B1.1 Logic Lecture 12

Martin Bays

Oxford, MT 2023

12. A formal system for Predicate Calculus

12.1 Definition

Associate to each first-order language \mathcal{L} the formal system $K(\mathcal{L})$ with the following axioms and rules:

Axioms

For any $\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}), t \in \text{Term}(\mathcal{L})$, and $i, j \in \mathbb{N}$, the following are axioms: **A1** $(\alpha \to (\beta \to \alpha))$. **A2** $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$. **A3** $((\neg \beta \to \neg \alpha) \to (\alpha \to \beta))$. **A4** $(\forall x_i \alpha \to \alpha[t/x_i]) \text{ if } \alpha[t/x_i] \text{ is defined.}$ **A5** $(\forall x_i (\alpha \to \beta) \to (\alpha \to \forall x_i \beta)) \text{ if } x_i \notin \text{Free}(\alpha)$

- **A5** $(\forall x_i(\alpha \to \beta) \to (\alpha \to \forall x_i\beta)) \text{ if } x_i \notin \text{Free}(\alpha).$
- **A6** $\forall x_i \ x_i \doteq x_i$.
- **A7** $(x_i \doteq x_j \rightarrow (\phi \rightarrow \phi'))$, where ϕ is <u>atomic</u> and ϕ' is obtained from ϕ by replacing <u>some</u> (i.e. one or more) occurrences of x_i in ϕ by x_j .

Lec 12 - 1/8

Rules

- **MP** (Modus Ponens): From α and $(\alpha \rightarrow \beta)$ infer β .
- **Gen** (Generalisation): For any variable x_i , from α infer $\forall x_i \alpha$.
 - Let $Sent(\mathcal{L})$ be the set of \mathcal{L} -sentences.

If $\Sigma \subseteq \text{Sent}(\mathcal{L})$, a formula $\phi \in \text{Form}(\mathcal{L})$ is **provable** from hypotheses Σ , written

 $\Sigma \vdash \phi$,

if there is a sequence of \mathcal{L} -formulas (a **derivation** or **proof**) ϕ_1, \ldots, ϕ_n with $\phi_n = \phi$ such that for each $i \leq n$:

- (A1-A7) ϕ_i is an axiom, or
- (Hyp) $\phi_i \in \Sigma$, or
- (MP) $\phi_k = (\phi_j \rightarrow \phi_i)$ for some j, k < i, or
- (Gen) $\phi_i = \forall x_k \phi_j$ for some j < i and some $k \in \mathbb{N}$.

 $\vdash \phi$ abbreviates $\emptyset \vdash \phi$.

Lec 12 - 2/8

12.3 Example Swapping variables

Suppose Free $(\phi) = \{x_i\}$. Then $\{\forall x_i \phi\} \vdash \forall x_j \phi[x_j/x_i]$

$$\begin{array}{ll} 1 & \forall x_i \phi & [\in \Sigma] \\ 2 & (\forall x_i \phi \rightarrow \phi[x_j/x_i]) & [\mathsf{A4}] \\ 3 & \phi[x_j/x_i] & [\mathsf{MP 1,2}] \\ 4 & \forall x_j \phi[x_j/x_i] & [(\mathsf{Gen})] \end{array} \end{array}$$

Lec 12 - 3/8

12.4 Soundness Theorem for Pred. Calc. If $\Sigma \vdash \phi$ then $\Sigma \models \phi$.

Proof: By induction on length of a proof.

First we show that A1-A7 are logically valid.
For A1, A2, and A3, this is immediate.
A4 and A5: Cor 11.5 resp. Cor 10.4.
A6: easy exercise.

A7: Suppose ϕ is atomic, and ϕ' results from replacing some instances of x_i with x_j . Let \mathcal{A} be an \mathcal{L} -structure and v an assignment in \mathcal{A} such that

 $\mathcal{A} \models x_i \doteq x_j[v]$ and $\mathcal{A} \models \phi[v]$.

We want to show that $\mathcal{A} \models \phi'[v]$.

Now $v(x_i) = v(x_j)$, so $\tilde{v}(t') = \tilde{v}(t)$ for any term t' obtained from tby replacing zero or more occurrences of x_i by x_j

(easy induction on terms).

Lec 12 - 4/8

If
$$\phi = P(t_1, \dots, t_k)$$
 then say $\phi' = P(t'_1, \dots, t'_k)$.
 $\mathcal{A} \models \phi[v]$ iff $(\tilde{v}(t_1), \dots, \tilde{v}(t_k)) \in P^{\mathcal{A}}$
iff $(\tilde{v}(t'_1), \dots, \tilde{v}(t'_k)) \in P^{\mathcal{A}}$
iff $\mathcal{A} \models P(t'_1, \dots, t'_k)[v]$
iff $\mathcal{A} \models \phi'[v]$ as required

Similarly if ϕ is $t_1 \doteq t_2$.

MP: For any \mathcal{A} and v:

if $\mathcal{A} \models \alpha[v]$ and $\mathcal{A} \models (\alpha \rightarrow \beta)[v]$ then $\mathcal{A} \models \beta[v]$; so: if $\Sigma \models \alpha$ and $\Sigma \models (\alpha \rightarrow \beta)$ then $\Sigma \models \beta$.

Generalisation:

Suppose $\Sigma \models \psi$; we want to show $\Sigma \models \forall x_i \psi$.

So let \mathcal{A} be such that $\mathcal{A} \models \sigma$ for all $\sigma \in \Sigma$, and let v be an arbitrary assignment on \mathcal{A} . We must show $\mathcal{A} \models \forall x_i \psi[v]$. So let v^* agree with v except maybe at x_i . We must show $\mathcal{A} \models \psi[v^*]$. But since $\Sigma \models \psi$, we have $\mathcal{A} \models \psi[v']$ for any assignment v', in particular for v^* .

Lec 12 - 5/8

12.5 Deduction Theorem for Pred. Calc. Let $\Sigma \subseteq \text{Sent}(\mathcal{L})$, and $\psi \in \text{Sent}(\mathcal{L})$, and $\phi \in \text{Form}(\mathcal{L})$.

If $\Sigma \cup \{\psi\} \vdash \phi$ then $\Sigma \vdash (\psi \rightarrow \phi)$.

Proof: Same as for prop. calc. (Theorem 6.6); induction on the length of a proof, with one more case:

IH: $\Sigma \vdash (\psi \rightarrow \phi_j)$ *to show:* $\Sigma \vdash (\psi \rightarrow \forall x_i \phi_j)$, where generalisation (**Gen**) has been used to infer $\forall x_i \phi_j$ from ϕ_j .

By IH and **Gen**: $\Sigma \vdash \forall x_i(\psi \rightarrow \phi_j)$ **A5** $\vdash (\forall x_i(\psi \rightarrow \phi_j) \rightarrow (\psi \rightarrow \forall x_i\phi_j))$, since $x_i \notin \text{Free}(\psi) = \emptyset$. So by **MP**, $\Sigma \vdash (\psi \rightarrow \forall x_i\phi_j)$ as required.

Lec 12 - 6/8

12.6 Lemma

Let α be a tautology of the Propositional Calculus with propositional variables among p_0, \ldots, p_n , let $\psi_0, \ldots, \psi_n \in \text{Form}(\mathcal{L})$, and let α' be the \mathcal{L} -formula obtained from α by replacing each occurrence of p_i by ψ_i . Then $\vdash \alpha'$.

Proof:

By completeness of L_0 , there is a proof $\alpha_1, ..., \alpha_{n-1}, \alpha$ in L_0 .

Since A1, A2, A3 and MP are in $K(\mathcal{L})$, substituting ψ_i for p_i in each α_i yields a proof $\alpha'_1, ..., \alpha'_{n-1}, \alpha'$ in $K(\mathcal{L})$.

A formula α' as in Lemma 12.6 is called a **tautology** of \mathcal{L} . (Note that all tautologies are logical validities, but not vice versa.)

By the lemma, we may freely introduce tautologies in our proofs in $K(\mathcal{L})$.

Lec 12 - 7/8

12.7 Example Suppose $(\exists x_i \phi \rightarrow \psi) \in \text{Sent}(\mathcal{L}).$ Then $\{(\exists x_i \phi \rightarrow \psi)\} \vdash \forall x_i (\phi \rightarrow \psi)\}$

Proof: Let $\Sigma = \{ (\exists x_i \phi \to \psi), \neg \psi \}$

$$\begin{array}{ll} 1 & (\neg \forall x_i \neg \phi \rightarrow \psi) & [\in \Sigma] \\ 2 & ((\neg \forall x_i \neg \phi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \forall x_i \neg \phi)) & [taut.] \\ 3 & (\neg \psi \rightarrow \forall x_i \neg \phi) & [MP \ 1,2] \\ 4 & \neg \psi & [\in \Sigma] \\ 5 & \forall x_i \neg \phi & [MP \ 3,4] \\ 6 & (\forall x_i \neg \phi \rightarrow \neg \phi) & [A4] \\ 7 & \neg \phi & [MP \ 5,6] \end{array}$$

(In line 6, we used that $(\neg \phi)[x_i/x_i] = \neg \phi$.)

Hence $\Sigma \vdash \neg \phi$. So $(\exists x_i \phi \rightarrow \psi) \vdash (\neg \psi \rightarrow \neg \phi) \quad [DT]$ $(\exists x_i \phi \rightarrow \psi) \vdash (\phi \rightarrow \psi) \quad [A3, MP]$ $(\exists x_i \phi \rightarrow \psi) \vdash \forall x_i (\phi \rightarrow \psi) \quad [Gen]$

Lec 12 - 8/8