An introduction to open sets and closed sets in ${\mathbb R}$

Alexander F. Ritter Mathematical Institute, Oxford

November 19, 2023.

Consider the set

$$S := \{\frac{1}{n} : n \ge 1 \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}.$$

Then S admits 0 as a **limit point**, meaning there exists a sequence $\frac{1}{n}$ of points in S distinct from 0, which converge to 0.

 $\frac{1}{2}$ is not a limit point of S: the sequences in S that converge to $\frac{1}{2}$ are sequences which eventually become equal to the constant sequence $\frac{1}{2}$. It is called an **isolated point**.

The idea is that points of *S* are accumulating near 0, or clustering around 0: arbitrarily close to 0 we find points of *S* distinct from 0. Whereas the point $\frac{1}{2}$ is isolated in *S*: a small enough neighbourhood around $\frac{1}{2}$ only intersects *S* in the point $\frac{1}{2}$.

Question. What do you think are the limit points of the interval (0,1)?

Limit points and isolated points

Let $S \subseteq \mathbb{R}$, and $p \in \mathbb{R}$ (we do not require p to be in S). p is a **limit point** of S (or **accumulation point** or **cluster point**), if

$$\forall \varepsilon > 0, \exists s \in S \setminus \{p\} : |s - p| < \varepsilon.$$

Remark

(p is a limit point) \Leftrightarrow (any open interval around p intersects $S \setminus \{p\}$)

Lemma

(p is a limit point) \Leftrightarrow (p = lim s_n for some sequence $s_n \in S \setminus \{p\}$)

Proof.

(
$$\Rightarrow$$
) Pick $\varepsilon = \frac{1}{n}$ to get $s_n \in S \setminus \{p\}$ with $|s_n - p| < \frac{1}{n}$, so $s_n \to p$.
(\Leftarrow) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$: $|s_n - p| < \varepsilon \ \forall n \ge N$. So $s := s_N \in S \setminus \{p\}$ has $|s - p| < \varepsilon$.

 $s \in S$ is an **isolated point** of S if it is not a limit point of S. So in some open interval around s there are no other points of S beyond s. In symbols: $\exists \varepsilon > 0$ such that $\{x \in S : |x - s| < \varepsilon\} = \{s\}$.

Closures

Define $S' := \{ \text{limit points of } S \}$. The **closure** of *S* is $\overline{S} := S \cup S'$.

Example: $S = (0,1) \cup \{2\}$. Then S' = [0,1] and $\overline{S} = [0,1] \cup \{2\}$ (e.g. observe, for $n \ge 2 \in \mathbb{N}$, $0 = \lim \frac{1}{n}$, $\frac{1}{n} \in S \setminus \{0\}$, and $1 = \lim(1 - \frac{1}{n})$, $1 - \frac{1}{n} \in S \setminus \{1\}$). The isolated points of S are $S \setminus S' = \{2\}$.

Challenge Exercise: Find $S \subseteq \mathbb{R}$ with $S \supseteq S' \supseteq S'' \neq \emptyset$ and $S''' = \emptyset$.

Corollary

 $\overline{S} = \{ \text{limits of all convergent sequences in } S \}.$

Proof.

 (\subseteq) By the Lemma, any limit point p arises as a limit of a convergent sequence $s_n \in S \setminus \{p\}$. Any $s \in S$ is the limit of the constant sequence s. (\supseteq) If $p = \lim s_n$ and $s_n \in S$, build \tilde{s}_n from s_n by removing all s_n which equal p. If there are only finitely many \tilde{s}_n left, then $s_n \in S$ is eventually the constant sequence p, so $p \in S$. Otherwise, $\tilde{s}_n \in S \setminus \{p\}$ is a sequence converging to p, so $p \in S'$.

Closed sets

$$S \subseteq \mathbb{R}$$
 is a **closed set** if $S = \overline{S}$.

Corollary

 $(p \in \overline{S}) \Leftrightarrow$ (any open interval around p intersects S) (S closed) \Leftrightarrow (S contains limits of convergent sequences $s_n \in S$)

Exercise: C_i closed $\Rightarrow \cap_{i \in I} C_i$ closed. For finite I also $\cup_{i \in I} C_i$ is closed. Remark: $S \subseteq \mathbb{R}$ is **dense** if $\overline{S} = \mathbb{R}$. E.g. $\overline{\mathbb{Q}} = \mathbb{R}$ and $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$.

Lemma

 $\overline{\overline{S}} = \overline{S}$. ("Closures are closed")

Proof.

It suffices to show $(\overline{S})' \subseteq S'$. Let $p \in (\overline{S})'$. So $\exists s_n \in \overline{S} \setminus \{p\}: s_n \to p$. Passing to a subsequence, $|s_n - p| < \frac{1}{n}$. If $s_n \in S \setminus \{p\}$, let $\tilde{s}_n := s_n$. Otherwise $s_n \in S' \setminus \{p\}$, so pick $\tilde{s}_n \in S$ with $|\tilde{s}_n - s_n| < \min(\frac{1}{n}, |p - s_n|)$. $\Rightarrow \tilde{s}_n \in S \setminus \{p\}$, $|\tilde{s}_n - p| = |\tilde{s}_n - s_n + s_n - p| \le |\tilde{s}_n - s_n| + |s_n - p| < \frac{2}{n}$, thus $\tilde{s}_n \to p$. So $p \in S'$.

Open sets

 $U \subseteq \mathbb{R}$ is an **open set** if the complement $S := \mathbb{R} \setminus U$ is closed.

Note: \emptyset,\mathbb{R} are both open and closed, (0,1] is neither open nor closed.

Corollary

 $(U \text{ is open}) \Leftrightarrow (any \ p \in U \text{ lies in an open interval } J_p \subseteq U)$

Proof.

Let $S := \mathbb{R} \setminus U$. Recall $p \in \overline{S} \Leftrightarrow$ any open interval around p intersects S. So $p \notin \overline{S} \Leftrightarrow (\exists \text{open interval } J_p \text{ around } p \text{ with } J_p \cap S = \emptyset)$, so $J_p \subseteq \mathbb{R} \setminus S$. Finally use: $(U \text{ open}) \Leftrightarrow (S \text{ is closed}) \Leftrightarrow (S = \overline{S})$, and $\mathbb{R} \setminus S = U$.

Corollary

$$(U \subseteq \mathbb{R} \text{ open}) \Leftrightarrow (U \text{ is a union of open intervals}).$$

Proof.

$$U = \bigcup_{p \in U} J_p$$
, using that $p \in J_p \subseteq U$.

Exercise: U_i open $\Rightarrow \bigcup_{i \in I} U_i$ open. For finite I also $\bigcap_{i \in I} U_i$ is open.

Final remarks: neighbourhoods, boundary, and interior

A neighbourhood $V \subseteq \mathbb{R}$ of $p \in \mathbb{R}$ means there is an open set $U \subseteq \mathbb{R}$ with $p \in U \subseteq V \subseteq \mathbb{R}$. Open neighbourhood means V is open.

The **boundary** of S is

$$\partial S = \overline{S} \cap \overline{\mathbb{R} \setminus S}.$$

The **interior** of S is

$$\mathrm{Int}(S) = \bigcup \{ \mathrm{open} \ U \subseteq S \},\$$

so it is the largest open set contained in S.

Example: $S = (0, 1] \cup \{2\}$

•
$$\partial S = \{0, 1, 2\},\$$

•
$$Int S = (0, 1).$$

Exercises:

p∈∂S ⇔ (every neighbourhood of p intersects both S and ℝ \ S)
Int(S) = ℝ \ ℝ \ S,
∂S = S \ Int(S).