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An example to illustrate limit points and isolated points

Consider the set

S := { 1
n : n ≥ 1 ∈ N} = {1, 12 ,

1
3 ,

1
4 , . . .}.

Then S admits 0 as a limit point, meaning there exists a sequence 1
n of

points in S distinct from 0, which converge to 0.

1
2 is not a limit point of S : the sequences in S that converge to 1

2 are
sequences which eventually become equal to the constant sequence 1

2 . It
is called an isolated point.

The idea is that points of S are accumulating near 0, or clustering
around 0: arbitrarily close to 0 we find points of S distinct from 0.
Whereas the point 1

2 is isolated in S : a small enough neighbourhood
around 1

2 only intersects S in the point 1
2 .

Question. What do you think are the limit points of the interval (0, 1)?



Limit points and isolated points

Let S ⊆ R, and p ∈ R (we do not require p to be in S).
p is a limit point of S (or accumulation point or cluster point), if

∀ε > 0, ∃s ∈ S \ {p} : |s − p| < ε.

Remark

(p is a limit point) ⇔ (any open interval around p intersects S \ {p})

Lemma

(p is a limit point) ⇔ (p = lim sn for some sequence sn ∈ S \ {p})

Proof.

(⇒) Pick ε = 1
n to get sn ∈ S \ {p} with |sn − p| < 1

n , so sn → p.
(⇐) ∀ε > 0, ∃N ∈ N: |sn − p| < ε ∀n ≥ N. So s := sN ∈ S \ {p} has
|s − p| < ε.

s ∈ S is an isolated point of S if it is not a limit point of S . So in some
open interval around s there are no other points of S beyond s.
In symbols: ∃ε > 0 such that {x ∈ S : |x − s| < ε} = {s}.



Closures

Define S ′ := {limit points of S}.
The closure of S is S := S ∪ S ′.

Example: S = (0, 1) ∪ {2}. Then S ′ = [0, 1] and S = [0, 1] ∪ {2}
(e.g. observe, for n ≥ 2 ∈ N, 0 = lim 1

n ,
1
n ∈ S \ {0}, and 1 = lim(1− 1

n ),
1− 1

n ∈ S \ {1}). The isolated points of S are S \ S ′ = {2}.

Challenge Exercise: Find S ⊆ R with S ⊇ S ′ ⊇ S ′′ ̸= ∅ and S ′′′ = ∅.

Corollary

S = {limits of all convergent sequences in S}.

Proof.

(⊆) By the Lemma, any limit point p arises as a limit of a convergent
sequence sn ∈ S \ {p}. Any s ∈ S is the limit of the constant sequence s.
(⊇) If p = lim sn and sn ∈ S , build s̃n from sn by removing all sn which
equal p. If there are only finitely many s̃n left, then sn ∈ S is eventually
the constant sequence p, so p ∈ S . Otherwise, s̃n ∈ S \ {p} is a
sequence converging to p, so p ∈ S ′.



Closed sets

S ⊆ R is a closed set if S = S .

Corollary

(p ∈ S) ⇔ (any open interval around p intersects S)
(S closed) ⇔ (S contains limits of convergent sequences sn ∈ S)

Exercise: Ci closed ⇒ ∩i∈ICi closed. For finite I also ∪i∈ICi is closed.

Remark: S ⊆ R is dense if S = R. E.g. Q = R and R \Q = R.
Lemma

S = S. (“Closures are closed”)

Proof.

It suffices to show (S)′ ⊆ S ′. Let p ∈ (S)′. So ∃sn ∈ S \ {p}: sn → p.
Passing to a subsequence, |sn − p| < 1

n . If sn ∈ S \ {p}, let s̃n := sn.
Otherwise sn ∈ S ′ \ {p}, so pick s̃n ∈ S with |s̃n − sn| < min( 1n , |p − sn|).
⇒ s̃n ∈ S \ {p}, |s̃n − p| = |s̃n − sn + sn − p| ≤ |s̃n − sn|+ |sn − p| < 2

n ,
thus s̃n → p. So p ∈ S ′.



Open sets

U ⊆ R is an open set if the complement S := R \ U is closed.

Note: ∅,R are both open and closed, (0, 1] is neither open nor closed.

Corollary

(U is open) ⇔ (any p ∈ U lies in an open interval Jp ⊆ U)

Proof.

Let S := R \U. Recall p ∈ S ⇔ any open interval around p intersects S .
So p /∈ S ⇔ (∃open interval Jp around p with Jp ∩S = ∅), so Jp ⊆ R\S .
Finally use: (U open)⇔ (S is closed) ⇔ (S = S), and R \ S = U.

Corollary

(U ⊆ R open) ⇔ (U is a union of open intervals).

Proof.

U =
⋃

p∈U Jp, using that p ∈ Jp ⊆ U.

Exercise: Ui open ⇒ ∪i∈IUi open. For finite I also ∩i∈IUi is open.



Final remarks: neighbourhoods, boundary, and interior

A neighbourhood V ⊆ R of p ∈ R means there is an open set U ⊆ R
with p ∈ U ⊆ V ⊆ R. Open neighbourhood means V is open.

The boundary of S is
∂S = S ∩ R \ S .

The interior of S is

Int(S) =
⋃

{open U ⊆ S},

so it is the largest open set contained in S .

Example: S = (0, 1] ∪ {2}
∂S = {0, 1, 2},
IntS = (0, 1).

Exercises:

p ∈ ∂S ⇔ (every neighbourhood of p intersects both S and R \ S)
Int(S) = R \ R \ S ,
∂S = S \ Int(S).


