Stuff that I covered in the weeks 1-4 of MT 2023:

- Definition of singular homology with coefficients in an abelian group R.
 $$\begin{split} &\Delta^n := \{(x_0,...,x_n) \in \mathbb{R}_{+}^n : \sum x_i = 1\} \\ &C_n(X;R) = \oplus_{\sigma:\Delta^n \to X} R \\ &C_{\bullet}(X) , \ \partial_n: C_n(X) \to C_n(X). \\ &\partial_n(\sigma) = \sum (-1)^i \sigma|_{[o,...,\hat{i},...n]} \text{ where } \sigma|_{[o,...,\hat{i},...n]} (x_0,...,x_{n-1}) := \sigma(x_0,...,x_{i-1},0,x_i,...,x_{n-1}) \\ &Equivalently \sigma|_{[o,...,\hat{i},...n]} := \sigma^o d_i \text{ where } d_i(x_0,...,x_{n-1}) := (x_0,...,x_{i-1},0,x_i,...,x_{n-1}). \\ &\partial_n \partial_{n-1} = 0 \\ &Z_n(X) = \ker(\partial_n), \ B_n(X) = \operatorname{im}(\partial_{n+1}), \ H_n = Z_n/B_n. \end{split}$$
- Definition of singular cohomology. $C^{n}(X;R) = Hom_{\mathbb{Z}}(C_{n}(X;\mathbb{Z}), R)$ $C^{n}(X;R) = \prod_{\sigma:\Delta^{n}n \to X}R$ $\delta^{n}:C^{n}(X) \to C^{n}(X)$ $\delta^{n}\phi(\sigma) = \sum (-1)^{i} \phi(\sigma|_{[0,...,\hat{1},...n]})$

- $H_0(X) = \mathbb{Z}^{\# \text{ of connected components}}$ $H_1(X) = \pi_1(X)_{ab}$ [statement without proof (it's one of the exercises)] $H_1(\sqcup X_i) = \bigoplus H_1(X_i), H^*(\sqcup X_i) = \prod H^*(X_i).$
- General definition of (co)chain complex. (co)chain maps.
- a chain homotopy between f.,g.:C. → D. is h.:C. → D.₊₁ satisfying h∂+∂h=g-f. chain homotopic maps induce the same map on H₊ (or H*). Homotopic maps f,g: X→Y induce chain homotopic maps f.,g.:C.(X) → C.(Y) and chain homotopic maps f*,g*:C*(Y) → C*(X). homotopic maps f,g: X→Y induce same map on H₊ and H*. X homotopy equivalent to Y ⇒ H₊(X) ≅ H₊(Y) and H*(X) ≅ H*(Y).
- Δ-complex, defined as a bunch of sets I_n and maps dⁱ:I_n → I_{n-1} satisfying dⁱdⁱ=dⁱ⁻¹d^j if j<i. Geometric realisation X of a Δ-complex: ⊔_{n∈ℕ} I_n×Δⁿ / (dⁱα,x) ~ (α,d_ix). simplicial homology and cohomology: C.^{simpl}(X,R) := ⊕_{α∈I_n}R, with differential ∂_n(α) := ∑ (-1)ⁱ dⁱα.
- short/long exact sequences. The LES in homology associated to a SES of chain complexes. Relative homology and cohomology, for a pair A ⊂ X. C.(X,A) = C.(X)/C.(A), Cⁿ(X,A;R) = Hom_ℤ(C_n(X,A;ℤ), R) H.(X,A) = ker(∂)/im(∂). H*(X,A) = ker(δ)/im(δ) The SES of chain complexes 0 → C.(A) → C.(X) → C.(X,A) → 0 The long exact sequences in H_{*} and H* associated to a pair A ⊂ X. Reduced (co)homology, defined as H_{*}(X,{pt}) and H*(X,{pt}).
- Statement of excision: H.(X,A) = H.(X\E,A\E) if E ⊂ A ⊂ X and the closure of E is contained in the interior of A.

Week 5, MT 2023:

Given a space X, and an open cover $U=\{U_i\}$ of X, write $C_n^U(X;R) = \bigoplus_{\sigma:\Delta^n \to X} R$ where the sum is indexed over those singular simplices whose image lands in one of the U_i .

<u>Theorem</u>(**small simplices theorem**): The inclusion $C.^{U}(X;R) \rightarrow C.(X;R)$ induces an isomorphism at the level of homology.

[postpone the proof until later] We first show some consequences:

Consequence #1:

<u>Theorem</u>(excision): If $E \subset A \subset X$ and the closure of E is contained in the interior of A, then the natural map H.(X\E,A\E) \rightarrow H.(X,A) is an isomorphism.

Proof: consider the open cover *U* = {interior of A, complement of closure of E}. A singular simplex $\sigma:\Delta^n \to X$ whose image lands in one of the two elements of *U* is either disjoint from E, or entirely contained in A. Therefore C.^{*U*}(X,A) = C.^{*U*}(X\E,A\E). We get two SES connected by inclusion maps: 0 → C.(A) → C.(X) → C.(X,A) → 0 ↑ ↑ ↑ 0 → C.^{*U*}(A) → C.^{*U*}(X) → C.^{*U*}(X,A) = C.^{*U*}(X\E,A\E) → 0. Passing to homology, we get two LES, and comparison maps H.^{*U*}(A) → H.^{*U*}(A) (1) H.^{*U*}(X) → H.^{*U*}(X) (2) H.^{*U*}(X,A) → H.(X,A). By an application of the 5-lemma [state the 5-lemma], since (1) and (2) are isomoprhisms, we

get that the third map is also an isomorphism

Therefore $H_{X(X|E,A|E)} = H_{U}(X|E,A|E) = H_{U}(X,A) = H_{X,A}$. QED

State and prove the 5-lemma.

Consequence #2: <u>Corollary:</u> If $A \subset X$ is an NDR pair (explain what NDR means), then H.(X,A) = reduced H.(X/A).

Proof:

Let V be the neighbourhood of A from the definition of NDR.

Compare the LES associated to $A \subset X$ and the LES associated to $A \subset X$.

By using the fact that $A \hookrightarrow V$ induces an isomorphism in H., we see that we can once again apply the 5-lemma, to get H.(X,A) \cong H.(X,V). Therefore

 $H.(X,A) \cong H.(X,V) \cong H.(X,A) \cong H.(X,A,V,A) \cong H.(X,A,V,A) \cong H.(X,A,pt).$

(The last isomorphism is again by the same argument as above, this time comparing the LES of V/A \subset X/A to the LES of pt \subset X/A)

QED

Consequence #3:

<u>Theorem</u>(**Mayer-Vietoris**): Whenever $A \cup B = X$ and A,B are open (or whenever we have a situation which is homotopy equivalent to the above e.g. the two closed hemispheres of a sphere), then we have a LES

 $... \rightarrow H.(A \cap B) \rightarrow H.(A) \oplus H.(B) \rightarrow H.(X) \rightarrow H_{\boldsymbol{\cdot}_1}(A \cap B) \rightarrow ...$

Proof:

Letting $U=\{A,B\}$, we have a SES of chain complexes $0 \rightarrow C.(A \cap B) \rightarrow C.(A) \oplus C.(B) \rightarrow C.^{U}(X) \rightarrow 0$ where the maps are the ones you expect, except for a pesky little minus sign. Therefore, we get a a LES ... $\rightarrow H.(A \cap B) \rightarrow H.(A) \oplus H.(B) \rightarrow H.^{U}(X) \rightarrow H_{-1}(A \cap B) \rightarrow ...$ But $H.^{U}(X) = H.(X)$. QED

Do some examples of Mayer-Vietoris:

– wedge of two (well-pointed) connected spaces: $H.(X \lor Y) = H.(X) \oplus H.(Y)$ in positive degrees.

- sphere covered by two hemispheres.

– genus 2 Riemann surfaces cut along a separating curve.

(uses that $T^2 \setminus D^2$ is homotopy equivalent to $S^1 \vee S^1$; explain why that's the case.

Compute the map $S^1 \hookrightarrow T^2 \setminus D^2$ at the level of homology by means of $H_1 = (\pi_1)_{ab}$.

Proof of small simplices theorem:

Recall the statement: $C.^{U}(X) \rightarrow C.(X)$ induces an isomorphism at the level of homology.

Strategy of proof:

• Define $S : C.(X) \rightarrow C.(X)$, where S stands for "subdivide".

[Draw some examples of what S does on some 1-chains: it replaces each singular 1-simplex by two singular 1-simplices going in opposite direction, one of which has a coefficient (-1). Then draw some examples of what S does on some 2-chains: it replaces each singular 2-simplex by six singular 2-simplices, again with various signs.]

• Prove that S is chain homotopic to the identity map $C.(X) \rightarrow C.(X)$.

• Prove that $\forall c \in C.(X) \exists N \in \mathbb{N}$ such that $S^{N}(c) \in C.^{U}(X)$.

Assuming the above, let us prove the surjectivity of $H^{U}(X) \rightarrow H^{U}(X)$:

Pick [c] \in H.(X). Then \forall N, [S^N(c)] = [c] by virtue of S (hence S^N) being chain homotopic to the identity. But [S^N(c)] \in H.^{*U*}(X) for N large enough. \checkmark

...and injectivity of $H^{U}(X) \rightarrow H^{U}(X)$:

Pick $[c] \in H.^{U}(X)$ and assume that its image in H.(X) is zero. We want to show that $c \in im(\partial:C_{*+1}{}^{U}(X) \to C.^{U}(X))$. Pick $C \in C.(X)$ such that $\partial C = c$, and $N \in \mathbb{N}$ large enough so that $S^{N}C \in C.^{U}(X)$. Let h be the chain homotopy between 1 and S^{N} , so that $h\partial C + \partial hC = C - S^{N}C$. That is:

 $hc + \partial hC = C - S^{N}C.$

Applying ∂ to the above:

 $\partial hc = c - \partial S^{N}C.$ Thus $c = \partial (hc - S^{N}C)$ as desired, provided that h maps $C.^{U}(X) \rightarrow C_{+1}{}^{U}(X).$

So, when we construct h, we'll have to be careful that it doesn't increase the size of the simplices. But this will be obvious from the construction.

Next task:

Define S : C.(X) \rightarrow C.(X) and h : C.(X) \rightarrow C.₊₁(X), and check that h ∂ + ∂ h = id - S.

We will construct S and h in a way which is natural in X, meaning that if $f: X \to Y$ is any map, we will construct S and h in such a way that the following diagrams commutes:

$$\begin{array}{c} C.(X) \longrightarrow S \rightarrow C.(X) \\ \downarrow f_{*} \qquad \qquad \downarrow f_{*} \\ C.(Y) \longrightarrow S \rightarrow C.(Y) \end{array} (*)$$

and

 $\begin{array}{ll} C_{\bullet}(X) \longrightarrow h \rightarrow C_{\bullet+1}(X) \\ & \downarrow f_{\bullet} & \downarrow f_{\bullet} & (**) \\ C_{\bullet}(Y) \longrightarrow h \rightarrow C_{\bullet+1}(Y) & \text{In formulas: } S(f_{\bullet}(\sigma)) = f_{\bullet}(S(\sigma)). \text{ and } h(f_{\bullet}(\sigma)) = f_{\bullet}(h(\sigma)). \end{array}$

If we know S and h on the singular simplex $\iota \in C_n(\Delta^n)$ given by the identity map $\iota := id_{\Delta^n n} : \Delta^n \to \Delta^n$, then we can use (*) and (**) to deduce what they do on an arbitrary singular simplex $\sigma : \Delta^n \to X$. Indeed, we must have $S(\sigma) = S(\sigma_*(\iota)) = \sigma_*(S(\iota))$ and $h(\sigma) = h(\sigma_*(\iota)) = \sigma_*(h(\iota))$. So **it's enough to define S(ι) and h(ι)**.

By a similar argument to above, in order to check the relation $h\partial + \partial h = id - S$, it's enough to check it when applied to $\iota := id_{\Delta^n} : \Delta^n \to \Delta^n$. Indeed: $h\partial \sigma + \partial h\sigma = h\partial \sigma_1(\iota) + \partial h\sigma_2(\iota)$

$$= \sigma_{*}(h\partial(i) + \partial ho_{*}(i))$$
$$= \sigma_{*}(i - Si)$$
$$= \sigma_{*}(i) - S\sigma_{*}(i)$$
$$= \sigma - S\sigma$$

So it's enough to check $h\partial i + \partial h i = i - Si$.

Let Cone: C.(Δ^n) \rightarrow C.₊₁(Δ^n) be the operation which sends a singular k-simplex $\sigma : \Delta^k \rightarrow \Delta^n$ to the singular (k+1)-simplex Cone(σ) : $\Delta^{k+1} \rightarrow \Delta^n$ defined by Cone(σ)($x_0,...,x_{k+1}$) := x_0 ·b + (1- x_0)· $\sigma(x_1/(1-x_0),...,x_{k+1}/(1-x_0))$, where h := 1/(n+1) (1 = 4) = here corrected of Δ^n

where b := $1/(n+1)\cdot(1,...,1)$ = barycenter of Δ^n .

[draw an example of $\sigma : \Delta^k \to \Delta^n$, and then draw $Cone(\sigma) : \Delta^{k+1} \to \Delta^n$]

<u>Lemma:</u> the above operation satisfies ∂ ° Cone = id - Cone ° ∂ .

[Draw a picture to show why this looks plausible, and tell the students that the proof is left as an exercise.]

Inductive definition of S:

- For n=0, we define $S : C_0(X) \to C_0(X)$ to be the identity map.
- For n≥1, we define $S(\iota)$ for $\iota := id_{\Delta^n} : \Delta^n \to \Delta^n$ by the formula $S(\iota) := Cone(S(\partial \iota))$.

The RHS makes reference to S : $C_{n-1}(X) \rightarrow C_{n-1}(X)$, which is assumed to be already defined by induction.

[draw some examples in dimensions 0, 1, and 2 to unpack the above inductive definition.]

Inductive definition of h:

- For n=0, we define $h : C_0(X) \to C_1(X)$ to be the zero map.
- For $n \ge 1$, we define h(i) for $i := id_{\Delta^n} : \Delta^n \to \Delta^n$ by the formula $h(i) := Cone(i h(\partial i))$.

The RHS makes reference to $h : C_{n-1}(X) \to C_n(X)$, which is assumed to be already defined by induction.

Finally, we check that the equation $h\partial\sigma + \partial h\sigma = \sigma - S\sigma$ holds true.

We may assume by induction that the above equation holds true for all chains σ of degree <n (it's easy to check for σ of degree 0).

As explained above, to prove the above equation for all chains of degree n, it's enough to argue that it holds true for $i = id_{\Delta^n}$.

And here we go:

 $\begin{array}{ll} \partial h_{I} &= ^{def \, of \, h} & \partial (Cone(I - h\partial I)) \\ &= ^{Lemma} & I - h\partial I - Cone(\partial I - \partial h\partial I) \\ &= ^{induction} & I - h\partial I - Cone(S\partial I + h\partial \partial I) \\ &= ^{def \, of \, S} & I - h\partial I - SI \end{array}$

Final task:

Prove that $\forall c \in C.(X) \exists N \in \mathbb{N}$ such that $S^{N}(c) \in C.^{U}(X)$. It's enough to show this when c consists of a single singular n-simplex $\sigma:\Delta^{n} \to X$.

Pulling back the open cover U along the map $\sigma:\Delta^n \to X$ to an open cover U' of Δ^n , it's enough to show that $\exists N \in \mathbb{N}$ such that $S^N(I) \in C.^{U'}(\Delta^n)$.

[draw iterated barycentric subdivisions of an interval, and of a triangle. Explain that our task is to show that the simplices become smaller and smaller.]

So, if we can prove the following lemma, we're good:

Lemma:

If $\sigma \subset \mathbb{R}^n$ is a straight-line simplex (the convex hull of n+1 points in \mathbb{R}^n) with diameter D, then each of the (n+1)! straight-line simplices which occur in the barycenric subdivision on σ has diameter $\leq n/(n+1)$ ·D.

Proof:

We first note that if $\sigma = \text{conv}\{v_0, ..., v_n\}$ is a straight-line simplex in \mathbb{R}^n , and $w \in \mathbb{R}^n$ is any point, then $\max_{v \in \sigma} \text{dist}(v, w) = \max_i \text{dist}(v_i, w)$. I.e. the maximal distance to a point in σ is achieved at some vertex of σ :

 $dist(v,w) = \|\sum_{i} x_{i}v_{i} - w\| = \|\sum_{i} x_{i}(v_{i} - w)\| \le \sum_{i} x_{i} \|v_{i} - w\| \le \max_{i} \|v_{i} - w\|$ because $\sum_{i} x_{i}=1$.

The diameter of a simplex is therefore given by $diam(\sigma) = max_{i,j} \|v_i - v_j\|$.

Let $\sigma = \text{conv}\{v_0, ..., v_n\}$ be a straight-line simplex with diameter D, and let $\tau = \text{conv}\{w_0, ..., w_n\}$ be a simplex which occurs in the barycenric subdivision on σ . We need to show: $\forall i, j \mid |w_i - w_j| \le n/(n+1)\cdot D$.

If neither w_i nor w_j is the barycenter of σ , then w_i and w_j are contained in some face of σ , and we're done by induction (with a better constant).

So we may asume that $w_j = b := 1/(n+1) \cdot (v_0 + ... + v_n)$. We need to show: $\forall i \parallel w_i - b \parallel \le n/(n+1) \cdot D$.

we've seen \exists a vertex v_k of σ such that $||w_i - b|| \le ||v_k - b||$. So it's enough to show: $\forall k ||v_k - b|| \le n/(n+1)\cdot D$.

The straight line through v_k and b intersects σ into a segment of length L, and the ratio of lengths is always $||v_k - b|| / L = n/(n+1)$, independently of σ .

Therefore $\|v_k - b\| = n/(n+1) \cdot L \le n/(n+1) \cdot D$. QED (lemma)

This finishes the proof of the small simplices theorem. QED

========

Tuesday week 6, MT 2023

Universal coefficient theorem.

Basic questions that the UCT tries to answer:

- Is $H_*(X,R)$ determined by $H_*(X,\mathbb{Z})$?
- Is $H^{*}(X,R)$ determined by $H_{*}(X,\mathbb{Z})$? (And, if yes, how?)

input = $H_*(X,\mathbb{Z})$

Certainly, $C_*(X,R)$ and $C^*(X,R)$ are determined by $C_*(X,\mathbb{Z})$, via the formulas

 $C_*(X,R) = C_*(X,\mathbb{Z}) \otimes R$ and $C^*(X,R) = Hom_{\mathbb{Z}}(C_*(X,\mathbb{Z}), R)$

Recall $Hom_{\mathbb{Z}}$ just means homomorphisms of abelian groups.

The subscript $_{\mathbb{Z}}$ means ' \mathbb{Z} -module', but a \mathbb{Z} -module is the same thing as an abelian group.

And $\mathbf{A} \otimes \mathbf{B}$ (also denoted $A \otimes_{\mathbb{Z}} B$) is the ab group whose elements are formal sums $\sum_i a_i \otimes b_i$ with $a_i \in A$ and $b_i \in B$,

modulo the equivalence relation generated by $(a+a') \otimes b \sim a \otimes b + a' \otimes b$ and by $a \otimes (b+b') \sim a \otimes b + a \otimes b'$.

Alternatively, $A \otimes B$ is the quotient of $\bigoplus_A B$ by the subgroup generated by $(a+a') \otimes b - a \otimes b + a' \otimes b$, or the quotient of $\bigoplus_B A$ by the subgroup generated by $a \otimes (b+b') \sim a \otimes b + a \otimes b'$.

In order to formulate the UCT, one needs **Ext** and **Tor** which, just like Hom and \otimes , are bifunctors. They take two abelian groups as input, and produce a new abelian group.

Definition of Tor and Ext:

For any abelian group A, using that evey subgroup of a free abelian group is free, one can find a short exact sequence

 $0 \longrightarrow \mathbb{Z}^{{}^{\scriptscriptstyle \oplus}J} \longrightarrow f {}^{\scriptscriptstyle \oplus} \mathbb{Z}^{{}^{\scriptscriptstyle \oplus}I} \longrightarrow A \longrightarrow 0.$

(The chain complex ... $0 \to 0 \to \mathbb{Z}^{\circ J} \to \mathbb{Z}^{\circ I}$ is called a free *resolution* of A.)

One then defines $Ext(A,B) := coker (f^*: \prod_{I} B \to \prod_{J} B)$ and $Tor(A,B) := ker (f_*: \bigoplus_{J} B \to \bigoplus_{I} B).$ where we've applied the functors Hom(-,B) and - \otimes B to the map $f : \mathbb{Z}^{\oplus J} \to \mathbb{Z}^{\oplus I}$, respectively.

Facts (I won't prove this):

Ext(A,B) is a contravariant functor of the variable A, and covariant of the variable B (just like Hom is).

Tor(A,B) is a covariant functor of each variable, and satisfies Tor(A,B) = Tor(B,A) (just like $- \otimes -$).

Example:

 $Ext(\mathbb{Z}/2,B) = B / \{ 2b : b \in B \}$ Tor($\mathbb{Z}/2,B$) = { $b \in B : 2b=0 \}$

(can be seen by taking the free resolution of $\mathbb{Z}/2$ given by \mathbb{Z} —2 \rightarrow $\mathbb{Z}.)$

Note that

Hom(**A**,**B**) = ker (f^{*}: $\prod_{I} B \rightarrow \prod_{J} B$) because that's ker(Hom($\mathbb{Z}^{\bullet I}$,B) \rightarrow Hom($\mathbb{Z}^{\bullet J}$,B)) and **A** \otimes **B** = coker (f_{*}: $\bigoplus_{I} B \rightarrow \bigoplus_{I} B$) because that's coker($\mathbb{Z}^{\bullet J} \otimes B \rightarrow \mathbb{Z}^{\bullet I} \otimes B$).

The second is harder to check:

Proof:

The map coker($\mathbb{Z}^{\circ J} \otimes B \to \mathbb{Z}^{\circ I} \otimes B$) $\longrightarrow A \otimes B$ is visibly surjective. Because for a typical element $\sum_i a_i \otimes b_i \in A \otimes B$, one can lift each a_i to $\mathbb{Z}^{\circ I}$.

We need to see that if $\sum_i x_i \otimes b_i \in \mathbb{Z}^{\circ I} \otimes B \mapsto 0 \in A \otimes B$, then it comes from $\mathbb{Z}^{\circ J} \otimes B$.

The expression $\sum_{i} x_i \otimes b_i$ represents an element of $\bigoplus_{B}(\mathbb{Z}^{\otimes i})$.

Since its image in $\oplus_{B}A$ represents zero in $A \otimes B$, it can be written as $\sum_{k} a_{k} \otimes (b'_{k}+b''_{k}) - a_{k} \otimes b'_{k} - a_{k} \otimes b''_{k} \in \oplus_{B}A$.

Lift each $a_k \in A$ to some $x'_k \in \mathbb{Z}^{\otimes l}$ and consider the corresponding sum $\sum_k x'_k \otimes (b'_k + b''_k) - x'_k \otimes b'_k - x'_k \otimes b''_k \in \bigoplus_B (\mathbb{Z}^{\otimes l}).$

That new element of $\oplus_B(\mathbb{Z}^{\otimes l})$ differs from our original $\sum_i x_i \otimes b_i$ by something in $\oplus_B \text{ker}(\mathbb{Z}^{\otimes l} \to A) = \oplus_B(\mathbb{Z}^{\otimes J})$.

We have written $\sum_{i} x_i \otimes b_i \in \bigoplus_{B}(\mathbb{Z}^{\otimes l})$ as a sum of something in $\bigoplus_{B}(\mathbb{Z}^{\otimes J})$ and something that represents 0 in $\mathbb{Z}^{\otimes l} \otimes B$.

⇒ we have written our $\sum_i x_i \otimes b_i \in \mathbb{Z}^{\otimes I} \otimes B$ as something in $\mathbb{Z}^{\otimes J} \otimes B$. QED

<u>Theorem</u>(universal coefficient theorem):

There exist natural, split short exact sequences

 $0 \longrightarrow H_n(X,\mathbb{Z}) \otimes R \longrightarrow H_n(X,R) \longrightarrow \text{Tor}(H_{n-1}(X,\mathbb{Z}), R) \longrightarrow 0$

 $0 \longrightarrow Ext(H_{n-1}(X,\mathbb{Z}), R) \longrightarrow H^{n}(X,R) \longrightarrow Hom(H_{n}(X,\mathbb{Z}), R) \longrightarrow 0$

Proof:

The proof relies on the following observation:

The short exact sequence

 $0 \to Z_n(X) \longrightarrow C_n(X) \xrightarrow{\partial} B_{n-1}(X) \to 0 \qquad (*)$

can be interpreted as a short exact sequence of chain complexes

 $0 \to Z_{\boldsymbol{\cdot}}(X) \to C_{\boldsymbol{\cdot}}(X) \to B_{\boldsymbol{\cdot}\cdot 1}(X) \to 0$

where the the 1st and 3rd terms are viewed as chain complexes with zero differential.

)

(Look at associated LES? In the associated LES of homology groups, the connecting homomorphism $B_{-1}(X) \rightarrow Z_{-1}(X)$ is just the usual inclusion.

Applying the functors $- \otimes R$ and Hom(- , R) to get two new short exact sequences of chain complexes

 $0 \longrightarrow Z.(X) \otimes R \longrightarrow C.(X,R) \longrightarrow B_{-1}(X) \otimes R \longrightarrow 0$ and

 $0 \longrightarrow Hom(B_{{\boldsymbol{\cdot}}_1}(X),R) \longrightarrow C^*(X,R) \longrightarrow Hom(Z_{\boldsymbol{\cdot}}(X),R) \longrightarrow 0.$

(*Note:* These two functors do not, in general send SES to SES. But (*) is a split SES, because $B_{n-1}(X)$ is a free abelian group. Recall, every subgroup of a free abelian group is free.)

We get corresponding LES in (co)homology: $\dots \longrightarrow B_n(X) \otimes R \longrightarrow Z_n(X) \otimes R \longrightarrow H_n(X,R) \longrightarrow B_{n-1}(X) \otimes R \longrightarrow Z_{n-1}(X) \otimes R \longrightarrow \dots$ and $\dots \longrightarrow Hom(Z_{n-1}(X),R) \longrightarrow Hom(B_{n-1}(X),R) \longrightarrow H^*(X,R) \longrightarrow Hom(Z_n(X),R) \longrightarrow \dots$ Hom(B_n(X),R) $\longrightarrow \dots$

(Like above, the maps $B_n(X) \otimes R \to Z_n(X) \otimes R$ and $Hom(Z_{n-1}(X),R) \to Hom(B_{n-1}(X),R)$ are induced by the inclusion $B_n(X) \otimes R \hookrightarrow Z_n(X)$.)

We rewrite this as short exact sequences:

 $0 \longrightarrow \operatorname{coker}(B_n(X) \otimes R \longrightarrow Z_n(X) \otimes R) \longrightarrow H_n(X,R) \longrightarrow \operatorname{ker}(B_{n-1}(X) \otimes R \longrightarrow Z_{n-1}(X) \otimes R) \longrightarrow 0$ and $0 \longrightarrow \operatorname{coker}(\operatorname{Hem}(Z_n(Y), R)) \longrightarrow \operatorname{Hem}(R_n(Y), R)) \longrightarrow \operatorname{ker}(H_{n-1}(X) \otimes R \longrightarrow Z_{n-1}(X) \otimes R) \longrightarrow 0$

 $0 \longrightarrow coker(Hom(Z_{n-1}(X),R) \rightarrow Hom(B_{n-1}(X),R)) \longrightarrow H^{*}(X,R) \longrightarrow ker(Hom(Z_{n}(X),R) \rightarrow Hom(B_{n}(X),R)) \longrightarrow 0$

which we then recognise as

$$\begin{array}{ccc} 0 \longrightarrow H_n(X,\mathbb{Z}) \otimes R & \longrightarrow H_n(X,R) \longrightarrow \text{Tor}(H_{n-1}(X,\mathbb{Z}),\,R) \longrightarrow 0\\ \text{and} \\ 0 \longrightarrow \text{Ext}(H_{n-1}(X,\mathbb{Z}),\,R) & \longrightarrow H^*(X,R) \longrightarrow \text{Hom}(H_n(X,\mathbb{Z}),\,R) \longrightarrow 0 \end{array}$$

in view of the fact that $(... \rightarrow 0 \rightarrow B_n(X) \rightarrow Z_n(X))$ is a free resolution of $H_n(X)$. Here, we've used that if $... \rightarrow 0 \rightarrow \mathbb{Z}^{\oplus J} - f \rightarrow \mathbb{Z}^{\oplus I}$ is a free resolution of A, then $A \otimes R = \text{coker} (f_*: \bigoplus_J R \rightarrow \bigoplus_I R)$ $\text{Tor}(A,R) = \text{ker} (f_*: \bigoplus_J R \rightarrow \bigoplus_I R)$ $\text{Ext}(A,R) = \text{coker} (f^*: \prod_I R \rightarrow \prod_J R)$ $\text{Hom}(A,R) = \text{ker} (f^*: \prod_I R \rightarrow \prod_J R)$

Proof that these SES are split:

Recall that $0 \to Z_n(X) \longrightarrow C_n(X) \longrightarrow B_{n-1}(X) \to 0$ is split. Pick a splitting, which gives us a retraction $Z_n(X) \leftarrow {}^p - C_n(X)$ of the natural inclusion. The operation – ° p induces a splitting Hom $(C_n(X),R) \leftarrow \text{Hom}(Z_n(X),R)$ of the natural map.

Applying this to some $f \in \text{ker}(\text{Hom}(Z_n(X), \mathbb{R}) \to \text{Hom}(B_n(X), \mathbb{R})) = \text{Hom}(H_n(X, \mathbb{Z}), \mathbb{R})$ we get a map $f^\circ p : C_n(X) \to \mathbb{R}$ that vanishes on $B_n(X)$. That's the same as a map $C_n(X) \to \mathbb{R}$ that vanishes when precomposed with $\partial: C_{n+1}(X) \to C_{n+1}(X)$, i.e. an element of $C^n(X, \mathbb{R})$ in the kernel of $\overline{o}: C^n(X, \mathbb{R}) \to C^{n+1}(X, \mathbb{R})$, i.e., an element of $Z^n(X, \mathbb{R})$. We may then compose with the quotient map $Z^n(X,R) \to H^n(X,R)$ to get a map $H^*(X,R) \leftarrow ker(Hom(Z_n(X),R) \to Hom(B_n(X),R)) = Hom(H_n(X,\mathbb{Z}), R).$

This construction provides a splitting of the natural map $H^*(X,R) \longrightarrow Hom(H_n(X,\mathbb{Z}), R)$.

The splitting is *not natural* because the retraction $Z_n(X) \leftarrow^p - C_n(X)$ is not natural. It cannot be picked simultaneously for all spaces X in such a way that $\forall X \rightarrow Y$, the diagram $Z_n(X) \leftarrow - C_n(X)$ $\downarrow \qquad \downarrow$ $Z_n(Y) \leftarrow - C_n(Y)$ commutes.

(See <u>Hatcher</u> p.264 for why the UCT homology short exact sequence is split.) **QED**

 $0 \longrightarrow H_n(X,\mathbb{Z}) \otimes R \longrightarrow H_n(X,R) \longrightarrow Tor(H_{n-1}(X,\mathbb{Z}), R) \longrightarrow 0$

Work out examples of UCT: - (co)homology of $\mathbb{R}P^2$.

$$\begin{split} &H_*(\mathbb{R}\mathsf{P}^2,\mathbb{Z})=\ [\mathbb{Z},\mathbb{Z}/2,\,0,\,0,\,0,\,\ldots]\\ &H_*(\mathbb{R}\mathsf{P}^2,\mathbb{Z}/2)=\ [\mathbb{Z}/2,\,\mathbb{Z}/2,\,\mathbb{Z}/2,\,0,\,0,\,\ldots]\\ &H^*(\mathbb{R}\mathsf{P}^2,\,\mathbb{Z})=\ [\mathbb{Z},\,0,\,\mathbb{Z}/2,\,0,\,0,\,\ldots]\\ &H^*(\mathbb{R}\mathsf{P}^2,\,\mathbb{Z}/2)=\ [\mathbb{Z}/2,\,\mathbb{Z}/2,\,\mathbb{Z}/2,\,0,\,0,\,\ldots] \end{split}$$

- (co)homology of Klein Bottle. (exercise)

Corollary(excision for H*):

If $E \subset A \subset X$ and the closure of E is contained in the interior of A, then the natural map H*(X,A) \rightarrow H*(X\E,A\E) is an isomorphism.

Proof:

The universal coefficient theorem for H*(X,A) and for H*(X\E,A\E) are short exact sequences

$$0 \longrightarrow \mathsf{Ext}(\mathsf{H}_{\mathsf{n}-1}(\mathsf{X},\mathsf{A};\,\mathbb{Z}),\,\mathsf{R}) \longrightarrow \mathsf{H}^*(\mathsf{X},\mathsf{A};\,\mathsf{R}) \longrightarrow \mathsf{Hom}(\mathsf{H}_\mathsf{n}(\mathsf{X},\mathsf{A};\,\mathbb{Z}),\,\mathsf{R}) \longrightarrow 0$$

and

$$0 \longrightarrow \mathsf{Ext}(\mathsf{H}_{\mathsf{n-1}}(X \backslash \mathsf{E}, \mathsf{A} \backslash \mathsf{E}; \, \mathbb{Z}), \, \mathsf{R}) \longrightarrow \mathsf{H}^*(X \backslash \mathsf{E}, \mathsf{A} \backslash \mathsf{E}; \, \mathsf{R}) \longrightarrow \mathsf{Hom}(\mathsf{H}_\mathsf{n}(X \backslash \mathsf{E}, \mathsf{A} \backslash \mathsf{E}; \, \mathbb{Z}), \, \mathsf{R}) \longrightarrow 0.$$

By the naturality of the UCT, the inclusion $C.(X \setminus E, A \setminus E) \rightarrow C.(X, A)$ induces comparison maps that fit into a commutative diagram.

The 1^{st} and 3^{rd} vertical arrows induce isomorphisms by the excision theorem for homology (using that Ext(- , R) and Hom(- , R) are functors). So we're done by the 5 lemma. QED