Differential Equations Determining a Markoff Process*
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Introduction
(I} For a simple Markoff process x,, x;, - - - parametrized by the set of
natural numbers and having a finitt number of possible states
ai, a3, . . . , Gy, One can consider many kinds of transition probabilities. For
example, the probability of the event x; = a; given the condition that
X, = a;, or the probability of x,,, = a,,, given that x, = a;,
X2 = @j,,...,%, = a;, and so forth. However, the computation of these
probabilities can be reduced eventually to the consideration of the probabili-
ties pff? (k=1,2,--+3i,j=1,2,---m) for the event x,,, = a;

given that x, = a;. This fact is explained, for example, in the book by Kol-
mogoroff1]. Let us call p{!""s the basic transition probabilities from now on.

Even when the number of possible states is not finite, the situation remains
the same if, for instance, the states are represented by the set of real
numbers.

However, if the Markoff process is parametrized not by the natural
numbers but by the reals, namely, if the process has continuous parameter,
then the situation becomes more complicated[2).

More generally, for a simple Markoff process with its states being
represented by the real numbers and having continuous parameter, the prob-
lem of determining quantities corresponding to Pi(jk) mentioned above and of
constructing the corresponding Markoff process once these quantities are
given has been investigated systematically by Kolmogoroff[3], who reduced
the problem to the study of differential equations or integro-differential equa-
tions satisfied by the transition probability function.

W. Feller[4] has proved under fairly strong assumptions that these equa-
tions possess a unique solution and furthermore that the solution exhibits the
properties of transition probability function.

However, if we adopt more strict point of view such as the one J. Doob[5]
has applied toward his investigation of stochastic processes, it seems to us
that the aforementioned work done by Feller is not quite adequate. For exam-
ple, even though the differential equation determining the transition probabil-

* Translated from the original Japanese. First published in Journ. Pan-Japan Math. Coll,
No. 1077 (1942).
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ity function of a continuous stochastic process was solved in §3 of that paper,
no proof was given of the fact that it is possible to introduce by means of this
solution a probability measure on some “continuous” function space.

The objective of this article, then, is:

1) to formulate the problem precisely, and
2) to give a rigorous proof, 2 la Doob, for the existence of continuous
parameter stochastic processes.

(1) Remark: When x is a real valued random variable, 2 proposition con-
cerning x can be represented in the form x & E, where E is a subset of R'.
Therefore, if x~!(E) is P-measurable, it makes sense to consider a proposi-
tion of the form x € E. Furthermore if x ~ x’, namely, if P(x # x) = 0,
then the P-measure of the symmetric difference (x € E) A (x’ € E) is 0, and
therefore, the proposition x € E is a “permissible concept.”[6]

Next, when x and y are a pair of real-valued random variables, then propo-
sitions concerning x and y can be represented in the form “the pair (x,y)
belongs to some subset of R2.” For instance the proposition x < y can be
represented as (x,y) € E {(A.u); N < u}. Consequently, it is clear that a
proposition concerning x and y can be discussed if the corresponding subset
of R? is a Borel set.

The situation remains the same for propositions concerning countable
number of random variables, but it is different for the case where uncount-
ably many random variables are involved. This is because the notion of the
joint random variable for the case of uncountably many random variables is,
in general, a “‘non-permissible concept”[7].

For example, when x, is a real-valued stochastic process with continuous
parameter r, the consideration of propositions such as *“x, is continuous in ¢”
or “the least upper bound of x, is M” necessitates the consideration of x,
jointly for all ¢. This is precisely where the problem arises. (Of course, if one
is concerned with the proposition that x, is continuous at ¢+ = £, with respect
to the topology of convergence in probability, one can express it as
lim,_ . P( |x, — x,| > €) = 0. Namely, what is involved here is a proposi-
tion |x, — x,| > e which concerns only with a pair of random variables x,
and x,,, and accordingly no difficulty of the type mentioned above occurs).

However, it is not correct to say that it is impossible to consider proposi-
tions such as “x; is continuous in 7.”

Definition. We say that x, is continuous in ¢ (€[a,b]) if there exists a ran-
dom variable y taking values in the space of continuous functions on [a,b)
such that for each ¢t P(x, = y,) = 1, where y, denotes the value of y at 1.

Remark 1. y as above is determined uniquely by x,. Hence, we shall call
this y the joint random variable for x, and denote it by (x, ; @ < 7 < b) or
more simply by x_,. Furthermore, if « < 8 are real numbers in [a,b], a ran-
dom variable taking its values in the space of continuous functions on the
interval [«,8] is obtained if we restrict y to [«,8]. We denote this random
variable by x,4.
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Remark 2. (y,; a < 7 < b) equals y itself. This fact is obvious, but this
is the reason which justifies the statement "y is x,,.”

Remark 3. The proposition “x, is continuous at each fixed ¢ with respect to
the topology of convergence in probability” and the proposition “¥, is con-
tinuous in the sense of definition above” do not coincide. P. Lévy has dis-
tinguished the two concepts by saying “x, has no fixed discontinuity points”
in the case of the former and “x, has no moving discontinuity points” for the
latter[8]. (Of course, Lévy was concerned only with the case of differential
processes.) Therefore, if {y,} has no moving discontinuity points, then with
(y;; @ £ 7 < b) interpreted as above, it is possible to consider the proposi-
tion ““| y, | is smaller than some finite number M.

1. Differentiation

§1. Definition of Differentiation of a Markoff Process

Let {y,} be a (simple) Markoff process and denote by F,, the conditional pro-
bability distribution! of y, — y, given that “y, is determined”. F,, is clearly
a Py-measurable (p) function? of y,, where p denotes the Lévy distance
among probability distributions.

Definition 1.1.3
If

(1) F‘:Elll—t,,l

(here [a] is the integer part of the number a, and *“+k” denotes the k-fold
convolution) converges in probability with respect to the Lévy distance p as
=1 +0, then we call the limit random variable (taking values in the space
of probability distributions) the derivative of {y,} at 1, and denote it by

(¥)) D, {y} or Dy,.

Corollary 1.1. Dy, is an infinitely divisible probability distribution.*

Proof. Tt is possible to choose a sequence f; 2> #, > - .- —1, suitably so
that

! This journal, vol 234, Article #1033,

2 This journal, vol 234, Article #1033, /bid. vol 235 Article #1043.

* This definition differs somewhat from the definition given by the author in Article #1033,
volume 234 of this journal. However, the remarks made there are, of course, relevant here also.

* To be more precise, Corollary 1.1 is valid “with probability 1.” However, as we remarked
carlier, we shall omit the expression “with probability 1" unless it has to be emphasized.
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®) FU) (n=1,2,-+4)

converges with probability 1. When F,:E."“'""] converges, its limit would be a

so-called “limit law"” in the sense of Khintchine and, therefore, it.is: Enﬁnitely
divisible. Consequently, with probability 1, Dy, is an infinitely divisible pro-
bability distribution.

Dy,, obtained above is a function of 7, as well as of y,, and so, we den(?te
it by L(fp, y,) corresponds precisely to the “basic transition probability” dis-
cussed in the Introduction. ‘

The precise formulation of the problem of Kolmogoroff, then, is to solve

the equation
@ Dy, = L(1,y))
when the quantity L(¢,y) is given.

§2. A Comparison Theorem

Let us prove a comparison theorem for Dy, which we shall make use of
later.

Theorem 2.1. Let {y,}, {z} be simple Markoff processes satisfying the fol-
lowing conditions:

M =z

) E’Zy, — 2, | yo) = 0(t — 1), where o is the Landau symbol.

B oy — z | ¥) = oVt — B).

(Here E(x|y) denotes the conditional expectation of x given y and o({:[ y)
denotes the conditional standard deviation of x given y. Also, {he quantity o
may depend on 13 or y,). Then, whenever Dz, exists, Dy, exists also, and
Dy, = Dz, holds.

Proof. For given € and 5, we can choose 8(¢,3) sufficiently small so that if

|t — o] < 8(e,m) then with probability bigger than 1 — 5 the following
are satisfied:

@) p(Flm) Dy < €
(here by F,|, we mean the conditional probability distribution of x given y)
® [ECye — 2z | yu)) < et — 1)

(6) |°(}’r - I y:,)lz < E(l — fg).

3F, y denotes the conditional probability distribution of x given y.
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Since y, = z,,, we have

@) == —z)+ (O —z).

Let us denote points of the 2n dimensional Euclidean space R? by
($1. &1 20 &2, -+ - {ns £4), and introduce a probability measure of R by

(8) P(dhydg dbyd, - - - di,dE,) = T F(dtde;),

where F denotes the conditional probability distribution

® Flazy simailz,-

The mapping

(10) bbby - 4, 6) > & (oré)

may be regarded as a random variable defined on the probability space
(R*, P’). We denote this random variable again by {; (or £;). If we define

(11) n =8+ &, 7=Y $=Y & tE=Y &

then {n;} gives a set of mutually independent random variables, and so do
{5i} and {£;}. Furthermore, the probability distribution functions of {;, £;, n;
are given, respectively, by

F, (that is, Fb‘%l )

=241 ¥y 2

and F,

Y=yl

F,,

=uly,

Therefore, if we take n = [1/t~15], then

i1,

12) Flel = py
Ni-5] _

FJ’!')’«,'.V'.. - F"l

where F; and F, are probability distribution functions for { and 7, respec-
tively. Therefore, by (4)

(13) o(F}, Dz,) < ¢,

and since £, &, - - - &, are independent, we obtain

(14) (@) = T (a(k)) < [ﬁ] (t-t)e<e
i=1
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and

(15 |E($)! < i|5(51)1< [ ] (t—-t)e<e

i=1 =1
Consequently, E(£?) = (E(£))* + (0(§))? < e + ¢ < 2¢ (¢ < 1), and
P(|E| > ) < 2¢'7,
that is, P(I7 — {] > €’*) < 2¢'2, which in turn implies that
d(n.b) < e + 26" < 3¢ 6
According to P. Lévy’, we also have
(16) p(F,’, F') < 3V2e'™.
From (13) and (16) it follows that
an o(F," Dz,) < € + 3VZe'"™ < (3V2 +1)e'”,
and from (12) and (17) it follows further that

t—1,)

(18) p(Fals bl D,y < (3V2 +1)e'™.

Thus, we see that the inequality (18) is valid for an arbitrary pair €, 3 with
probability greater than 1 — 7 as long as |1 — to| < 6(e,n) is satisfied. We
therefore conclude that Dy, = Dz,

Theorem 2.2. Let {y,} and {2,} be simple Markoff processes satisfying the
Jollowing:

(19) ylo = Zfa
(20) d(y, ) = ot = 1)

(here the quantity o may depend on ty and y,,). ‘ .
Then, if Dz, exists, so does Dy,, and, furthermore, Dy, = Dz, is satisfied.

Remark. d(y,, z,) = inf,.ofP(|y, — | > a) + a}.

Proof. In view of hypothesis (20), we have, il 8(¢) is chosen sufficiently
small,

P{lly, —z| > et — 10)} < e(t — 1)

87 Theorie de 1'addition des variables aléatorires, p. 51.
d(x,y) = inf5o{P{|lx — y| > 2} + n}.
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whenever |t = t5| < 8(¢).
With the same notations as in the proof of the preceeding theorem, we
obtain

P&l >etr— ) <elt — 1) (i=1,2---n)

=1y i= 1—1

P(|f|>5[ J(’—fo))*fzn:P(|fi|>€(f—lo)) (wheren={ ! ])
i=1

t—1p

< ne(t — ty) = et — 1) [ ) }

Therefore, P(|E| > 2¢) < 2e.
We can then conclude the proof of this theorem just as in the proof of the
preceding theorem.

§3. Examples

Example 1. When {x,} is a (temporaily) homogeneous differential process,
Dx, = F, _,, (independent of (1, x,)).

Example 2. It happens quite frequently that {x,} is a differential process and
the characteristic function ¢, ;(z) of the difference x, — x, is given in the fol-
lowing form:

log ¢..1(2) = { ¥,(2)dr,

where

¥ (2) = im,z - ‘;—'22 + U_‘: + j::] (e — | — l':‘:‘z Y, (du).
Let us assume that ¢,(z) is continuous in 7 when z is fixed and is equicon-
tinuous in some neighborhood of z = 0. Then, we have logyp, (z) = ¥,(2)
(independent of x,). Here ¢, (z) denotes the characteristic function of the
probability distribution Dx,.

Conversely, one can construct a corresponding differential process when
¥,(2) is given.

Example 3. Let {x,} be a Brownian motion. Namely, {x,} is a temporally
homogeneous differential process without moving discontinuity points and
Xy — xp has the normal distribution. Then, by example 1, we see that

) Dx, = normal distribution.

In the sequel, we shall denote for the sake of simplicity, by G(a,b) the Gaus-
sian distribution with mean a and standard deviation b. Then, the normal dis-
tribution is written as G(0,1). If we consider {y,} given by
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(2 »=(x - )2'
then since
(3) yl = (xlo - XO)Z + (xl - xlo)z + z(xlo - xo )(xt - xl‘a):

we see that y, is a simple Markoff process. From

@ Ve = Yo + (x — %) + 2(x, — %) (x = x,)

{)’ta + (1t — 1) + 2(x, — xp)(x; — xln)}
+ {(x = x5, — (t = 1)}

it follows that if we denote by z, the quantity inside of the first { } on the
right-hand side above, then

®) Yo = 2,

©) E(y, = ) = E{(x, = x,)* — (t = %)}
=t—t—-(t—15)=0

E{(y, — 2)%)

= E{(x, — %)%} = (¢ — 1o)?

) (o{y = z})

- 8 __&
E{(x, — x,)") ]_wm xp { 2(1—19) }dE

4 2
[flj\z—w exp —)‘7} dk] (t—10)’

3(f — 1 )2’

H

Therefore, we have

@®) (o{ye = 2})? = 2(t — 1) = ot — 1y).

On the other hand, from the definition of z; it follows that
Futlxy-n = GUt = 10, 2|2, = %o |Vt = 1o).

Since the right-hand side above depends only on |x, — Xo|, we conclude
that

F&_L"l(x‘“-h)z = G(t - to, 2|xlo - xolm)v
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which implies that
Foorlz, =Gt — 10,2 | 5, — xo |Vt — 1p).

Consequently, we have Dz, = G(l, 24/z,). Therefore, if we use Theorem
2.1 we can conclude from the equation above and from (5), (6), and (8) that

Dy, = G(1, 2/,).

II. Integration

4, Definite Integral

Let x, be a Brownian motion satisfying x, = 0.% Assume that b, is a function
of xg, (that is, of (x,: 0 < 7 < 1))° having no moving discontinuity points.
Denote by A a 2n+ 1-tuple of real numbers fo, #1,...%, 7o, Tt * * * Tam1
satisfying the following conditions:

1Y) 0= <1 <t <<€, =1
(2) Os‘fo' Tir T2s ** * Tha $l
3) n<4E=012,.--n-1).

Define d(A) = max;¢;<,{% — 7,-1). Then, clearly, we have

@) ;i — 1o <d(A)  (i=1,2,---n).
Let us call
"
&) ya = L b, (x, — x,.)
i=1
a 6-sum over the partition (fp, #,, - - + ,) when d(A) < 8.

Theorem 4.1. y, converges in probability as d(A)—0.

Proof. Let sy, 53,...,5, be a refinement of ¢, #,, - - - ¢, and let {o;} be
given by

(6) Oiey = Tiet W (Siopy §) C (Gys ).

Then

¥ Cf. Example 3 of § 3.
% Cf. Imtroduction (11} of this article.
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)] b, (x5, = X))
i=1

is also a 8-sum, and it equals y,. We call (7) the refined representation of y,
over the partitions sy, 53, * * * 5, When two &-sums, y, and y, are given,
we can consider the common refinement of partitions for A and A’ by taking
the union of sub-division points for each, and by considering the correspond-
ing refined representations of y, and y,, we can represent y, and y, as 6-
sums over a single partition.

(8) Ya = E bﬂ |(xh - xh |)
i=1
&) Yo = Y by (x, = x,..)
i=1
Therefore,
(10) Ya — Yar = E (bn . = by )X, — x, ).

Since b, has no moving discontinuity points, we can, for any given ¢,,
choose 8(e,n) sufficiently small so that

(11 P N (|6, = b| < e)] >1 -1

jt=s| <é(e,n)

If we now choose both d(A) and d(A’) to be smaller than 6(¢,n), and define
¢ (i=1,2,---n)by

(12) ¢ =b,, —b,, iflb, —=by, | <e
and

=0 if |b,, — by} 26
then by (11) we obtain

(13) P(ya — ya # E c(x, = x,.,)) <,

and since ¢; is clearly a function of xp, , we see that ¢; and x, — x, , are
mutually independent.
Furthermore,

(14) E{(Teitx, - x, )%

= LE{c}(x, — x,)*} + 2L Efcici(x,—x, )%, — x,.)}
] i<j
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= Z:E(c,-z) E{(x,—x, )} + 2Y E{cici(x,—x, )} E{x, —x, } .
i i<j
S LéW — 6-) = &

Consequently,

(5) P{|Teitn—x.)| > Ve} < e

From (13) and (14) we obtain
P{lys — ya| > Ve} < e + 9 q.e.d

We note that in the argument above, the interval [0, 1] may be replaced by
any interval [¢, 5].

Definition 4.1. By {ib,dx, we shall mean the limit of ya whose existence
was proved in Theorem 4.1. We interpret |{b,dx, similarly.

5. Theorems on Definite Integrals

Throughout this section, we assume that {x,} is a Brownian motion and that
integrands (b,, ¢,, etc.) considered are functions of xo, having no moving
discontinuity points.

The integral defined in the preceding section satisfies the following proper-
ties familiar for the ordinary integral:

Theorem 5.1. §jdx, = x, — x,.
Theorem 5.2. [*(Ab, + pc,)dx, = A['bdx, + uf’c,dx,.
Theorem 5.3, If 1 < 5 < u,
fibydx, + §b,dx, = [{b,dx,.
Theorem 5.4. Let y = §{b,dx,. If there exists a continuous function M(r)
such that

(1 E(b?) < M(7),

' Since |c;} < €, E(c?) exists and since ¢; and X, — x,_, are independent,
E{cf(x, = 5, )} = E(cHElx, ~ x,_ )}

ccy(x, = x, ) is a function of g, ,» and is independent of x, — X, , since i < j. Further-
more, E(¢icy(x, — x, )} exists because [cici(x, — x, )| < € |%, = x,_,|- Consequently,

E{cicix, - x, |)(“l‘ - X, M= E‘cicj(xr. =% ,)} E{Iy, =&, |}~
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then
() E(y*) < [ M(n)dr.
Theorem 5.5. If a sequence {b{™} (n=1,2,3, - - - ) of stochastic processes
converges to {b,} in the sense of strong topology, namely, if
b — b | > e}—0 asn—oo,
3 P{sup | b v }
then §$b'™ dx, converges in probability 10 {{b,dx,.

Theorems 5.1-5.3 are obvious. In order to prove Theorems 5.4 and 5.5, we
shall first prove the following lemma.

Lemma 5.1. Let x, x|, x3, - - - be real-valued random variables satisfying
the following properties:

) Xy, X3, » - - converges with probability 1 to x,
®) Xy, x -0 20,

6 E(x,) <e, (n=12--+),

) e, —e.

Then, we have

8 E(x) € e

Proof. Let y, = inf {x,, X4y, - - + }. Then,
&) O=n<sns - —x
(10) 0 < E(y.) € E(x,) € &y n=12,---).
Since {y,} is monotone increasing by (9),

E(x) = E(lim y,) = lim E(y,).

n—m

On the other hand, from (10) it follows that

lim E(y,) € lime, = lime, = e.

n—oo
Therefore, we obtain E(x) < e.

Proof of Theorem 5.4. We can choose a sequence {A,} suitably with
d(A,)—0 so that
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(11) y = j:b,dx, = lim ¥ b, (%, = x,.)
-— O A.

holds with probability 1.!* Therefore

» = [j:b,dx,Jz = lim [)3 by (%, — %, ,)J ’
A.

n—oo

Ifwelety, = ©b, (x, — x,_), then
A,
E(y}) = LE®b2) E{(x, — x,.)%}
f

+ 2Y E{b,  (x, — x, )b, DE(x, = x,). 2

i<f

Since E(x, — x,.,) = 0, we obtain E(y7) < LaM(ri_))(4 = 4;y).
Since the right-hand side above tends to [{M(7)dr as n— oo, we obtain

E(y*) < {"M(7)dr in view of Lemma 5.1.
H

.Proof of Theorem 5.5. Because of the assumption of convergence in probabil-
ity, we can choose, for given ¢ and 7, n sufficiently large so that

(12) P{ sup |6 — b, > €} < 1.
Let us now define c, as follows:
¢ =€ if 5" — b, > ¢
=b" —b, if —e<b™ —b, <¢
= —¢ if bW — b, < —e.
Then, c, is a function of xy, and the stochastic process {c,} has no moving

discontinuity points. Therefore, one can consider the i
: ) 2 e integral ffc.dx,.
According to (12) we have gral ffc.dx,

" P. Lévy: Ibid., pp. 55 and 56.

12

E( ,bﬂ l(xli = Il. |)bf, .I)

< \/E{bf‘ (X, - "1‘_,)2} E{b?

Tp

= \/E(b,zl JE{(x,, — x,‘_')Zl E(bfm) (since b, is independent ofx, —x,_)

€ VMr_ M0 o 00 — 12 ).

Therefore, b, | (x, ~ %, )by, , is integrable.
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(13) P{I:C.,dx, * j:(bin) - br)dxr} <9

and furthermore, |¢,| < e and hence E(c?) < €. Therefore we have

E{ [S:c,dx,]z} < é(s — 1),

from which it follows that

(14) P{

From (13) and (14) we obtain that

fds,| > «z} < es = 1.

P{I [ ar, = §bdx,| > «E} < es—1) + 1,

from which we conclude that [{b{™ dx, converges in probability to §{b,dx,.

6. Indefinite Integrals

Theorem 6.1. {Jib.dx,} (0 < t < 1) has no moving discontinuity points.

More precisely, there exists a random variable y taking values in the space
of continuous functions on [0,1] such that for arbitrary ¢t (0 € 7 < 1)

P{j;b,dr, = y,.} = 1 is satisfied,

where y, denotes the real-valued random variable taking the value of y at r.
(The fact that such y is determined uniquely up to equivalence was explained
in Introduction (II).)

Definition 6.1. We call y in Theorem 6.1 the indefinite integral of b, with
respect to x,.

Proof of Theorem 6.1. {y,(t)} defined by

k=1
(1) ya®y=Y b, (x,=x, )+b, (x = x,) forte [4- .41
1

f=

obviously has mo moving discontinuity points. Therefore, we may regard
ya(?) as the value at ¢t of some random variable—which we denote by y,
also—taking values in the space of continuous functions. It suffices, therefore,
to show that, as d(A)—0, ya = (ya(#); 0 € r < 1) converges in probabil-
ity with respect to the strong topology. This is because it would then follow
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that we can choose a sequence {A,} so that the sequence {y, }
(n=1, 2, - - - ) converges with probability 1, and if we donate the limit by
y, then y would be a continuous function with probability 1 since it is with
probability 1 the limit of the uniformly convergent sequence of continuous
functions {ya_}.

Let us first state a lemma.

Lemma 6.1. Let x,, X2, + + + , X, be mutually independent real-valued ran-
dom variables and let for eachi = 1, 2, - - . ,n y; be a real-valued random
variable independent of (x;, x;yy, + + + ,X5). If

V) E(x) =0, Ey))<o (i=12,...,n)

then

3) P{ max |y x; + yaxp + -0+ wx| 2 1}
1gpgn

< E{lnx + yaxz + +++ + ya¥a)’}
X 12 .

This lemma is an extension of the Kolmogoroff inequality (which corresponds

to the case where y;, = y» = -+ =y, = 1), and its proof is identical
with that for the latter. Hence, we shall omit its proof.
Going back to the proof of Theorem 6.1, let us suppose that s, sz, - - - is

a sequence of points dense in (0,1), and represent by
0=1 <1 <-.-- <1, =1 anew partition of (0,1) obtained by joining

51, 52, * * + 8, to the points of partitions A’ and A. Then we have
k

(4) yA(tk) — 2 bn |(xh - X |)
i=l
k

(5) yA’(&) L IEI b'r'- |(xla - X |)~

Here we choose 8(e,p) as in (11) of §4, and d(A), d(A") are < 8(e,n).
Then, the quantities on the right hand side of (4) and (5) both represent a
6(e,n)-sum. Now,

k
(6) yalty) — ya' (%) = ¥ (b, = by )x — x.)
i=)
and by defining ¢;’s as in (12) of §4 we obtain
n k
)] P kU(}'A(’k) - y'n) # Y alx, - x, ,))} <7
=1 i=1
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We also have

n 2
8) E{ [ ci(x, — x, ,)] } < é.
i=]

Applying Lemma 6.1 by taking ¢; (x, — x,.,) and Ve 1o be y;, x; and I,
respectively, of that lemma, we obtain

£
P i = >Ver <e

&) {1'2?2,. l El ¢ (x, = x,.) | e} €
From (7) and (9) it then follows that
(10) P{ max | ya(%) — yalte) | 2 ﬁ} e+,

I<kgn
and therefore that
(11 P{ max | ya(s;) — ya(sy) | 2 */E} e+

1gigm

As m—oo, the set within { } of the left-hand side above increases to the set

[é}? | Ya(se) = ya(se) | 2 \/EJ .

Since y,(7) and y,.(7) are both continuous functions of 7, and since {s;} is
dense in (0,1), we conclude that

o | ya(se) — ya(se) | = o2, | ¥a(r) = ya'(7) |,

and therefore we obtain

P{ sup | yalr) — ya(n) | 2 JZ} e+ q.e.d.
0<r<l

§7. Examples of Indefinite Integrals

Example 1.
fixds, = 2 = 2ot
Example 2.
S;xfdt, = %x? - S{;x,d‘r.
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Example 3.

j;a(x, ydx, = j;'a()\ Yan — I' a(x) dr,

o 2

where we assume that a’(A) is continuous in A.

Since Examples 1 and 2 are special cases of Example 3, we shall prove
Example 3 only. Let us first of all define

() b(§) = fla(\) an,
Since {x} is a process without moving discontinuity points, x, is bounded in

[0,1] with probability 1 (see the remark in Introduction (II)). Therefore, if we
choose, for a given n, M sufficiently large, we have

2 P <MY >1 -
2 {023'2. | x ) } 7

Since a’(£) is continuous and hence is uniformly continuous on €] € M
we have, if we choose & sufficiently small for a given e,

]

3 la(§) — a'(£)| < e whenever |¢' - £| < 5.
The fact that with probability 1 x, is continuous implies also that for the & as

above, we have, if we choose y sufficiently small,

[1=s] <y
03l

@) P N (|x:—x:|<5)J >1 -

Now, let Q' = (Nposjeq(x = x) < 8))-(suppg,ci|x,| < M), then we
see from (2) and (4) that

@) PQ) > 1 - 29

The continuity of a’(\) implies that the function b(£) has continuous deriva-
tives up to the second order. Therefore,

3 b(E) — b(§)

= b5 + T ggy ¢ EEFEEZD)ZVD) (o0

a®@=) + G-y + LEIE—DNZ00) 2

where 8 lies in the interval (0,1). Therefore,
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(6) b(x;) — b(x,)

@ a5+ 005 =) —a'(x,)
= a(x)(x—x) + #m—m2 S N — (% —x)"

Whenever |t—s} < v, we have on @’

|lx + 0(x; = x)| < max (|x], |x]) < M,
and

|x + 6(x; — x) = x| € |x — x| < 8.
Therefore, by (5) we get
) la’(x, + 8(x; — %)) = a'(x)| < e
Let us now define ¢, ; by
8) ¢y = %(a(x + 0(x;—x))—a'(x))
if the inequality (7) is satisfied, and
) s =0

otherwise. a'(£), being continuous in £, is bounded on |§| < M; so, let
sup ¢ cm|a(£)| = R.
Define e, by
a(x) if |a(x)} < R
e =

0 otherwise.

On the set @, ¢, is given by (8) and ¢, = a'(x,); consequently, on £’ we
have, as long as |t—s| < 7,

(10) b(x,) — b(x;)

L/

a'(x;)

2

= a(x)(x;, — x;) + s—0n+ C,_,(X, 53 x:)z

+ —é-e,((.r, - x)P = (s =0

Let us choose points 0 =f <t <5 <--- <, =¢ such that
max;¢icnlti = ti-1| < 7, then we have on 2

(11} b(x) — b(x)

= T (b(x) - b(x,.)
=]
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a’(x .,)

n
= Ya(x, )x, = x,, (t; = ti1)
{=1

+ Ec.‘ WX =%, ) + ): e (==, D= (G=tio)).

If we choose each | — #_| sufficiently small (less than 8, for example),
we obtain

(12) Ya(x, )x, — x,.,) — j;a(x,)dx, e} <7
f=1
i a'(xl- |) la' xy)

(13) P{‘E 3 (r;—rf_,)—jo > dr >e}<n

d
(14) P{

If we take each |; — #_,| to be smaller than e/R?, we also obtain

i [/H N 2
E{ [E ((x, = X, ) = (4 — 4o l)] } L [2(11—11 1) ]
i=1

RZ

n

2
Yo ulo —x.)
i=1

] < E[Ee(x,‘ -x, ,)2] < er<e

i=l

2
(X = X))

>x/§}<\/2.

€ €

< 4R22i§(fr-fi 1) € ?€7
and so,
(15) U —((x.‘ -5 P == 420) “«f} %

i=1
From (4) and (11)-(15), it follows that
P r'a()\)d}\ - Sra(x ydx, — j'a’(x')dr > 2 + Ve + Ve
0 o T o 2

vc
<2n+2n+e+Te.

Since € and 7 are arbitrary, we have, for each fixed ¢,

(xr)

j:a()\)d?\ = ]a(x,)dx + I dr
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and hence

ra(xr

(16) § atx,)dx, _j a(Man -

r

holds with probability 1. The fact that both sides of (16) are stochastic
processes having no moving discontinuity points implies that (16) is in fact
valid for every .

Example 4. When a(7) and b(7) are continuous functions of 7 and x, is a
Brownian motion,

Y = I;a(r)dr + j;b(f)dr,

is a differential process and y, — y, has

G [S:a(r)d'r, A /S:(b(f))sz]

distribution. Here G(«,8) denotes the Gaussian distribution with mean « and
standard deviation .

Proof. The fact that y, is a differential process is clear. If we choose {4,}
suitably, we have

ys — ¥ = lim {Sla(r)dr + YLb(7i-1)(x, = x, ,)}.
n—oo 5 Ad

But the quantity within { } has a Gaussian distribution with its mean equal
to [!a(7)dr and its standard deviation equal to

b(rie )Y (i —t-0) = Y 2z q.ed.
A/E iy N T

§8. An Inequality Concerning the Absolute Value of an Indefinite Integral

Theorem 8.1. Ler {x,} and {b,} be as in §4. We assume further that E(b})
is continuous in t. Then we have

[E(b})dr
21| € 22—

(1) P [ sup 7

0gIg)

Remark. This theorem is nothing but Lemma 6.1 with the sum being
replaced by the integral.

Proof of Theorem 8.1. Let us consider y, (1) which was defined by (1) in the
proof of Theorem 6.1. If we choose suitably {A,} with d(A,)—0, y, (#),
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which we denote simply by y,(f) in the sequel, converges uniformly to
{6 b,dx, with probability 1.

Let o), @, - - - be a sequence of points dense in (0,1) and let us consider
the partition 0 = 5y < 5y < 5 -+ - < 5, = 1 obtained by joining the
points «g, ay, * - - ,a; to the points of partition A,. Then the refined
representation of y,, = y, with respect to 55 < 8§ < -« < §, is given
by

J
ym(sj) = Ebﬂ; I(xfl - X r)‘
i=1

Now,
n 2 n
E{ [zba. l(x.i‘ - Xy |)] } < EE(bi_')(s‘ — 5i-1)
i=1 i=1
= LEMBI )0 = 1y).
Aa
By Lemma 6.1
] 2
P{llll}léﬂb’m(sj” 2 1} < l-z EE(b,M)(r‘. - t4_1).
Consequently,

1 2
P< max )| = £ = YEWb - .
{l<l<k|y"‘( D = I} = p E (67.)( fi-1)

Noting that y,(7) has no moving discontinuity points, we obtain, by letting
k— oo,

1
P{O?:;élly,,,(r)l > l} < 7 {:E(b% = o).

Finally, by letting m— oo, we conclude that

1
{ m, | T

l ! 2
> 1} <z jOE(b,)dT.

III. Differential Equations and Integral Equations

§9. We intend in this chapter to solve the differential equation

) Dy, = G(a(t,y,), b(1,3))
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under the initial condition

¥A] Yo = C.
Here G(a,B8) represents the Gaussian distribution with mean « and standard
deviation 8.

Let us first state the theorem.

Theorem 9.1. Suppose a(t,y) and b(t,y) are both continuous in (t,y) and
suppose further that there exist constants A and B such that

(€) la(t.y) — a(ty)| < Ay = ¥
lb(t.y) — b(e,y)| < Bly - ¥
for0 <1< 1, —o <y y <o
Then, for a Brownian motion x,, the equation
) % =c+ fa(r.y,)dr + § b(r,y,)dx,
has one and only one solution y, and it satisfies the equation (1).

§10. Proof of the Existence of a Solution to the Integral Equation Given Above
(the Method of Successive Approximations!)

Lemma 10.1. Let {a,} be a stochastic process having no moving discon-
tinuity points, and suppose that there exists a continuous function M(t) satis-
fying E(a?) € M(1). Then, we have

(1) E{ [I:a,d‘rj 2} < (s = N M(rydr.

Proof. We have

@ [j:a,dr] ‘<=0 § aldr

and
It 2 T s
E{ [S‘a,dr] } < (s - 1) E{jlafd-r} < (s = nf'M(rdr,

where the last inequality can be proved by using Lemma 5.1.

Let us define y* (k=1,2, - - - ) successively as follows:

3) y‘(o) =c
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@) 3P =c + fla@y#Ndr + [bryDdx, k=12, .- -).

First, we shall show that for each fixed 7 (0 < r < 1) y®(k=1,2, - )
converges in the mean square.!* We note that

(5) ¥ = 3@ = fla(r.e)dr + [ b(r.c)dx,.

Since a(r,¢) and b(r,c) are continuous in 7, their absolute values are dom-
inated over the closed interval 0 € 7 € 1 by some finite constant M,
namely,

6) la(r.e)| < M, |b(re)l €M (0<7<]).

Consequently, by Lemma 10.1, we obtain from the first inequality of (6)
2
(N E{ [!;a('r,c)df] } < | Mdr <M <M (0<1< D).

By using Theorem 5.4, we obtain from the second inequality of (6)

(®) E{ (§ecrens, ) 2} < [iMdr = mn
From (5), (7), and (8), and utilizing

2
©) E{(x+y)'} < [VE(x’) + JE(y’)] M
we conclude that

(10) E{(y'" - »9%} € aMA.

Next, let us prove that for each n the following inequalities are valid:

(7) E{ [I (a(r,y{") — a(7,y{"" ”))dr] }

< AMPRAD
(n +l)'

®) E{ (Sicoeryim - b(f.yﬁ")dx,jz}

3 Cf. P. Lévy: Ibid. p. 52. 3% La convergence en moyenne. We consider the case of d=2
here. Namely, the set of ull veal-valued random variables x_with ng2)< co comprises 4 cosm-
pletc metric space with respect to the metric p,(x,y) = E((x—y)*). The convergence with
respect to this metric is called the convergence in the mean square.

4 This inequality means that the distance function p,, described in footnote (13) satisfies the
triangle incquality.
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‘n+l

2
(n+1)!

< 4MZR2(-'I—I)

n+l
(107 E{(y,‘"“’ - y,"")’} < 4MPR* W where R = A + B.

If we define a(T. yi-l)) = 0; b(T’ y,(--l)) = 0’ then (7’)7 (8’)1 and
(10°) are all valid for n = 0 in view of (7), (8), and (10). The proof for the
case of general n is done by induction.

So, let us suppose (7°), (8), and (10') are valid for n— 1. Then, from (3)
of §9 we obtain

[a(r.y¢™) = a(r.y") | < 4]y — yir=b|

E{ [a(r,yﬁ")) - a(r,yiﬂ-”)] 2} < A’E{ [ygrn _ yin-l)] 2}

< a2 Roe-v L
n:

By Lemma 10.1 we have (noting that 0 < ¢ < 1)

E{ (Jitacnyem - a(r,y{""))dr ) 2}

< [anRie- “’" Ay = R 22
(n+1)!

which shows that (7°) is valid for n.

In the same way (8') can be proved for n by using Theorem 5.4 in place
of Lemma 10.1.

From (7°), (8’), and the following identity (*) we can deduce (10°) by
using the inequality (9):

ORSE
= a3y = a(ry"=")dr + [ (b(r.y™) — b(z,y(""))ds,.

Now, since it follows from (10’) that

n n 2 2, l'l+
P (Y7, yf ))S'\/4M*R*"m, where p,,(x,y) =VE((x— y)%),"
n !

15 Cf. footnote (13).
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and since
T Afamtrr L < o,
n=0 (n+1)'
the sequence
(11) y'(n) = y‘(O) + (y'(U - }'1(0)) F oo+ (yf(n) - y'(n—l))

converges in the mean square. If we denote the limit by y,, then E( y2) < oo
and y, has a well-defined mean value and standard deviation.

Next we shall show that {y} is a stochastic process without moving
discontinuity points. Since {y™} (n=1.2,--.) is, by Lemma 6.1, a
sequence of stochastic processes without moving discontinuity points, it
suffices to show that the sequence {y{M} converges in probability with
respect to the strong topology (cf. the proof of Theorem 6.1 where similar
arguments were used). First, letting ¢ = 1 in (8") and using Theorem 8.1, we
obtain

' my _ (n=1) 1
@) rf | (i) = b | :)

1
2p2(n=1) 2420
< 4M°R" T l)!BZ (n=12, ).

Since the infinite series whose general term is given by the right hand side
of (12) converges, the following statement holds with probability 1 because of
the Borel-Cantelli Lemma: For all sufficiently large n

J (ny — (r=1) < L
(13) oi‘fEl“o”’("yf’ bry*D)ds, | < o

Consequently, for any n > 0, we can choose ng(n) sufficiently large so that
(14) the inequality (13) is valid for all n 2 ng(n)

everywhere except on a set of probability 7. Furthermore, since
a(r, yi"”) - a(r,y,""”) has no moving discontinuity points, we have for a
sufficiendy large K = K(%),

(15) la(r,y™) = a(ry* ") <k (0 <1<

everywhere except on a set of probability 7. If we denote by Q' the set where
(14) and (15) are valid simultaneously, we have

(16) P(Y) > 1 — 29

If we let n = ng in the identity (*) above, and use (14) and (15), we can
conclude that
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o
(n,+1) n,
17 [y "7 = | < Kt + [%] (ESES))

is valid on Q0".
Next, we let n=ng +1 in the identity (%) and use (14), (17), and (3) of §9
to obtain

(n,+2) 1
B2 - yl("# )l € I;AD’:(%H) - )’r(nn)| dt + (172)~*!
2
< AK'7 + (12)°(1A) + (1/2)°*".

If we repeat the same procedure, we obtain

_ fa+r
I}’g(nD+M) _ )’;(n“+m-])l < Am_IKi N mzl L (tA)m—l—r
mt a0l 2 (m—=1-=r)!

o tm—1-r
= a1y ):] [l] oAy

m! m0 | 2 r

= lla-l-m-lm__l ,
_ Am-lK’_ + [l] 2 (2t4)
m! 2

a0 N

1 1 nodm—I|
m=1g 1 2 24 -
< A4 Km! + [2] e (m=1,2,3, .- ).

Since the infinite series whose general term is given by the right-hand side
above converges, we conclude that

[--]

(n, +m) (n,+m-1)
E 67 - J't"a " )
mwl

converges uniformly in ¢ on the set ©. Therefore, the sequence {y{"} of
stochastic processes converges in probability with respect to the strong topol-
ogy, and thus its limit {y,} has no moving discontinuity points.

From the definition of y™ it follows also that y™ is a function of xg,, and
consequently, so are y,, a(¢, y,), and b(¢, y,).

'Equation (3) of §9 implies also that since y, does not have any moving
discontinuity points, a(¢,y,) and b(t,y,) do not have them either,

Furthermore, from the fact that {y{™} converges to {y,} in probability
with respect to the strong topology it follows that f{a(7, y{™)dr converges in
probability to f¢a(r, y,)dr, and by virtue of Theorem 5.5, §ib(7, y{®)dx,
converges in probability to fa(br, y,)dx,. Consequently, y, satisfies the
integral equation (4) of §9 in view of equation (4).
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§11. Proof of the Uniqueness of the Solution of the Integral Equation of §9

1°. Let us suppose that there are two solutions y; and y’ for the case when
la(r,y)| and |b(7,y)| are bounded (say by M) in 0<7<1,
—® < y < oo, Then,

»

) vy -
= [i(a(r.yy) — a(ry))dr + [ (b(r.y,) = b(r.y)ds,

E { ($iatryy - atryar) 2} < ()’ < me < o

By Theorem 5.4, we also have
2
E{ (§eeery = by, | } < ['Midr = M < .

From (i) and the two preceding inequalities we obtain, in view of
E((x+y)*) < (VEG) + YEOD)),

) E{((y, — Y} S (Mt + MV1) < 4M*  (0<1 < 1)

Now, if E{(y, — ¥7)*} < K(1), it then follows from (3) of §9, Lemma
10.1, and Theorem 5.4 that

E{ U;(a('r,y',) - a(f.y",))drj 2} < ts;AzK(T)dT

< Azj;K(r)dT,

E{ [5;(17(7',)”1) - b(Try’r))dxsz} € j;BzK(T)dT
= B*f K(r)dr.

From (1) and the preceding two inequalities we obtain

3) E((y: = ¥’} < (4 + BY| K()dr,
and from (2) and (3) we conclude that

@) E{(y, = ¥’} S (4 + BYaM™s.

By using (4) and (5) again, we obtain
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2
E{(y, -y} <4+ B)“4M2L2~,

and repeating, we deduce that

2,3\
*) E{(y, - ¥} < 4M2L“;f)3’——o as n—co,

Therefore, E{(y, — ¥%)*} = 0 and hence
P(y, =y =L
2%, The General Case. Since both |a(s,c)| and |b(t,c)| are continuous

functions of ¢ they are bounded by some finite number ¢ on 0 < ¢ < 1.
Therefore,

(6 la(e,y)| < |a(t,c)| + |a(r,y) — a(t,e)}

Sa+Adly - ¢

) |b(t,y)] € « + Bly — c|.
Let us define )y by

8 0y = - . - .
(8) X [ogggllyf CI<K] [oi‘i‘é,”’ CI<K]

Then, )y increases as K increases, and

©) P(Qx)—1 as K—oo.

Furthermore, on Q; we have

(10) la(t.y)|, 1b(ty)| < 20 + (A+B)K (0 <+t < 1)

Denote the quantity on the right-hand side above by M, and define by (1, y) as
follows:

(11) by(t,y) = M ifb(,y) > M

b(ty) if =M < b(t,y) € M

H

fl

-M  ifb(s,y) < —M.

Let us now suppose that there are two distinct solutions, and call them y/,
and y%. Then,

(12) Py, # y1) > 0.
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If we can show that (12) leads to a contradiction, then we shall have the
uniqueness of the solution. Now,
(13 PQ- (¥, #+ ¥)) = POy, # y1) — (1 = P()).
Hence, from (9), (12), and (13) it follows that
(14) P(Qg-(yy # ¥y1)) >0
holds for sufficiently large K. But on the set g we have

bu(ty) = b(t.y), au(ty) = atty) (O <t <)
and therefore, both y, and y” satisfy on 2 the equation
15) »=c+ s;aM('r,y,)dr + j;bM(f,y, Ydx,.
By definition, ay(7,y,) and by(7,y,) satisfy condition (3) of §9 and their
absolute values are dominated by M. Therefore, by what was already proved
in 1°, we see that the solution of (15) is unique. If we call this solution y M,

then on Q1 we have y® = y, = y} except possibly on a subset of proba-
bility 0. This says that P{Qx-(y; # ¥7)} = 0, which contradicts (14).

§12. Proof That the Solution to the Integral Equation of § 9 Is a Markoff
Process

Denote by z, = f(1, s, 7, &) the solution of

m 2, = n + [a(rz,)dr + §'b(r.2,)dx,.

Here, £, = (X, — X3t € 7 < 5). )
Denote by N,(n) the set of w for which f above is not well-defined. This

set is described by some conditions on £. Let y; be the solution obtained in
the preceding section, and let

Ye = s for0 €£s<¢?
@ = f(1, 5, Y. %s) Fors>t.

Now, f(t, 5, ¥;» %) is not well-defined either when

3) y, is not well-defined

or when

@) w belongs to | J (¥, = 7){(%s € N,(m).
n

But the probability of the set described in (3) is obviously 0, while the proba-
bility of the set in (4) is given by
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) §7_Fu(dmPWNe(y) | 30 = m,

where F, denotes the probability distribution function of y. Since y, is a
funglion of xq, &£ and y, are independent.  Consequently,
P(Ns(y) | yo = n) = P(Ny(n)) = 0. This implies that the integral (5) is
also equal to 0, and hence the probability of the set in (4) is 0.

If s < t, we have

(6) Y, =y =c+ S;a('r. y,)dr + j;b(r, ¥, )dx,
5 7 !
=c+ Ioa(-r,_v,)dr + I;b(r,)',)dx,,

while if s > 1, we have

) y,s - f(tr S Yoo Xig)

o + §a(r.y)dr + {'b(7,y/)dx, (Definition of f1).
Substituting into (7) the equation (6) with s = 1, we obtain
® Ye=c+ j;a(f»y’f)dr + I;b(r,y',)dx,.

Therefore, {y,} coincides with the solution {y;} of the integral equation of
§9, and this implies that y, = f(1, 5, y,, £;), s0

Fyla=te = Frusytolam=ta = Ff(l,:.y.(E.)J.)

(we obtain the last identity since f(s,s,y,(&o), %) is a function of £, and
hence is independent of xq,). This says that Fy,|; =, depends only on y,(£g,).
Since Yy, is a function of xo, F,|,, = ,, also depends only on %,.

§13. Proof That the Solution of the Integral Equation of §9 Satisfies the

Differential Equation (1) of §9
Let

(1 y=c+ j;a(f,y, ydr + S;b(r,y, )dx, .

If we consider the conditional probability distribution of the solution y, of
equation (1) for ¢ 2 ¢y given that y, = 5, then from what was discussed in
the beginning of the preceding section it follows that this conditional proba-
bility distribution coincides with the (unconditional) probability distribution of
the solution for the equation

2) =1+ S;a('r,y, ydr + j,'ub(r.y, Yydx, (t = 1).

Now,
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Y=Y =W = 4) E{ [j:ﬂ(a('r.y,) = a(-r,y,n))drj 2}

§la(r.y,)dr + § b(r.y.)dx,

! I
= Sha(fl)’g,)d‘f + stob(fnylu)dxf s (! — '0) !:oKAz(r - fo)dt = Azi(! - {0)3 = 0(’ _ '0)-
+ §,(a(r,y;) = a(r.y,)dr
+ § (b(r.3:) = b(r.))dx,

We also have

E{f -
and hence {I,,(“(T'yf) a(“’-)’r.,))df}

@ = Y = fatrydr + § b(r.y.)dx,
< \/ E {I,'n(a(ny,) S a(r,y,.,))dr)l}

+ I:(a(‘h)’r) - ﬂ(T»y:a))dT + E(b(fl—lnyn .)_b('ri—]’yln))(xr.'.xh |)
? A

vaAlK
, <= (t — 19)*? = o(t = 19).
+ {s:o(b('r..)’r)—b(f.)’,a))dx, = Y- 15, ) — (i1 Y )X — X .)}
a From (4) and (5) we obtain
!
where the sum Y is defined just as y,(7) was defined in (1) of §6. If we ,
A (5') o 2 Ye) — , ] -
denote by v, the quantity appearing inside of { } in (2)’, and if we choose {L(“(T ¥:) —a(r y,,))d-r} o(Nt = #g).

d(A) sufficiently small, then
Next, from E{(y, — y,)’} < K(1 = 1) we obtain

(3) P{l7.] 2 et = 5)} < e(t = f).
E{(b(t,y,) — b(t,,))*} < B*K(1 ~
Now, since the solution of (1) should be obtained by the method of succes- Hb(r.y0) tya))} < BK(t = 1o).
sive approximations of §10, letting M be the maximum value for Therefore, the mean of b(t,y,) — b(t,y,) exists also, and
so < 7 < 1 of the quantities |a(,n)|-|b(7,7)|, we see that ’ '
2 !
(-1 )n+l (6) E{E(b(7i—l' Yr) — b(7i_y, Y )X, — X, .)}
E{(y, - 0} < E \/4M2R2" = -:1)' where R = A+B a

!
= §E(b(1f—|' yf, |) - b(Ti—'l' ylo))E(xl. - x‘. |)

< K(t - 1), where K = Y, 4M2R2"—1-— < oo,

n=0 (n+1)! o
namely, E{(y, — y,)*} € K(t—1ty). Therefore I ,
E{(a(r.y,) — a(n.y )} < AE{(% — »)%) () E{ [§(b(71—1» Yri) = b1y, ¥ ))&, = x, ,)] }

< AXK (1t = 1), .
< LBK(1i = )1, = t-y)
A

from which it follows that

7 3




Kivosi Itd

< [ BK(7 — 1o)dr (note that iy € 7 € tioy < 1)

B*K
T(f = lo)2 = O(I -— Io).

From (6) and (7) we obtain that
1

) o [E(b('r;-l, Yr.) — B(7ic Yu) X, — x, .)] = o(Vt—1g).
A

From (27, (3), 4), (5", (6), and (7°) it follows that Dy, equals the deriva-
tive Dz, of

@®) 2 = 3 + [ alr.y)dr + § b(ry,)ds,.

But

Foer = G [I;a(r,y,a)dr, o\/j;(b('r,y,,))zdr].

Therefore,

f[li—1,) _ 1 g ,J 1 t 2
LM =G [I_{G ]jba(r.y,o)dr, [ s ]j,u(b(r.y,a)) dr
Now,

. 1 1
lll-l}‘: |: “"io ]slna(r’y‘n)dr
3 !
- i Lo =t )
Similarly,
tim | —— | (b(r, y)Ydr = (b(10.3,))
-t | b=ty [Ju " 017l
Therefore,
Dy, = Dz, = G(a(ty, ¥,). &(ts, ¥,))- q.ed.
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