B1.1 Logic Lecture 13

Martin Bays

Oxford, MT 2023

13. The Completeness Theorem for Predicate Calculus

Let ${\mathcal L}$ be a countable first-order language.

13.1 Theorem (Gödel) Let $\Sigma \subseteq \text{Sent}(\mathcal{L})$ and $\phi \in \text{Form}(\mathcal{L})$.

If $\Sigma \models \phi$ then $\Sigma \vdash \phi$.

Here, $\Sigma \vdash \phi$ means that ϕ is provable from hypotheses Σ in the proof system $K(\mathcal{L})$.

In outline, our proof strategy is much as in the propositional case:

- Reduce to: consistent \Rightarrow satisfiable.
- Show: any consistent Σ extends to "maximal consistent witnessing" Σ' .
- Show: maximal consistent witnessing ⇒ satisfiable.

Lec 13 - 1/11

Call $\Sigma \subseteq \text{Sent}(\mathcal{L})$ consistent (in $K(\mathcal{L})$) if for no $\tau \in \text{Sent}(\mathcal{L})$ do we have both $\Sigma \vdash \tau$ and $\Sigma \vdash \neg \tau$.

Remark

If Σ is inconsistent, then $\Sigma \vdash \chi$ for any $\chi \in \text{Sent}(\mathcal{L})$, since $(\tau \rightarrow (\neg \tau \rightarrow \chi))$ is a tautology.

13.2 Lemma

Every consistent set of sentences has a model.

i.e. if $\Sigma \subseteq \text{Sent}(\mathcal{L})$ is consistent then for some \mathcal{L} -structure \mathcal{A} , $\mathcal{A} \models \sigma$ for every $\sigma \in \Sigma$. c.f. Lemma 7.8.

Lec 13 - 2/11

Proof of Theorem 13.1 from Lemma 13.2 First we treat the case of a sentence $\sigma \in \text{Sent}(\mathcal{L})$.

$$\begin{split} \Sigma &\models \sigma \Rightarrow \Sigma \cup \{\neg \sigma\} \text{ has no model} \\ \Rightarrow_{(13.2)} \Sigma \cup \{\neg \sigma\} \text{ is not consistent} \\ \Rightarrow \Sigma \cup \{\neg \sigma\} \vdash \tau \text{ and } \Sigma \cup \{\neg \sigma\} \vdash \neg \tau \text{ for some } \tau \\ \Rightarrow_{\mathsf{DT}} \Sigma \vdash (\neg \sigma \rightarrow \tau) \text{ and } \Sigma \vdash (\neg \sigma \rightarrow \neg \tau). \\ \mathsf{But } \Sigma \vdash ((\neg \sigma \rightarrow \tau) \rightarrow ((\neg \sigma \rightarrow \neg \tau) \rightarrow \sigma)) \text{ [taut]} \\ \Rightarrow \Sigma \vdash \sigma \text{ [MP twice]} \end{split}$$

Now let $\phi \in \text{Form}(\mathcal{L})$, and say $\text{Free}(\phi) = \{x_{i_1}, ..., x_{i_n}\}.$ Let $\sigma := \forall x_{i_1} ... \forall x_{i_n} \phi.$

If $\Sigma \models \phi$ then $\Sigma \models \sigma$, so $\Sigma \vdash \sigma$ by the above. But then by repeatedly applying (A4) and (MP), we obtain $\Sigma \vdash \phi$, as required. $\Box_{13.2} \Rightarrow 13.1$

Lec 13 - 3/11

To prove Lemma 13.2, we want to introduce an additional assumption.

13.2' Lemma:

Suppose $\Sigma \subseteq \text{Sent}(\mathcal{L})$ is consistent and \mathcal{L} contains infinitely many constant symbols not appearing in Σ . Then Σ has a model.

We deduce Lemma 13.2 for arbitrary ${\cal L}$ and Σ from Lemma 13.2' as follows.

Let $C = \{c_0, c_1, ...\}$ be a set of distinct symbols disjoint from \mathcal{L} , and define the extended language $\mathcal{L}' := \mathcal{L} \cup C$ in which each c_i is a constant symbol.

Lec 13 - 4/11

13.3 Lemma

If $\Sigma \subseteq \text{Sent}(\mathcal{L})$ and $\tau \in \text{Sent}(\mathcal{L})$ is provable from Σ in $K(\mathcal{L}')$, then τ is provable from Σ in $K(\mathcal{L})$.

Proof

Exercise sheet 4, Question 3(b).

Proof of Lemma 13.2 from Lemma 13.2':

By Lemma 13.3, since $\Sigma \subseteq \text{Sent}(\mathcal{L})$ is consistent in $K(\mathcal{L})$, it is also consistent in $K(\mathcal{L}')$; indeed, otherwise (via the tautology

($\tau \rightarrow (\neg \tau \rightarrow \chi)$)) any $\chi \in \text{Sent}(\mathcal{L})$ is provable from Σ in $K(\mathcal{L}')$ and hence in $K(\mathcal{L})$, contradicting consistency in $K(\mathcal{L})$. By Lemma 13.2' applied with \mathcal{L}' in place of \mathcal{L} , there is an \mathcal{L}' -structure \mathcal{A}' satisfying Σ . Let \mathcal{A} be the \mathcal{L} -structure obtained from \mathcal{A}' by "forgetting" the new constants C. Then \mathcal{A} satisfies Σ , as required. $\Box_{13.2'} \Rightarrow 13.2$

Lec 13 - 5/11

13.4 Definition

- Σ ⊆ Sent(L) is called maximal consistent if Σ is consistent, and for any ψ ∈ Sent(L): Σ ⊢ ψ or Σ ⊢ ¬ψ.
- $\Sigma \subseteq \text{Sent}(\mathcal{L})$ is called **witnessing** if for all $\psi \in \text{Form}(\mathcal{L})$ with $\text{Free}(\psi) \subseteq \{x_i\}$ and such that $\Sigma \vdash \exists x_i \psi$, there is some constant symbol $c \in \mathcal{L}$ such that $\Sigma \vdash \psi[c/x_i]$

To prove Lemma 13.2', it suffices to prove the following two lemmas:

13.5 Lemma

Every maximal consistent witnessing set $\Sigma \subseteq \text{Sent}(\mathcal{L})$ has a model.

13.6 Lemma

If $\Sigma \subseteq \text{Sent}(\mathcal{L})$ is consistent and \mathcal{L} contains infinitely many constant symbols not appearing in Σ , then Σ extends to a maximal consistent witnessing set $\Sigma' \subseteq \text{Sent}(\mathcal{L})$.

Lec 13 - 6/11

For the proof of 13.6 we need two further lemmas.

13.7 Lemma

If $\Sigma \subseteq \text{Sent}(\mathcal{L})$ is consistent, then for any sentence ψ , either $\Sigma \cup \{\psi\}$ or $\Sigma \cup \{\neg\psi\}$ is consistent.

Proof: Exercise – as in the proof of Theorem 7.5. \Box .

13.8 Lemma

Assume $\Sigma \subseteq \text{Sent}(\mathcal{L})$ is consistent, and $\Sigma \vdash \exists x_i \psi \in \text{Sent}(\mathcal{L})$, and c is a constant symbol of \mathcal{L} which does not occur in ψ nor in any $\sigma \in \Sigma$.

Then $\Sigma \cup \{\psi[c/x_i]\}$ is consistent.

Proof:

It suffices to show that if c does not occur in $\chi \in \text{Sent}(\mathcal{L})$ and $\Sigma \cup \{\psi[c/x_i]\} \vdash \chi$, then already $\Sigma \vdash \chi$. Indeed: If $\Sigma \cup \{\psi[c/x_i]\}$ were inconsistent then (via the tautology $(\alpha \rightarrow (\neg \alpha \rightarrow \beta)))$ we would have for any χ that $\Sigma \cup \{\psi[c/x_i]\} \vdash \chi$ and $\Sigma \cup \{\psi[c/x_i]\} \vdash \neg \chi;$ picking χ in which c does not occur, it would

follow that $\Sigma \vdash \chi$ and $\Sigma \vdash \neg \chi$, contradicting consistency of Σ .

Lec 13 - 8/11

So suppose $\Sigma \cup \{\psi[c/x_i]\} \vdash \chi \in \text{Sent}(\mathcal{L}) \text{ and } c$ does not occur in χ . Recall we also assumed that c does not occur in Σ or ψ .

By DT, $\Sigma \vdash (\psi[c/x_i] \rightarrow \chi)$ It follows that $\Sigma \vdash (\psi \rightarrow \chi)$ (Exercise Sheet 4 Question 3(a)).

By Gen, $\Sigma \vdash \forall x_i(\psi \rightarrow \chi)$. It follows that $\Sigma \vdash (\exists x_i \psi \rightarrow \chi)$ (Exercise Sheet 4 Question 2).

But we assumed $\Sigma \vdash \exists x_i \psi$, so by MP, $\Sigma \vdash \chi$, as required.

□13.8

Lec 13 - 9/11

Proof of 13.6:

Let $\Sigma \subseteq \text{Sent}(\mathcal{L})$ be consistent, and suppose \mathcal{L} contains infinitely many constant symbols not appearing in Σ .

We show that Σ extends to a maximal consistent witnessing set.

Sent(\mathcal{L}) is countable; say Sent(\mathcal{L}) = { $\tau_1, \tau_2, \tau_3, \ldots$ }.

Construct finite sets $\Delta_i \subseteq \text{Sent}(\mathcal{L})$

 $\Delta_0 \subseteq \Delta_1 \subseteq \Delta_2 \subseteq \dots$

such that $\Sigma \cup \Delta_n$ is consistent for each $n \ge 0$, as follows:

Lec 13 - 10/11

Let $\Delta_0 := \emptyset$. Then $\Sigma \cup \Delta_0 = \Sigma$ is consistent.

If Δ_n has been constructed let

$$\Delta'_{n} := \begin{cases} \Delta_{n} \cup \{\tau_{n+1}\} & \text{if } \Sigma \cup \Delta_{n} \cup \{\tau_{n+1}\} \\ & \text{is consistent} \\ \Delta_{n} \cup \{\neg \tau_{n+1}\} & \text{otherwise.} \end{cases}$$

Then $\Sigma \cup \Delta'_n$ is consistent by Lemma 13.7.

If $\neg \tau_{n+1} \in \Delta'_n$ or if τ_{n+1} is not of the form $\exists x_i \psi$, let $\Delta_{n+1} := \Delta'_n$.

Otherwise, i.e. if $\tau_{n+1} = \exists x_i \psi \in \Delta'_n$: Choose a constant symbol $c \in \mathcal{L}$ which occurs in no formula in $\Sigma \cup \Delta'_n \cup \{\psi\}$ (possible since $\Delta'_n \cup \{\psi\}$ is finite). Let $\Delta_{n+1} := \Delta'_n \cup \{\psi[c/x_i]\}$. By Lemma 13.8, $\Sigma \cup \Delta_{n+1}$ is consistent.

Let $\Sigma' := \Sigma \cup \bigcup_{n \ge 0} \Delta_n$. Then Σ' is maximal consistent (as in 7.5), and Σ' is witnessing by construction.

□13.6

Lec 13 - 11/11