Elliptic Curves. HT 2024. Sheet 0 solutions.

1. Determine whether the following are groups.
(a). The set of all 2×2 matrices under matrix multiplication.

Solution: No: no inverses for singular matrices.
(b). The set of all 2×2 matrices under matrix addition.

Solution: Yes!
2. For each of the following, decide whether ϕ is a homomorphism. When ϕ is a homomorphism, decide whether ϕ is injective, surjective, bijective, and find the kernel of ϕ.
(a). $\phi: \mathbb{Z},+\rightarrow \mathbb{Q}^{*}, \times: x \mapsto x^{2}+1$.

Solution: No: for example, $\phi(2) \neq \phi(1)^{2}$.
(b). $\phi: \mathbb{Q},+\rightarrow \mathbb{R},+: w \mapsto \sqrt{2} w$.

Solution: Can check directly that this is a homomorphism. It is bijective ($\sqrt{2}$ is invertible, so multiplication by it is bijective), so the kernel is zero.
(c). $\phi: \mathbb{Z},+\rightarrow \mathbb{Z} / 3 \mathbb{Z},+: x \mapsto 2 x$.

Solution: This is a surjective homomorphism, since 2 is coprime to 3 . The kernel is $3 \mathbb{Z}$.
3.
(a). In $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$, decide whether the following are true or false: $3=1 / 27,-4=4,3=5 / 6$.

Solution: $3 \times 27=3^{4}$ is a square, so $3=1 / 27 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$4=1$ and $-4=-1 \bmod \left(\mathbb{Q}^{*}\right)^{2}$. But -1 is not a rational square, so $-4 \neq 4 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$5 / 18$ is not a rational square (it has prime factors appearing with odd powers).
(b). In $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$, write each of the following as a square free integer: $-2 / 27,16,12,1 / 3$.

Solution: $-2 \cdot 3^{-3}=-2 \cdot 3=-6 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$16=1 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$12=3 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$1 / 3=3 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
(c). Perform each of the following in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$, writing your answer as a square free integer: 6×10, $10 / 21,15^{101}, 3^{-1}$.

Solution: $6 \times 10=2^{2} \cdot 3 \cdot 5=15 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$10 / 21=2 \cdot 5 \cdot 3^{-1} \cdot 7^{-1}=2 \cdot 5 \cdot 3 \cdot 7=210 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$15^{101}=15 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
$3^{-1}=3 \bmod \left(\mathbb{Q}^{*}\right)^{2}$.
(d). How many elements are in each of the groups: $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}, \mathbb{R}^{*} /\left(\mathbb{R}^{*}\right)^{2}, \mathbb{C}^{*} /\left(\mathbb{C}^{*}\right)^{2}$?

Solution: The elements of $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$ are in bijection with square free integers. So there are (countably) infinitely many.

Every positive real is a square, so the sign map gives an isomorphism

$$
\mathbb{R}^{*} /\left(\mathbb{R}^{*}\right)^{2} \cong\{ \pm 1\}
$$

Every complex number can be written as a square of another complex number, so the group $\mathbb{C}^{*} /\left(\mathbb{C}^{*}\right)^{2}$ is trivial.
4.
(a). Find all singular points on the curve (defined over \mathbb{C})

$$
\mathcal{C}: f(X, Y)=X^{4}+Y^{3}-3 X^{2} Y=0
$$

Solution: For (x, y) to be a singular point, we need $f(x, y)=\frac{\partial f}{\partial X}(x, y)=\frac{\partial f}{\partial Y}(x, y)=0$. In particular, we have $4 x^{3}-6 x y=0$ and $3 y^{2}-3 x^{2}=0$. We deduce from these two equations that $y^{2}=$ x^{2}, hence $y= \pm x$, and then $4 x^{3} \mp 6 x^{2}=0$. This gives the possibilities $(x, y)=(0,0),(\pm 3 / 2,3 / 2)$. Only the first is a point on the curve, so the unique singular point is $(0,0)$.
Find all tangents to \mathcal{C} at the point $(0,0)$.
Solution: See Comment 0.100 for how to do this computation. We write

$$
f(X, Y)=Y^{3}-3 X^{2} Y+(\text { higher order terms })
$$

and then factorise $Y^{3}-3 X^{2} Y=Y(Y-\sqrt{3} X)(Y+\sqrt{3} X)$. So we have three tangents: $Y=0, Y=$ $\sqrt{3} X, Y=-\sqrt{3} X$. Try sketching the graph (e.g. with Wolfram Alpha.)
(b). Find all singular points on the curve (defined over \mathbb{C})

$$
\mathcal{C}: f(X, Y)=Y^{2}-X\left(X^{2}-1\right)^{2}=0
$$

Solution: Computing the partial derivative with respect to Y, we see that $y=0$ is necessary for a singular point. So the possible singular points are $(0,0),(1,0),(-1,0)$. We have $\frac{\partial f}{\partial X}=$ $-\left(X^{2}-1\right)^{2}-2 X\left(X^{2}-1\right)(2 X)$, so the two singular points are $(x, y)=(\pm 1,0)$.
Find all tangents to \mathcal{C} at the points $(0,0)$ and $(1,0)$.
Solution: The unique tangent at $(0,0)$ is $X=0$. At $(1,0)$ we compute

$$
f(1+X, Y)=Y^{2}-(1+X)\left(X^{2}+2 X\right)^{2}=Y^{2}-4 X^{2}+(\text { higher order terms })
$$

So we have two tangent lines at $(1,0), Y= \pm 2(X-1)$.
5. Show that $\mathcal{C}: Y^{2}=X^{3}+A X+B$ is smooth if $4 A^{3}+27 B^{2} \neq 0$ and we work over a field with characteristic $\neq 2$. What happens in characteristic 2 ?

Solution: We set $f(X, Y)=Y^{2}-X^{3}-A X-B$. So $\frac{\partial f}{\partial Y}(x, y)=0$ implies $y=0$ (if $2 \neq 0$). So the possible singular points are $(x, 0)$ where x is a root of the cubic $X^{3}+A X+B$. The vanishing $\frac{\partial f}{\partial X}(x, 0)=0$ is then equivalent to x being a repeated root of the cubic. The discriminant of the cubic polynomial is $4 A^{3}+27 B^{2}$, so that gives the desired criterion for smoothness.

In characteristic 2 , we have $\frac{\partial f}{\partial Y}(x, y)=0$ for all points (x, y). The equation $\frac{\partial f}{\partial X}(x, y)=0$ gives us $x^{2}=A$. So we have singular points (x, y) when $x^{2}=A$ and $y^{2}=B$.
6. For each of the following curves, find the irreducible components over \mathbb{Q} and the irreducible components over \mathbb{C}.
(a). $\mathcal{C}: Y^{2}=X^{5}$.

Solution: We have to factorise the polynomial $Y^{2}-X^{5}$ over \mathbb{Q} and \mathbb{C}. We claim that $Y^{2}-X^{5}$ is irreducible over \mathbb{C}. Here is a long-winded proof (a more efficient argument might exist!). View $Y^{2}-X^{5}$ as an element of $(\mathbb{C}[X])[Y]$, i.e. a polynomial in Y with coefficients in X. We cannot factor it as a product of polynomials in Y with positive degree, since X^{5} does not have a square root in $\mathbb{C}[X]$. So we deduce that if $Y^{2}-X^{5}=f_{1}(X, Y) f_{2}(X, Y)$, then one of the factors, say f_{1} is actually just a polynomial in X. But then f_{1} must actually be a constant, otherwise there would be a (complex) root x_{0} of f_{1} which would satisfy $y^{2}-x_{0}^{5}=0$ for all $y \in \mathbb{C}$.
(b). $\mathcal{C}: Y^{3}=X^{3}$.

Solution: We factorise $Y^{3}-X^{3}=(Y-X)\left(Y^{2}+X Y+X^{2}\right)$. So we get $Y=X$ as one component, and $Y^{2}+X Y+X^{2}=0$ as another. The latter is irreducible over \mathbb{Q} but reducible over \mathbb{C}. We factorise

$$
Y^{2}+X Y+X^{2}=(Y-\omega X)(Y-\bar{\omega} X)
$$

where $\omega=\frac{-1+\sqrt{-3}}{2}$, a primitive third root of unity, satisfies $\omega+\bar{\omega}=-1$ and $\omega \bar{\omega}=1$. So over \mathbb{C} the components are $Y=X, Y=\omega X$ and $Y=\bar{\omega} X$.
(c). $\mathcal{C}: Y^{2}=X^{3}+1$.

Solution: As for part (a), we observe that the polynomial $Y^{2}-X^{3}-1$ is irreducible viewed as a polynomial in Y with coefficients in $\mathbb{C}[X]$. Similarly to part (a), it is also not divisible by a non-constant element of $\mathbb{C}[X]$. So this curve is irreducible.
7.
(a). Find a birational transformation over \mathbb{Q} between the curves $2 X^{2}-Y^{2}=1$ and $X^{2}+Y^{2}-6 X Y=$ 1.

Solution: We find rational points on each curve. This tells us that each curve is biratonal to \mathbb{P}^{1}, and hence birational to each other. For the first, we have $(1,1)$. For the second, we have $(1,0)$. So the points of the first conic are parameterised by $t=\frac{y-1}{x-1} \in \mathbb{P}^{1}(\mathbb{Q})$. To find a corresponding point on the second curve, we intersect $Y=t(X-1)$ with the curve. We get the equation $X^{2}+t^{2}(X-1)^{2}-6 t X(X-1)=1$. The coefficient of X^{2} is $1+t^{2}-6 t$ and coefficient of X is $-2 t^{2}+6 t$. So if the intersection point is $\left(x_{1}, y_{1}\right)$, we have $x_{1}+1=\frac{2 t^{2}-6 t}{t^{2}-6 t+1}$, and hence $x_{1}=\frac{t^{2}-1}{t^{2}-6 t+1}, y_{1}=\frac{2 t(3 t-1)}{t^{2}-6 t+1}$. Substituting $t=\frac{y-1}{x-1}$, we get the rather unpleasant birational transformation from the first curve to the second

$$
(x, y) \mapsto\left(\frac{(y-1)^{2}-(x-1)^{2}}{(y-1)^{2}-6(y-1)(x-1)+(x-1)^{2}}, \frac{2(y-1)(3(y-1)-(x-1))}{(y-1)^{2}-6(y-1)(x-1)+(x-1)^{2}}\right) .
$$

(b). Find a birational transformation over \mathbb{Q} between the curves $Y^{2}=(X+2)^{6}\left(X^{3}+1\right)$ and $Y^{2}=X^{3}+1$.

Solution: We can rewrite the first equation as $\left(\frac{Y}{(X+2)^{3}}\right)^{2}=X^{3}+1$. So we can take the birational transformation

$$
(x, y) \mapsto\left(x, \frac{y}{(x+2)^{3}}\right)
$$

(c). Find a birational transformation over \mathbb{C} between the curves $Y^{2}=2 X^{2}$ and $Y^{2}=X^{2}$. Is there a birational transformation over \mathbb{Q} ?

Solution: Over \mathbb{C}, we have the birational transformation $(x, y) \mapsto(\sqrt{2} x, y)$. Over \mathbb{Q}, the second curve is reducible, with irreducible components $Y= \pm X$. The first curve is irreducible. So the two curves are not birational over \mathbb{Q}. Alternatively, the first curve's only rational point is $(0,0)$, whilst the second has infinitely many, so again they cannot be birational over \mathbb{Q}.
8.
(a). Find the discriminant of $X^{4}-2$.

Solution: Write down the resultant matrix for $\left(X^{4}-2,4 X^{3}\right)$. Repeatedly doing Laplace expansion down the columns (from right to left) gives determinant $(-2)^{3} 4^{4}=-2^{11}$.
(b). Find the resultant of $X^{3}-a$ and $X^{2}-b$, where a, b are constants.

Solution: $b^{3}-a^{2}$.
9. Find all intersection points (with multiplicities) over \mathbb{C} of the curves: $X^{3}+Y^{3}=Z^{3}$ and $X^{2}+Y^{2}=Z^{2}$.

Solution: See Comment 0.122. We first compute intersection points with $Z \neq 0$. We compute the resultant of $f(x, y)=x^{3}+y^{3}-1$ and $g(x, y)=x^{2}+y^{2}-1$, viewed as polynomials in the variable y over $\mathbb{C}[x]$. By 8(b) we get resultant $\left(1-x^{2}\right)^{3}-\left(1-x^{3}\right)^{2}=-(x-1)^{2} x^{2}\left(2 x^{2}+4 x+3\right)$. Let's consider the multiple roots $x=0, x=1$. We get, respectively, $y^{3}=1, y^{2}=1$ and $y^{3}=0, y^{2}=0$. So we have intersection points $(0: 1: 1)$ and (1:0:1), both with multiplicity 2, and two (complex conjugate) intersection points with multiplicity $1:\left(-1+\frac{\sqrt{2}}{2} i:-1-\frac{\sqrt{2}}{2} i: 1\right),\left(-1-\frac{\sqrt{2}}{2} i:-1+\frac{\sqrt{2}}{2} i: 1\right)$. That gives all the sections, since we've found 6 with multiplicity. We can also check directly that there are no intersection points with $Z=0$.
10.
(a). Decide whether each of $2,3,5,10,15$ are quadratic residues modulo 1009 (if you use quadratic reciprocity, this should not involve any lengthy computations).

Solution: Note that 1009 is prime. We have $\left(\frac{2}{1009}\right)=+1$, since $1009=1 \bmod 8$.
We have $\left(\frac{3}{1009}\right)=\left(\frac{1009}{3}\right)=\left(\frac{1}{3}\right)=+1$.
We have $\left(\frac{5}{1009}\right)=\left(\frac{1009}{5}\right)=\left(\frac{4}{5}\right)=+1$.
We have $\left(\frac{10}{1009}\right)=\left(\frac{2}{1009}\right)\left(\frac{5}{1009}\right)=+1$.
We have $\left(\frac{15}{1009}\right)=\left(\frac{3}{1009}\right)\left(\frac{5}{1009}\right)=+1$.
(b). Describe all primes p such that 3 is a quadratic residue modulo p. Describe all primes p such that 5 is a quadratic residue modulo p. Describe all primes p such that 10 is a quadratic residue modulo p.

Solution: For $p>3$, we have $\left(\frac{3}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{p}{3}\right)$. So 3 is a $Q R \bmod p$ if and only if $p= \pm 1 \bmod 12$.

For an odd prime $p \neq 5$, we have $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$. So 5 is a $Q R \bmod p$ if and only if $p= \pm 1 \bmod 5$.
For an odd prime $p \neq 5$, we have $\left(\frac{10}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{p}{5}\right)$. So 10 is a $Q R \bmod p$ if and only if one of the following holds:

- $p \equiv \pm 1 \bmod 5$ and $\pm 1 \bmod 8$
- $p \equiv \pm 3 \bmod 5$ and $\pm 3 \bmod 8$

Equivalently, 10 is a $Q R$ mod p if and only if $p \bmod 40 \in\{ \pm 1, \pm 3, \pm 9, \pm 13\}$. Note that this covers 8 of the 16 congruence classes in $(\mathbb{Z} / 40 \mathbb{Z})^{\times}$.
11. Are there integers a, b, c, not all 0 , such that $2 a^{2}+5 b^{2}=c^{2}$?

Solution: We can reduce to looking for solutions which are pairwise coprime. Then consider the equation $\bmod 5$. It says $2 a^{2}=c^{2} \bmod 5$, which implies that $a=c=0 \bmod 5(\operatorname{since} 2$ is not a $Q R \bmod 5)$. This contradicts coprimality of a and c. So there are no non-trivial integer solutions.
12. For any $n \in \mathbb{N}$ define, as usual, Euler's ϕ-function by:

$$
\phi(n)=\#\{x: 1 \leqslant x \leqslant n \text { and } \operatorname{gcd}(x, n)=1\}
$$

For any prime p, what is $\phi\left(p^{r}\right)$? For any distinct primes p_{1}, p_{2}, what is $\phi\left(p_{1} p_{2}\right)$?
Solution: There are p^{r-1} multiplies of p in the interval $\left[1, p^{r}\right]$. So $\phi\left(p^{r}\right)=p^{r}-p^{r-1}=$ $p^{r-1}(p-1)$.

For each of the following examples of the type $a^{b}(\bmod n)$, reduce $a^{b}(\bmod n)$ to a member of $\{0, \ldots, n-1\}$.
$2^{12}(\bmod 13), 3^{12}(\bmod 13), 3^{24}(\bmod 13), 3^{12000}(\bmod 13), 3^{12002}(\bmod 13)$,
$4^{24}(\bmod 35), 4^{48}(\bmod 35), 4^{48000001}(\bmod 35)$, $7^{24}(\bmod 35), 7^{48}(\bmod 35), 7^{48000001}(\bmod 35)$.

Solution: The first eight follow easily from Fermat-Euler: 1, 1, 1, 1, 9, 1, 1, 4.
We have $7^{24}=0 \bmod 7$ and $1 \bmod 5$. So $7^{24}=21 \bmod 35$.
Squaring, we also have $7^{48}=0 \bmod 7$ and $1 \bmod 5$. So $7^{48}=21 \bmod 35$.
In fact, the same argument shows that $7^{24 k}=21 \bmod 35$ for any positive integer k. So $7^{48000001}=7 \times 21=7 \bmod 35$.

