime}=v_{t / x_{i}}^{*}$ for some such v^{*}.

Now: $\mathcal{A} \models \phi\left[t / x_{i}\right][v]$
$\Leftrightarrow \mathcal{A} \vDash \forall x_{j}(\psi)\left[t / x_{i}\right][v]$
$\Leftrightarrow \mathcal{A} \equiv \psi\left[t / x_{i}\right]\left[v^{*}\right]$ for all v^{*} agreeing with v
except maybe at x_{j},
$\Leftrightarrow \mathcal{A} \models \psi\left[v_{t / x_{i}}^{*}\right]$ for all v^{*} agreeing with v except maybe at x_{j} (by IH),
$\Leftrightarrow \mathcal{A} \models \psi\left[v^{\prime}\right]$ for all v^{\prime} agreeing with $v_{t / x_{i}}$ except maybe at x_{j} (by the Claim),
$\Leftrightarrow \mathcal{A}=\phi\left[v_{t / x_{i}}\right]$.

11.5 Corollary

For any $\phi \in \operatorname{Form}(\mathcal{L})$ and $t \in \operatorname{Term}(\mathcal{L})$ such that $\phi\left[t / x_{i}\right]$ is defined,

$$
\equiv\left(\forall x_{i} \phi \rightarrow \phi\left[t / x_{i}\right]\right)
$$

Proof: Let v be an assignment in an \mathcal{L}-structure \mathcal{A}.

Suppose $\mathcal{A} \vDash \forall x_{i} \phi[v]$.
Then $\mathcal{A} \vDash \phi\left[v_{t / x_{i}}\right]$, since $v_{t / x_{i}}$ agrees with v except maybe at x_{i}.
Hence $\mathcal{A}=\phi\left[t / x_{i}\right][v]$ by the Substitution Lemma (11.4).

