# An introduction to open sets and closed sets in $\mathbb{R}$ 

Alexander F. Ritter<br>Mathematical Institute, Oxford

November 19, 2023.

## An example to illustrate limit points and isolated points

Consider the set

$$
S:=\left\{\frac{1}{n}: n \geq 1 \in \mathbb{N}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\} .
$$

Then $S$ admits 0 as a limit point, meaning there exists a sequence $\frac{1}{n}$ of points in $S$ distinct from 0 , which converge to 0 .
$\frac{1}{2}$ is not a limit point of $S$ : the sequences in $S$ that converge to $\frac{1}{2}$ are sequences which eventually become equal to the constant sequence $\frac{1}{2}$. It is called an isolated point.

The idea is that points of $S$ are accumulating near 0 , or clustering around 0 : arbitrarily close to 0 we find points of $S$ distinct from 0 . Whereas the point $\frac{1}{2}$ is isolated in $S$ : a small enough neighbourhood around $\frac{1}{2}$ only intersects $S$ in the point $\frac{1}{2}$.

Question. What do you think are the limit points of the interval $(0,1)$ ?

## Limit points and isolated points

Let $S \subseteq \mathbb{R}$, and $p \in \mathbb{R}$ (we do not require $p$ to be in $S$ ).
$p$ is a limit point of $S$ (or accumulation point or cluster point), if

$$
\forall \varepsilon>0, \exists s \in S \backslash\{p\}:|s-p|<\varepsilon
$$

## Remark

( $p$ is a limit point $) \Leftrightarrow($ any open interval around $p$ intersects $S \backslash\{p\}$ )

## Lemma

( $p$ is a limit point $) \Leftrightarrow\left(p=\lim s_{n}\right.$ for some sequence $\left.s_{n} \in S \backslash\{p\}\right)$

## Proof.

$(\Rightarrow)$ Pick $\varepsilon=\frac{1}{n}$ to get $s_{n} \in S \backslash\{p\}$ with $\left|s_{n}-p\right|<\frac{1}{n}$, so $s_{n} \rightarrow p$. $(\Leftarrow) \forall \varepsilon>0, \exists N \in \mathbb{N}:\left|s_{n}-p\right|<\varepsilon \forall n \geq N$. So $s:=s_{N} \in S \backslash\{p\}$ has $|s-p|<\varepsilon$.
$s \in S$ is an isolated point of $S$ if it is not a limit point of $S$. So in some open interval around $s$ there are no other points of $S$ beyond $s$.
In symbols: $\exists \varepsilon>0$ such that $\{x \in S:|x-s|<\varepsilon\}=\{s\}$.

## Closures

Define $S^{\prime}:=\{$ limit points of $S\}$.
The closure of $S$ is $\bar{S}:=S \cup S^{\prime}$.
Example: $S=(0,1) \cup\{2\}$. Then $S^{\prime}=[0,1]$ and $\bar{S}=[0,1] \cup\{2\}$
(e.g. observe, for $n \geq 2 \in \mathbb{N}, 0=\lim \frac{1}{n}, \frac{1}{n} \in S \backslash\{0\}$, and $1=\lim \left(1-\frac{1}{n}\right)$,
$\left.1-\frac{1}{n} \in S \backslash\{1\}\right)$. The isolated points of $S$ are $S \backslash S^{\prime}=\{2\}$.
Challenge Exercise: Find $S \subseteq \mathbb{R}$ with $S \supseteq S^{\prime} \supseteq S^{\prime \prime} \neq \emptyset$ and $S^{\prime \prime \prime}=\emptyset$.

## Corollary

$\bar{S}=\{$ limits of all convergent sequences in $S\}$.

## Proof.

$(\subseteq$ ) By the Lemma, any limit point $p$ arises as a limit of a convergent sequence $s_{n} \in S \backslash\{p\}$. Any $s \in S$ is the limit of the constant sequence $s$. $(\supseteq)$ If $p=\lim s_{n}$ and $s_{n} \in S$, build $\widetilde{s}_{n}$ from $s_{n}$ by removing all $s_{n}$ which equal $p$. If there are only finitely many $\widetilde{s}_{n}$ left, then $s_{n} \in S$ is eventually the constant sequence $p$, so $p \in S$. Otherwise, $\widetilde{s}_{n} \in S \backslash\{p\}$ is a sequence converging to $p$, so $p \in S^{\prime}$.

## Closed sets

$S \subseteq \mathbb{R}$ is a closed set if $S=\bar{S}$.

## Corollary

$(p \in \bar{S}) \Leftrightarrow$ (any open interval around $p$ intersects $S$ )
( $S$ closed) $\Leftrightarrow\left(S\right.$ contains limits of convergent sequences $s_{n} \in S$ )
Exercise: $C_{i}$ closed $\Rightarrow \cap_{i \in I} C_{i}$ closed. For finite $I$ also $\cup_{i \in I} C_{i}$ is closed. Remark: $S \subseteq \mathbb{R}$ is dense if $\bar{S}=\mathbb{R}$. E.g. $\overline{\mathbb{Q}}=\mathbb{R}$ and $\overline{\mathbb{R} \backslash \mathbb{Q}}=\mathbb{R}$.
Lemma
$\overline{\bar{S}}=\bar{S} . \quad$ ("Closures are closed")

## Proof.

It suffices to show $(\bar{S})^{\prime} \subseteq S^{\prime}$. Let $p \in(\bar{S})^{\prime}$. So $\exists s_{n} \in \bar{S} \backslash\{p\}: s_{n} \rightarrow p$. Passing to a subsequence, $\left|s_{n}-p\right|<\frac{1}{n}$. If $s_{n} \in S \backslash\{p\}$, let $\widetilde{s}_{n}:=s_{n}$. Otherwise $s_{n} \in S^{\prime} \backslash\{p\}$, so pick $\widetilde{s}_{n} \in S$ with $\left|\widetilde{s}_{n}-s_{n}\right|<\min \left(\frac{1}{n},\left|p-s_{n}\right|\right)$. $\Rightarrow \widetilde{s}_{n} \in S \backslash\{p\},\left|\widetilde{s}_{n}-p\right|=\left|\widetilde{s}_{n}-s_{n}+s_{n}-p\right| \leq\left|\widetilde{s}_{n}-s_{n}\right|+\left|s_{n}-p\right|<\frac{2}{n}$, thus $\widetilde{s_{n}} \rightarrow p$. So $p \in S^{\prime}$.

## Open sets

$U \subseteq \mathbb{R}$ is an open set if the complement $S:=\mathbb{R} \backslash U$ is closed.
Note: $\emptyset, \mathbb{R}$ are both open and closed, $(0,1]$ is neither open nor closed.
Corollary
$(U$ is open $) \Leftrightarrow\left(\right.$ any $p \in U$ lies in an open interval $\left.J_{p} \subseteq U\right)$

## Proof.

Let $S:=\mathbb{R} \backslash U$. Recall $p \in \bar{S} \Leftrightarrow$ any open interval around $p$ intersects $S$. So $p \notin \bar{S} \Leftrightarrow\left(\exists\right.$ open interval $J_{p}$ around $p$ with $\left.J_{p} \cap S=\emptyset\right)$, so $J_{p} \subseteq \mathbb{R} \backslash S$. Finally use: $(U$ open $) \Leftrightarrow(S$ is closed $) \Leftrightarrow(S=\bar{S})$, and $\mathbb{R} \backslash S=U$.

Corollary
$(U \subseteq \mathbb{R}$ open $) \Leftrightarrow(U$ is a union of open intervals).

## Proof.

$U=\bigcup_{p \in U} J_{p}$, using that $p \in J_{p} \subseteq U$.
Exercise: $U_{i}$ open $\Rightarrow \cup_{i \in I} U_{i}$ open. For finite $I$ also $\cap_{i \in I} U_{i}$ is open.

## Final remarks: neighbourhoods, boundary, and interior

A neighbourhood $V \subseteq \mathbb{R}$ of $p \in \mathbb{R}$ means there is an open set $U \subseteq \mathbb{R}$ with $p \in U \subseteq V \subseteq \mathbb{R}$. Open neighbourhood means $V$ is open.

The boundary of $S$ is

$$
\partial S=\bar{S} \cap \overline{\mathbb{R} \backslash S} .
$$

The interior of $S$ is

$$
\operatorname{Int}(S)=\bigcup\{\text { open } U \subseteq S\}
$$

so it is the largest open set contained in $S$.
Example: $\quad S=(0,1] \cup\{2\}$

- $\partial S=\{0,1,2\}$,
- $\operatorname{Int} S=(0,1)$.


## Exercises:

- $p \in \partial S \Leftrightarrow$ (every neighbourhood of $p$ intersects both $S$ and $\mathbb{R} \backslash S$ )
- $\operatorname{Int}(S)=\mathbb{R} \backslash \overline{\mathbb{R} \backslash S}$,
- $\partial S=\bar{S} \backslash \operatorname{Int}(S)$.

