B1.1 Logic Lecture 14

Martin Bays

Oxford, MT 2023

To finish the proof of completeness, it remains to prove:

13.5 Lemma

Every maximal consistent witnessing set $\Sigma \subseteq \text{Sent}(\mathcal{L})$ has a model.

Proof:

A term is **closed** if no variable appears in it. Let T be the set of closed \mathcal{L} -terms.

Define an equivalence relation E on T by

$$t_1 E t_2$$
 iff $\Sigma \vdash t_1 \doteq t_2$

(This *is* an equivalence relation - see Sheet 4 Question 1(b).)

Let T/E be the set of equivalence classes t/E for $t \in T$.

Lec 14 - 1/7

Define an \mathcal{L} -structure \mathcal{A} with domain T/E by

$$c^{\mathcal{A}} := c/E$$

$$f^{\mathcal{A}}(t_1/E, \dots, t_k/E) := f(t_1, \dots, t_k)/E$$

$$P^{\mathcal{A}} := \{(t_1/E, \dots, t_k/E) \mid \Sigma \vdash P(t_1, \dots, t_k)\}$$

(for c a constant symbol, f a k-ary function symbol, and P a k-ary predicate symbol).

Note: $t^{\mathcal{A}} = t/E$ for any $t \in T$.

Exercise: The definitions above do not depend on representatives, i.e. if $t_i/E = t'_i/E$ for i = 1, ..., k then:

•
$$f(t_1, \ldots, t_k)/E = f(t'_1, \ldots, t'_k)/E$$

• $\Sigma \vdash P(t_1, \ldots, t_k) \Leftrightarrow \Sigma \vdash P(t'_1, \ldots, t'_k)$

This follows from A7 and A4; see Sheet 4 Question 1(c).

We conclude by showing: $\mathcal{A} \models \Sigma$.

We show more generally that for any $\sigma \in \text{Sent}(\mathcal{L})$,

$$\mathcal{A} \models \sigma$$
 iff $\Sigma \vdash \sigma$.

We prove this by induction on the number of symbols among $\{\neg, \rightarrow, \forall\}$ in σ .

•
$$\sigma = P(t_1, ..., t_k)$$
. Then:
 $\mathcal{A} \models \sigma \Leftrightarrow (t_1^{\mathcal{A}}, ..., t_k^{\mathcal{A}}) \in P^{\mathcal{A}}$
 $\Leftrightarrow (t_1/E, ..., t_k/E) \in P^{\mathcal{A}}$
 $\Leftrightarrow \Sigma \vdash \sigma$.

• $\sigma = t_1 \doteq t_2$. Then:

$$\mathcal{A} \models \sigma \Leftrightarrow t_1^{\mathcal{A}} = t_2^{\mathcal{A}}$$
$$\Leftrightarrow t_1/E = t_2/E$$
$$\Leftrightarrow \Sigma \vdash \sigma.$$

Lec 14 - 2/7

•
$$\sigma = \neg \tau$$
:

$$\begin{array}{c} \mathcal{A} \models \neg \tau \\ \text{iff} \quad \mathcal{A} \not\models \tau \quad [\text{def. of `}\models'] \\ \text{iff} \quad \Sigma \not\vdash \tau \quad [\text{IH}] \\ \text{iff} \quad \Sigma \vdash \neg \tau \quad [\Sigma \text{ max. cons.}] \end{array}$$

•
$$\sigma = (\tau \rightarrow \rho)$$
:
 $\mathcal{A} \models (\tau \rightarrow \rho)$
iff $\mathcal{A} \not\models \tau$ or $\mathcal{A} \models \rho$ [def. ' \models ']
iff $\Sigma \not\models \tau$ or $\Sigma \vdash \rho$ [IH]
iff not $(\Sigma \vdash \tau \text{ and } \Sigma \not\vdash \rho)$
iff not $(\Sigma \vdash \tau \text{ and } \Sigma \vdash \neg \rho)$ [$\Sigma \text{ max. cons.}$]
iff $\Sigma \not\vdash \neg (\tau \rightarrow \rho)$ [taut. (see below)]
iff $\Sigma \vdash (\tau \rightarrow \rho)$ [$\Sigma \text{ max. cons.}$]

where the penultimate line uses the following tautologies:

$$(\tau \to (\neg \rho \to \neg (\tau \to \rho)))$$
$$(\neg (\tau \to \rho) \to \tau)$$
$$(\neg (\tau \to \rho) \to \neg \rho).$$

Lec 14 - 3/7

• $\sigma = \forall x_i \phi$: By the Substitution Lemma 11.4, $\mathcal{A} \models \phi[t/x_i] \Leftrightarrow \mathcal{A} \models \phi[v_t]$ where v_t is any assignment with $v_t(x_i) = t^{\mathcal{A}} = t/E$. So since the domain of \mathcal{A} is T/E,

 $\mathcal{A} \models \forall x_i \phi \text{ iff for all } t \in T, \ \mathcal{A} \models \phi[t/x_i].$

Now for $t \in T$: $\phi[t/x_i] \in \text{Sent}(\mathcal{L})$, so by IH, $\mathcal{A} \models \phi[t/x_i]$ iff $\Sigma \vdash \phi[t/x_i]$.

So to show $\Sigma \vdash \forall x_i \phi$ iff $\mathcal{A} \models \forall x_i \phi$, it suffices to show:

 $\Sigma \vdash \forall x_i \phi$ iff for all $t \in T$, $\Sigma \vdash \phi[t/x_i]$.

Lec 14 - 4/7

We prove: $\Sigma \vdash \forall x_i \phi$ iff for all $t \in T$, $\Sigma \vdash \phi[t/x_i]$.

\Rightarrow : A4 + MP.

For the converse, first note:

$$\{\forall x_i \neg \neg \phi\} \vdash \forall x_i \phi; \qquad (\star)$$

indeed, by **A4** we have $\{\forall x_i \neg \neg \phi\} \vdash \neg \neg \phi$; conclude using the tautology $(\neg \neg \phi \rightarrow \phi)$ and **Gen**.

Now suppose $\Sigma \not\vdash \forall x_i \phi$. Then $\Sigma \not\vdash \forall x_i \neg \neg \phi$, by (*). So by maximality, $\Sigma \vdash \neg \forall x_i \neg \neg \phi$, i.e. $\Sigma \vdash \exists x_i \neg \phi$. Since Σ is witnessing, $\Sigma \vdash (\neg \phi)[c/x_i]$ for some constant symbol c. Then since Σ is consistent, $\Sigma \not\vdash \phi[c/x_i]$. But $c \in T$, so it is not the case that for all $t \in T$, $\Sigma \vdash \phi[t/x_i]$. $\Box_{13.5}$

This concludes our proof of the Completeness Theorem 13.1.

Lec 14 - 5/7

In fact, our proof of completeness yields a stronger result.

13.9 Definition: A structure is **countable** if its domain is countable (i.e. finite or countably infinite).

The model constructed in Lemma 13.5 is countable, because the set T of closed terms is, so we have actually proven the following strengthening of Lemma 13.2:

13.10 Weak downwards Löwenheim-Skolem Theorem *Every consistent set of sentences has a countable model.*

Lec 14 - 6/7

Exactly as in the propositional case, we deduce compactness from completeness and soundness.

13.11 Compactness Theorem:

A set of sentences $\Sigma \subseteq \text{Sent}(\mathcal{L})$ has a model if and only if every finite subset $\Sigma_0 \subseteq_{fin} \Sigma$ has a model.