B1.1 Logic Lecture 14

Martin Bays

Oxford, MT 2023

To finish the proof of completeness, it remains to prove:

13.5 Lemma

Every maximal consistent witnessing set $\Sigma \subset$ Sent (\mathcal{L}) has a model.

Proof:

A term is closed if no variable appears in it. Let T be the set of closed \mathcal{L} -terms.

Define an equivalence relation E on T by

$$
t_1 E t_2 \text{ iff } \Sigma \vdash t_1 \doteq t_2
$$

(This is an equivalence relation $-$ see Sheet 4 Question 1(b).)

Let T/E be the set of equivalence classes t/E for $t \in T$.

Lec 14 - 1/7

Define an \mathcal{L} -structure \mathcal{A} with domain T/E by

$$
c^{A} := c/E
$$

\n
$$
f^{A}(t_{1}/E, ..., t_{k}/E) := f(t_{1}, ..., t_{k})/E
$$

\n
$$
P^{A} := \{(t_{1}/E, ..., t_{k}/E) | \Sigma \vdash P(t_{1}, ..., t_{k})\}
$$

(for c a constant symbol, f a k -ary function symbol, and P a k -ary predicate symbol).

Note: $t^{\mathcal{A}} = t/E$ for any $t \in T$.

Exercise: The definitions above do not depend on representatives, i.e. if $t_i/E = t_i^{\prime}$ i/E for $i = 1, \ldots k$ then:

•
$$
f(t_1, ..., t_k)/E = f(t'_1, ..., t'_k)/E
$$

\n• $\Sigma \vdash P(t_1, ..., t_k) \Leftrightarrow \Sigma \vdash P(t'_1, ..., t'_k)$

This follows from A7 and A4; see Sheet 4 Question 1(c).

We conclude by showing: $A \models \Sigma$.

We show more generally that for any $\sigma \in \mathsf{Sent}(\mathcal{L}),$

$$
\mathcal{A} \models \sigma \text{ iff } \Sigma \vdash \sigma.
$$

We prove this by induction on the number of symbols among $\{\neg, \rightarrow, \forall\}$ in σ .

•
$$
\sigma = P(t_1, ..., t_k)
$$
. Then:
\n
$$
\mathcal{A} \models \sigma \Leftrightarrow (t_1^{\mathcal{A}}, ..., t_k^{\mathcal{A}}) \in P^{\mathcal{A}}
$$
\n
$$
\Leftrightarrow (t_1/E, ..., t_k/E) \in P^{\mathcal{A}}
$$
\n
$$
\Leftrightarrow \Sigma \vdash \sigma.
$$

• $\sigma = t_1 \doteq t_2$. Then:

$$
\mathcal{A} \models \sigma \Leftrightarrow t_1^{\mathcal{A}} = t_2^{\mathcal{A}}
$$

$$
\Leftrightarrow t_1/E = t_2/E
$$

$$
\Leftrightarrow \Sigma \vdash \sigma.
$$

Lec 14 - 2/7

$$
\bullet \ \sigma = \neg \tau
$$

$$
\mathcal{A} \models \neg \tau
$$

iff $\mathcal{A} \not\models \tau$ [def. of ']=']
iff $\Sigma \not\models \tau$ [IH]
iff $\Sigma \vdash \neg \tau$ [Σ max. cons.]

•
$$
\sigma = (\tau \to \rho)
$$
:
\n $\mathcal{A} \models (\tau \to \rho)$
\niff $\mathcal{A} \not\models \tau$ or $\mathcal{A} \models \rho$ [def. '=']
\niff $\Sigma \not\models \tau$ or $\Sigma \vdash \rho$ [IH]
\niff not $(\Sigma \vdash \tau$ and $\Sigma \not\models \rho)$
\niff not $(\Sigma \vdash \tau$ and $\Sigma \vdash \neg \rho)$ [Σ max. cons.]
\niff $\Sigma \not\models \neg(\tau \to \rho)$ [taut. (see below)]
\niff $\Sigma \vdash (\tau \to \rho)$ [Σ max. cons.]

where the penultimate line uses the following tautologies:

$$
(\tau \to (\neg \rho \to \neg (\tau \to \rho)))
$$

$$
(\neg (\tau \to \rho) \to \tau)
$$

$$
(\neg (\tau \to \rho) \to \neg \rho).
$$

Lec 14 - 3/7

• $\sigma = \forall x_i \phi$: By the Substitution Lemma 11.4, $\mathcal{A} \models \phi[t/x_i] \Leftrightarrow \mathcal{A} \models \phi[v_t]$ where v_t is any assignment with $v_t(x_i) = t^{\mathcal{A}} = t/E$.

So since the domain of A is T/E , $\mathcal{A} \models \forall x_i \phi$ iff for all $t \in T$, $\mathcal{A} \models \phi[t/x_i]$.

Now for $t \in T$: $\phi[t/x_i] \in \text{Sent}(\mathcal{L})$, so by IH, $\mathcal{A} \models \phi[t/x_i]$ iff $\Sigma \vdash \phi[t/x_i]$.

So to show $\Sigma \vdash \forall x_i \phi$ iff $\mathcal{A} \models \forall x_i \phi$, it suffices to show:

 $\Sigma \vdash \forall x_i \phi$ iff for all $t \in T$, $\Sigma \vdash \phi[t/x_i]$.

Lec 14 - 4/7

We prove: $\Sigma \vdash \forall x_i \phi$ iff for all $t \in T$, $\Sigma \vdash \phi[t/x_i]$.

\Rightarrow : A4 + MP.

For the converse, first note:

$$
\{\forall x_i \neg \neg \phi\} \vdash \forall x_i \phi; \qquad (\star)
$$

indeed, by **A4** we have $\{\forall x_i \neg \neg \phi\} \vdash \neg \neg \phi;$ conclude using the tautology $(\neg\neg \phi \rightarrow \phi)$ and Gen.

Now suppose $\Sigma \nvDash \forall x_i \phi$. Then $\Sigma \nvDash \forall x_i \neg \neg \phi$, by (\star) . So by maximality, $\Sigma \vdash \neg \forall x_i \neg \neg \phi$, i.e. $\Sigma \vdash \exists x_i \neg \phi$. Since Σ is witnessing, $\Sigma \vdash (\neg \phi)[c/x_i]$ for some constant symbol c. Then since Σ is consistent, $\Sigma \not\vdash \phi[c/x_i].$ But $c \in T$, so it is not the case that for all $t \in T$, $\Sigma \vdash \phi[t/x_i]$. \square _{13.5}

This concludes our proof of the Completeness Theorem 13.1.

Lec 14 - 5/7

In fact, our proof of completeness yields a stronger result.

13.9 Definition: A structure is countable if its domain is countable (i.e. finite or countably infinite).

The model constructed in Lemma 13.5 is countable, because the set T of closed terms is, so we have actually proven the following strengthening of Lemma 13.2:

13.10 Weak downwards Löwenheim-Skolem Theorem Every consistent set of sentences has a countable model.

Lec 14 - 6/7

Exactly as in the propositional case, we deduce compactness from completeness and soundness.

13.11 Compactness Theorem:

A set of sentences $\Sigma \subseteq$ Sent (\mathcal{L}) has a model if and only if every finite subset $\Sigma_0 \subseteq_{fin} \Sigma$ has a model.