Elliptic Curves. HT 2024. Sheet 0 solutions.

1. Determine whether the following are groups.

- (a). The set of all 2×2 matrices under matrix multiplication. **Solution:** No: no inverses for singular matrices.
- (b). The set of all 2×2 matrices under matrix addition. Solution: Yes!

2. For each of the following, decide whether ϕ is a homomorphism. When ϕ is a homomorphism, decide whether ϕ is injective, surjective, bijective, and find the kernel of ϕ .

(a).
$$\phi : \mathbb{Z}, + \to \mathbb{Q}^*, \times : x \mapsto x^2 + 1.$$

Solution: No: for example, $\phi(2) \neq \phi(1)^2$.

(b). $\phi : \mathbb{Q}, + \to \mathbb{R}, + : w \mapsto \sqrt{2} w.$

Solution: Can check directly that this is a homomorphism. It is bijective ($\sqrt{2}$ is invertible, so multiplication by it is bijective), so the kernel is zero.

(c). $\phi : \mathbb{Z}, + \to \mathbb{Z}/3\mathbb{Z}, + : x \mapsto 2x$.

Solution: This is a surjective homomorphism, since 2 is coprime to 3. The kernel is $3\mathbb{Z}$.

3.

(a). In $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, decide whether the following are true or false: 3 = 1/27, -4 = 4, 3 = 5/6. **Solution:** $3 \times 27 = 3^4$ is a square, so $3 = 1/27 \mod (\mathbb{Q}^*)^2$. 4 = 1 and $-4 = -1 \mod (\mathbb{Q}^*)^2$. But -1 is not a rational square, so $-4 \neq 4 \mod (\mathbb{Q}^*)^2$.

5/18 is not a rational square (it has prime factors appearing with odd powers).

(b). In $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, write each of the following as a square free integer: -2/27, 16, 12, 1/3. **Solution:** $-2 \cdot 3^{-3} = -2 \cdot 3 = -6 \mod (\mathbb{Q}^*)^2$. $16 = 1 \mod (\mathbb{Q}^*)^2.$

 $16 = 1 \mod (\mathbb{Q}^*)^2.$ 12 = 3 mod $(\mathbb{Q}^*)^2.$

$$1/3 = 3 \mod (\mathbb{Q}^*)^2$$

(c). Perform each of the following in $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, writing your answer as a square free integer: 6×10 , $10/21, \, 15^{101}, \, 3^{-1}.$

Solution: $6 \times 10 = 2^2 \cdot 3 \cdot 5 = 15 \mod (\mathbb{Q}^*)^2$. $10/21 = 2 \cdot 5 \cdot 3^{-1} \cdot 7^{-1} = 2 \cdot 5 \cdot 3 \cdot 7 = 210 \mod (\mathbb{O}^*)^2.$ $15^{101} = 15 \mod (\mathbb{Q}^*)^2.$ $3^{-1} = 3 \mod (\mathbb{Q}^*)^2$.

(d). How many elements are in each of the groups: $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, $\mathbb{R}^*/(\mathbb{R}^*)^2$, $\mathbb{C}^*/(\mathbb{C}^*)^2$?

Solution: The elements of $\mathbb{Q}^*/(\mathbb{Q}^*)^2$ are in bijection with square free integers. So there are (countably) infinitely many.

Every positive real is a square, so the sign map gives an isomorphism

$$\mathbb{R}^*/(\mathbb{R}^*)^2 \cong \{\pm 1\}.$$

Every complex number can be written as a square of another complex number, so the group $\mathbb{C}^*/(\mathbb{C}^*)^2$ is trivial.

4.

(a). Find all singular points on the curve (defined over \mathbb{C})

$$\mathcal{C}: f(X,Y) = X^4 + Y^3 - 3X^2Y = 0.$$

Solution: For (x, y) to be a singular point, we need $f(x, y) = \frac{\partial f}{\partial X}(x, y) = \frac{\partial f}{\partial Y}(x, y) = 0$. In particular, we have $4x^3 - 6xy = 0$ and $3y^2 - 3x^2 = 0$. We deduce from these two equations that $y^2 = x^2$, hence $y = \pm x$, and then $4x^3 \mp 6x^2 = 0$. This gives the possibilities $(x, y) = (0, 0), (\pm 3/2, 3/2)$. Only the first is a point on the curve, so the unique singular point is (0, 0). Find all tangents to \mathcal{C} at the point (0, 0).

Solution: See Comment 0.100 for how to do this computation. We write

$$f(X,Y) = Y^3 - 3X^2Y + (\text{higher order terms})$$

and then factorise $Y^3 - 3X^2Y = Y(Y - \sqrt{3}X)(Y + \sqrt{3}X)$. So we have three tangents: $Y = 0, Y = \sqrt{3}X, Y = -\sqrt{3}X$. Try sketching the graph (e.g. with Wolfram Alpha.)

(b). Find all singular points on the curve (defined over \mathbb{C})

$$\mathcal{C}: f(X,Y) = Y^2 - X(X^2 - 1)^2 = 0.$$

Solution: Computing the partial derivative with respect to Y, we see that y = 0 is necessary for a singular point. So the possible singular points are (0,0), (1,0), (-1,0). We have $\frac{\partial f}{\partial X} = -(X^2 - 1)^2 - 2X(X^2 - 1)(2X)$, so the two singular points are $(x, y) = (\pm 1, 0)$.

Find all tangents to \mathcal{C} at the points (0,0) and (1,0).

Solution: The unique tangent at (0,0) is X = 0. At (1,0) we compute

$$f(1+X,Y) = Y^2 - (1+X)(X^2 + 2X)^2 = Y^2 - 4X^2 + (\text{higher order terms})$$

So we have two tangent lines at (1,0), $Y = \pm 2(X-1)$.

5. Show that $C: Y^2 = X^3 + AX + B$ is smooth if $4A^3 + 27B^2 \neq 0$ and we work over a field with characteristic $\neq 2$. What happens in characteristic 2?

Solution: We set $f(X, Y) = Y^2 - X^3 - AX - B$. So $\frac{\partial f}{\partial Y}(x, y) = 0$ implies y = 0 (if $2 \neq 0$). So the possible singular points are (x, 0) where x is a root of the cubic $X^3 + AX + B$. The vanishing $\frac{\partial f}{\partial X}(x, 0) = 0$ is then equivalent to x being a repeated root of the cubic. The discriminant of the cubic polynomial is $4A^3 + 27B^2$, so that gives the desired criterion for smoothness.

In characteristic 2, we have $\frac{\partial f}{\partial Y}(x, y) = 0$ for all points (x, y). The equation $\frac{\partial f}{\partial X}(x, y) = 0$ gives us $x^2 = A$. So we have singular points (x, y) when $x^2 = A$ and $y^2 = B$.

6. For each of the following curves, find the irreducible components over \mathbb{Q} and the irreducible components over \mathbb{C} .

(a). $\mathcal{C}: Y^2 = X^5$.

Solution: We have to factorise the polynomial $Y^2 - X^5$ over \mathbb{Q} and \mathbb{C} . We claim that $Y^2 - X^5$ is irreducible over \mathbb{C} . Here is a long-winded proof (a more efficient argument might exist!). View $Y^2 - X^5$ as an element of $(\mathbb{C}[X])[Y]$, i.e. a polynomial in Y with coefficients in X. We cannot factor it as a product of polynomials in Y with positive degree, since X^5 does not have a square root in $\mathbb{C}[X]$. So we deduce that if $Y^2 - X^5 = f_1(X, Y)f_2(X, Y)$, then one of the factors, say f_1 is actually just a polynomial in X. But then f_1 must actually be a constant, otherwise there would be a (complex) root x_0 of f_1 which would satisfy $y^2 - x_0^5 = 0$ for all $y \in \mathbb{C}$.

(b). $C: Y^3 = X^3$.

Solution: We factorise $Y^3 - X^3 = (Y - X)(Y^2 + XY + X^2)$. So we get Y = X as one component, and $Y^2 + XY + X^2 = 0$ as another. The latter is irreducible over \mathbb{Q} but reducible over \mathbb{C} . We factorise

$$Y^2 + XY + X^2 = (Y - \omega X)(Y - \bar{\omega}X)$$

where $\omega = \frac{-1+\sqrt{-3}}{2}$, a primitive third root of unity, satisfies $\omega + \bar{\omega} = -1$ and $\omega \bar{\omega} = 1$. So over \mathbb{C} the components are Y = X, $Y = \omega X$ and $Y = \bar{\omega} X$. (c). $\mathbb{C}: Y^2 = X^3 + 1$.

Solution: As for part (a), we observe that the polynomial $Y^2 - X^3 - 1$ is irreducible viewed as a polynomial in Y with coefficients in $\mathbb{C}[X]$. Similarly to part (a), it is also not divisible by a non-constant element of $\mathbb{C}[X]$. So this curve is irreducible.

7.

(a). Find a birational transformation over \mathbb{Q} between the curves $2X^2 - Y^2 = 1$ and $X^2 + Y^2 - 6XY = 1$.

Solution: We find rational points on each curve. This tells us that each curve is biratonal to \mathbb{P}^1 , and hence birational to each other. For the first, we have (1,1). For the second, we have (1,0). So the points of the first conic are parameterised by $t = \frac{y-1}{x-1} \in \mathbb{P}^1(\mathbb{Q})$. To find a corresponding point on the second curve, we intersect Y = t(X-1) with the curve. We get the equation $X^2 + t^2(X-1)^2 - 6tX(X-1) = 1$. The coefficient of X^2 is $1 + t^2 - 6t$ and coefficient of X is $-2t^2 + 6t$. So if the intersection point is (x_1, y_1) , we have $x_1 + 1 = \frac{2t^2-6t}{t^2-6t+1}$, and hence $x_1 = \frac{t^2-1}{t^2-6t+1}$, $y_1 = \frac{2t(3t-1)}{t^2-6t+1}$. Substituting $t = \frac{y-1}{x-1}$, we get the rather unpleasant birational transformation from the first curve to the second

$$(x,y)\mapsto \left(\frac{(y-1)^2-(x-1)^2}{(y-1)^2-6(y-1)(x-1)+(x-1)^2},\frac{2(y-1)(3(y-1)-(x-1))}{(y-1)^2-6(y-1)(x-1)+(x-1)^2}\right).$$

(b). Find a birational transformation over \mathbb{Q} between the curves $Y^2 = (X+2)^6(X^3+1)$ and $Y^2 = X^3 + 1$.

Solution: We can rewrite the first equation as $\left(\frac{Y}{(X+2)^3}\right)^2 = X^3 + 1$. So we can take the birational transformation

$$(x,y) \mapsto (x, \frac{y}{(x+2)^3}).$$

(c). Find a birational transformation over \mathbb{C} between the curves $Y^2 = 2X^2$ and $Y^2 = X^2$. Is there a birational transformation over \mathbb{Q} ?

Solution: Over \mathbb{C} , we have the birational transformation $(x, y) \mapsto (\sqrt{2}x, y)$. Over \mathbb{Q} , the second curve is reducible, with irreducible components $Y = \pm X$. The first curve is irreducible. So the two curves are not birational over \mathbb{Q} . Alternatively, the first curve's only rational point is (0,0), whilst the second has infinitely many, so again they cannot be birational over \mathbb{Q} .

8.

(a). Find the discriminant of $X^4 - 2$.

Solution: Write down the resultant matrix for $(X^4 - 2, 4X^3)$. Repeatedly doing Laplace expansion down the columns (from right to left) gives determinant $(-2)^3 4^4 = -2^{11}$.

(b). Find the resultant of $X^3 - a$ and $X^2 - b$, where a, b are constants. Solution: $b^3 - a^2$.

9. Find all intersection points (with multiplicities) over \mathbb{C} of the curves: $X^3 + Y^3 = Z^3$ and $X^2 + Y^2 = Z^2$.

Solution: See Comment 0.122. We first compute intersection points with $Z \neq 0$. We compute the resultant of $f(x, y) = x^3 + y^3 - 1$ and $g(x, y) = x^2 + y^2 - 1$, viewed as polynomials in the variable y over $\mathbb{C}[x]$. By 8(b) we get resultant $(1 - x^2)^3 - (1 - x^3)^2 = -(x - 1)^2 x^2 (2x^2 + 4x + 3)$. Let's consider the multiple roots x = 0, x = 1. We get, respectively, $y^3 = 1, y^2 = 1$ and $y^3 = 0, y^2 = 0$. So we have intersection points (0:1:1) and (1:0:1), both with multiplicity 2, and two (complex conjugate) intersection points with multiplicity 1: $(-1 + \frac{\sqrt{2}}{2}i: -1 - \frac{\sqrt{2}}{2}i: 1), (-1 - \frac{\sqrt{2}}{2}i: -1 + \frac{\sqrt{2}}{2}i: 1)$. That gives all the sections, since we've found 6 with multiplicity. We can also check directly that there are no intersection points with Z = 0.

10.

(a). Decide whether each of 2, 3, 5, 10, 15 are quadratic residues modulo 1009 (if you use quadratic reciprocity, this should not involve any lengthy computations).

Solution: Note that 1009 is prime. We have $(\frac{2}{1009}) = +1$, since $1009 = 1 \mod 8$.

We have $\left(\frac{1}{1009}\right) = \left(\frac{1009}{3}\right) = \left(\frac{1}{3}\right) = +1.$ We have $\left(\frac{5}{1009}\right) = \left(\frac{1009}{5}\right) = \left(\frac{4}{5}\right) = +1.$ We have $\left(\frac{10}{1009}\right) = \left(\frac{2}{1009}\right) \left(\frac{5}{1009}\right) = +1.$ We have $\left(\frac{15}{1009}\right) = \left(\frac{3}{1009}\right) \left(\frac{5}{1009}\right) = +1.$

(b). Describe all primes p such that 3 is a quadratic residue modulo p. Describe all primes p such that 5 is a quadratic residue modulo p. Describe all primes p such that 10 is a quadratic residue modulo p.

Solution: For p > 3, we have $\left(\frac{3}{p}\right) = (-1)^{(p-1)/2} \left(\frac{p}{3}\right)$. So 3 is a QR mod p if and only if $p = \pm 1 \mod 12$.

For an odd prime $p \neq 5$, we have $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)$. So 5 is a QR mod p if and only if $p = \pm 1 \mod 5$.

For an odd prime $p \neq 5$, we have $\left(\frac{10}{p}\right) = \left(\frac{2}{p}\right) \left(\frac{p}{5}\right)$. So 10 is a QR mod p if and only if one of the following holds:

- $p \equiv \pm 1 \mod 5$ and $\pm 1 \mod 8$
- $p \equiv \pm 3 \mod 5$ and $\pm 3 \mod 8$

Equivalently, 10 is a QR mod p if and only if p mod $40 \in \{\pm 1, \pm 3, \pm 9, \pm 13\}$. Note that this covers 8 of the 16 congruence classes in $(\mathbb{Z}/40\mathbb{Z})^{\times}$.

11. Are there integers a, b, c, not all 0, such that $2a^2 + 5b^2 = c^2$?

Solution: We can reduce to looking for solutions which are pairwise coprime. Then consider the equation mod 5. It says $2a^2 = c^2 \mod 5$, which implies that $a = c = 0 \mod 5$ (since 2 is not a QR mod 5). This contradicts coprimality of a and c. So there are no non-trivial integer solutions.

12. For any $n \in \mathbb{N}$ define, as usual, Euler's ϕ -function by:

$$\phi(n) = \#\{x : 1 \le x \le n \text{ and } \gcd(x, n) = 1\}.$$

For any prime p, what is $\phi(p^r)$? For any distinct primes p_1, p_2 , what is $\phi(p_1p_2)$?

Solution: There are p^{r-1} multiplies of p in the interval $[1, p^r]$. So $\phi(p^r) = p^r - p^{r-1} = p^{r-1}(p-1)$.

For each of the following examples of the type $a^b \pmod{n}$, reduce $a^b \pmod{n}$ to a member of $\{0, \ldots, n-1\}$.

 $2^{12} \pmod{13}$, $3^{12} \pmod{13}$, $3^{24} \pmod{13}$, $3^{12000} \pmod{13}$, $3^{12002} \pmod{13}$,

 $4^{24} \pmod{35}, 4^{48} \pmod{35}, 4^{48000001} \pmod{35},$

 $7^{24} \pmod{35}, 7^{48} \pmod{35}, 7^{48000001} \pmod{35}.$

Solution: The first eight follow easily from Fermat–Euler: 1, 1, 1, 1, 9, 1, 1, 4.

We have $7^{24} = 0 \mod 7$ and $1 \mod 5$. So $7^{24} = 21 \mod 35$.

Squaring, we also have $7^{48} = 0 \mod 7$ and $1 \mod 5$. So $7^{48} = 21 \mod 35$.

In fact, the same argument shows that $7^{24k} = 21 \mod 35$ for any positive integer k. So $7^{48000001} = 7 \times 21 = 7 \mod 35$.