
Stuff that I covered in the weeks 1–4 of MT 2023:

● Definition of singular homology with coefficients in an abelian group R.
Δn := {(x0,...,xn)∈ ℝ+

n : ∑xi =1}
Cn(X;R) = ⨁σ:Δ^n→XR
C•(X) , ∂n:Cn(X) → Cn(X).
∂n(σ) = ∑ (-1)i σ|[o,...,î,...n] where σ|[o,...,î,...n] (x0,...,xn-1) := σ(x0,...,xi-1,0,xi,...,xn-1)
Equivalently σ|[o,...,î,...n] := σᐤdi where di(x0,...,xn-1) := (x0,...,xi-1,0,xi,...,xn-1).
∂n∂n-1 = 0
Zn(X) = ker(∂n), Bn(X) = im(∂n+1), Hn= Zn/Bn.

● Definition of singular cohomology.
Cn(X;R) = Homℤ(Cn(X;ℤ), R)
Cn(X;R) = ∏σ:Δ^n→XR
δn:Cn(X) → Cn(X)
δnϕ(σ) = ∑ (-1)i ϕ(σ|[o,...,î,...n])

● H0(X) = ℤ# of connected components

H1(X) = π1(X)ab [statement without proof (it's one of the exercises)]
H•(⊔Xi) = ⨁ H•(Xi), H*(⊔Xi) = ∏ H*(Xi).

● General definition of (co)chain complex.
(co)chain maps.

● a chain homotopy between f•,g•:C• → D• is h•:C• → D•+1 satisfying h∂+∂h=g-f.
chain homotopic maps induce the same map on H* (or H*).
Homotopic maps f,g: X→Y induce chain homotopic maps f*,g*:C•(X) → C•(Y) and chain
homotopic maps f*,g*:C*(Y) → C*(X).
homotopic maps f,g: X→Y induce same map on H* and H*.
X homotopy equivalent to Y ⇒ H*(X) ≅H*(Y) and H*(X) ≅ H*(Y).

● Δ-complex, defined as a bunch of sets In and maps di:In → In-1 satisfying djdi=di-1dj if j<i.
Geometric realisation X of a Δ-complex: ⊔n∈ℕ In×Δn / (diα,x) ~ (α,dix).
simplicial homology and cohomology:
C•

simpl(X,R) := ⨁α∈I_nR, with differential ∂n(α) := ∑ (-1)i diα.
● short/long exact sequences.

The LES in homology associated to a SES of chain complexes.
Relative homology and cohomology, for a pair A⊂ X.
C•(X,A) = C•(X)/C•(A), Cn(X,A;R) = Homℤ(Cn(X,A;ℤ), R)
H•(X,A) = ker(∂)/im(∂). H*(X,A) = ker(δ)/im(δ)
The SES of chain complexes 0 → C•(A) → C•(X) → C•(X,A) → 0
The long exact sequences in H* and H* associated to a pair A⊂ X.
Reduced (co)homology, defined as H*(X,{pt}) and H*(X,{pt}).

● Statement of excision: H•(X,A) = H•(X\E,A\E) if E⊂ A⊂ X and the closure of E is
contained in the interior of A.

============================



Week 5, MT 2023:
Given a space X, and an open cover U={Ui} of X, write Cn

U(X;R) = ⨁σ:Δ^n→XR where the sum is
indexed over those singular simplices whose image lands in one of the Ui.

Theorem(small simplices theorem): The inclusion C•
U(X;R) → C•(X;R) induces an

isomorphism at the level of homology.

[postpone the proof until later] We first show some consequences:

Consequence #1:
Theorem(excision): If E⊂ A⊂ X and the closure of E is contained in the interior of A, then the
natural map H•(X\E,A\E) → H•(X,A) is an isomorphism.

Proof: consider the open cover U = {interior of A, complement of closure of E}.
A singular simplex σ:Δn→X whose image lands in one of the two elements of U is either disjoint
from E, or entirely contained in A. Therefore C•

U(X,A) = C•
U(X\E,A\E).

We get two SES connected by inclusion maps:
0 → C•(A) → C•(X) → C•(X,A) → 0

↑ ↑ ↑
0 → C•

U(A) → C•
U(X) → C•

U(X,A) = C•
U(X\E,A\E) → 0.

Passing to homology, we get two LES, and comparison maps
H•

U(A) → H•
U(A) (1)

H•
U(X) → H•

U(X) (2)
H•

U(X,A) → H•(X,A).
By an application of the 5-lemma [state the 5-lemma], since (1) and (2) are isomoprhisms, we
get that the third map is also an isomorphism
Therefore H•(X\E,A\E) = H•

U(X\E,A\E) = H•
U(X,A) = H•(X,A). QED

State and prove the 5-lemma.

Consequence #2:
Corollary:
If A⊂ X is an NDR pair (explain what NDR means), then H•(X,A) = reduced H•(X/A).

Proof:
Let V be the neighbourhood of A from the definition of NDR.
Compare the LES associated to A⊂ X and the LES associated to A⊂ X.
By using the fact that A ↪ V induces an isomorphism in H•, we see that we can once again apply
the 5-lemma, to get H•(X,A) ≅ H•(X,V). Therefore
H•(X,A) ≅ H•(X,V) ≅excision H•(X\A,V\A) ≅excision H•(X/A,V/A) ≅ H•(X/A,pt).
(The last isomorphism is again by the same argument as above, this time comparing the LES of
V/A⊂ X/A to the LES of pt⊂ X/A)
QED



Consequence #3:
Theorem(Mayer-Vietoris): Whenever A∪B = X and A,B are open (or whenever we have a
situation which is homotopy equivalent to the above e.g. the two closed hemispheres of a
sphere), then we have a LES
... → H•(A ∩ B) → H•(A) ⊕ H•(B) → H•(X) → H•-1(A ∩ B) → ...

Proof:
Letting U={A,B}, we have a SES of chain complexes
0 → C•(A ∩ B) → C•(A) ⊕ C•(B) → C•

U(X) → 0
where the maps are the ones you expect, except for a pesky little minus sign.
Therefore, we get a a LES
... → H•(A ∩ B) → H•(A) ⊕ H•(B) → H•

U(X) → H•-1(A ∩ B) → ...
But H•

U(X) = H•(X).
QED

Do some examples of Mayer-Vietoris:
– wedge of two (well-pointed) connected spaces: H•(X∨Y) = H•(X) ⊕ H•(Y) in positive degrees.
– sphere covered by two hemispheres.
– genus 2 Riemann surfaces cut along a separating curve.
(uses that T2\D2 is homotopy equivalent to S1∨S1; explain why that's the case.
Compute the map S1 ↪ T2\D2 at the level of homology by means of H1 = (π1)ab).

Proof of small simplices theorem:
Recall the statement: C•

U(X) → C•(X) induces an isomorphism at the level of homology.

Strategy of proof:
• Define S : C•(X) → C•(X), where S stands for "subdivide".

[Draw some examples of what S does on some 1-chains: it replaces each singular
1-simplex by two singular 1-simplices going in opposite direction, one of which has a
coefficient (-1). Then draw some examples of what S does on some 2-chains: it replaces
each singular 2-simplex by six singular 2-simplices, again with various signs.]

• Prove that S is chain homotopic to the identity map C•(X) → C•(X).
• Prove that∀ c∈C•(X)∃ N∈ℕ such that SN(c)∈ C•

U(X).

Assuming the above, let us prove the surjectivity of H•
U(X) → H•(X):

Pick [c]∈ H•(X).
Then∀N, [SN(c)] = [c] by virtue of S (hence SN) being chain homotopic to the identity.
But [SN(c)]∈ H•

U(X) for N large enough. ✓

...and injectivity of H•
U(X) → H•(X):

Pick [c]∈ H•
U(X) and assume that its image in H•(X) is zero.

We want to show that c∈ im(∂:C•+1
U(X) → C•

U(X)).
Pick C∈ C•(X) such that ∂C = c, and N∈ℕ large enough so that SNC∈ C•

U(X).
Let h be the chain homotopy between 1 and SN, so that h∂C + ∂hC = C - SNC.



That is:
hc + ∂hC = C - SNC.

Applying ∂ to the above:
∂hc = c - ∂SNC.

Thus c = ∂(hc - SNC) as desired, provided that h maps C•
U(X) → C•+1

U(X).

So, when we construct h, we'll have to be careful that it doesn't increase the size of the
simplices. But this will be obvious from the construction.

Next task:
Define S : C•(X) → C•(X) and h : C•(X) → C•+1(X), and check that h∂ + ∂h = id - S.

We will construct S and h in a way which is natural in X, meaning that if f:X → Y is any map, we
will construct S and h in such a way that the following diagrams commutes:

C•(X) —S→ C•(X)
↓f* ↓f* (∗)

C•(Y) —S→ C•(Y)
and

C•(X) —h→ C•+1(X)
↓f* ↓f* (∗∗)

C•(Y) —h→ C•+1(Y) In formulas: S(f*(σ)) = f*(S(σ)). and h(f*(σ)) = f*(h(σ)).

If we know S and h on the singular simplex ι∈ Cn(Δn) given by the identity map
ι := idΔ^n : Δn → Δn, then we can use (∗) and (∗∗) to deduce what they do on an arbitrary singular
simplex σ : Δn → X. Indeed, we must have S(σ) = S(σ*(ι)) = σ*(S(ι)) and h(σ) = h(σ*(ι)) = σ*(h(ι)).
So it's enough to define S(ι) and h(ι).

By a similar argument to above, in order to check the relation h∂ + ∂h = id - S, it's enough to
check it when applied to ι := idΔ^n : Δn → Δn. Indeed:
h∂σ + ∂hσ = h∂σ*(ι) + ∂hσ*(ι)

= σ*(h∂(ι) + ∂h(ι))
= σ*(ι - Sι)
= σ*(ι) - Sσ*(ι)
= σ - Sσ

So it's enough to check h∂ι + ∂hι = ι - Sι.

Let Cone: C•(Δn) → C•+1(Δn) be the operation which sends a singular k-simplex σ : Δk → Δn to
the singular (k+1)-simplex Cone(σ) : Δk+1 → Δn defined by

Cone(σ)(x0,...,xk+1) := x0‧b + (1-x0)‧σ(x1/(1-x0),...,xk+1/(1-x0)),
where b := 1/(n+1)‧(1,...,1) = barycenter of Δn.

[draw an example of σ : Δk → Δn, and then draw Cone(σ) : Δk+1 → Δn]

Lemma: the above operation satisfies ∂ ᐤ Cone = id - Cone ᐤ ∂.



[Draw a picture to show why this looks plausible, and tell the students that the proof is left as an
exercise.]

Inductive definition of S:
● For n=0, we define S : C0(X) → C0(X) to be the identity map.
● For n≥1, we define S(ι) for ι := idΔ^n : Δn → Δn by the formula S(ι) := Cone(S(∂ι)).

The RHS makes reference to S : Cn-1(X) → Cn-1(X), which is assumed to be already defined by
induction.

[draw some examples in dimensions 0, 1, and 2 to unpack the above inductive definition.]

Inductive definition of h:
● For n=0, we define h : C0(X) → C1(X) to be the zero map.
● For n≥1, we define h(ι) for ι := idΔ^n : Δn → Δn by the formula h(ι) := Cone(ι - h(∂ι)).

The RHS makes reference to h : Cn-1(X) → Cn(X), which is assumed to be already defined by
induction.

Finally, we check that the equation h∂σ + ∂hσ = σ - Sσ holds true.
We may assume by induction that the above equation holds true for all chains σ of degree <n
(it's easy to check for σ of degree 0).
As explained above, to prove the above equation for all chains of degree n, it's enough to argue
that it holds true for ι = idΔ^n.
And here we go:

∂hι =def of h ∂(Cone(ι - h∂ι))
=Lemma ι - h∂ι - Cone(∂ι - ∂h∂ι)
=induction ι - h∂ι - Cone(S∂ι + h∂∂ι)
=def of S ι - h∂ι - Sι

Final task:
Prove that∀ c∈C•(X)∃ N∈ℕ such that SN(c)∈ C•

U(X).
It's enough to show this when c consists of a single singular n-simplex σ:Δn → X.

Pulling back the open cover U along the map σ:Δn → X to an open cover U' of Δn, it's enough to
show that∃ N∈ℕ such that SN(ι)∈ C•

U'(Δn).

[draw iterated barycentric subdivisions of an interval, and of a triangle.
Explain that our task is to show that the simplices become smaller and smaller.]

So, if we can prove the following lemma, we're good:

Lemma:



If σ⊂ ℝn is a straight-line simplex (the convex hull of n+1 points in ℝn) with diameter D, then
each of the (n+1)! straight-line simplices which occur in the barycenric subdivision on σ has
diameter ≤ n/(n+1)‧D.

Proof:
We first note that if σ = conv{v0,...,vn} is a straight-line simplex in ℝn, and w∈ ℝn is any point,
then maxv∈σdist(v,w) = maxidist(vi,w). I.e. the maximal distance to a point in σ is achieved at
some vertex of σ:

dist(v,w) = ǁ ∑xivi - w ǁ = ǁ ∑xi(vi - w) ǁ ≤ ∑xi ǁvi - wǁ ≤ maxi ǁvi - wǁ because ∑xi=1.

The diameter of a simplex is therefore given by diam(σ) = maxi,j ǁvi - vjǁ.

Let σ = conv{v0,...,vn} be a straight-line simplex with diameter D, and let τ = conv{w0,...,wn} be a
simplex which occurs in the barycenric subdivision on σ. We need to show:
∀i,j ǁwi - wjǁ ≤ n/(n+1)‧D.

If neither wi nor wj is the barycenter of σ, then wi and wj are contained in some face of σ, and
we're done by induction (with a better constant).

So we may asume that wj = b := 1/(n+1) ‧ (v0 +...+ vn).
We need to show: ∀i ǁwi - bǁ ≤ n/(n+1)‧D.

we've seen∃ a vertex vk of σ such that ǁwi - bǁ ≤ ǁvk - bǁ.
So it's enough to show: ∀k ǁvk - bǁ ≤ n/(n+1)‧D.

The straight line through vk and b intersects σ into a segment of length L, and the ratio of
lengths is always ǁvk - bǁ / L = n/(n+1), independently of σ.

Therefore ǁvk - bǁ = n/(n+1) ‧ L ≤ n/(n+1) ‧ D. QED (lemma)

This finishes the proof of the small simplices theorem. QED

=========
Tuesday week 6, MT 2023

Universal coefficient theorem.
Basic questions that the UCT tries to answer:

• Is H∗(X,R) determined byH∗(X,ℤ)?
• Is H*(X,R) determined byH∗(X,ℤ)? (And, if yes, how?)

input = H∗(X,ℤ)

Certainly, C∗(X,R) and C*(X,R) are determined byC∗(X,ℤ), via the formulas



C∗(X,R) = C∗(X,ℤ) ⊗ R and C*(X,R) = Homℤ(C∗(X,ℤ), R)

Recall Homℤ just means homomorphisms of abelian groups.
The subscript ℤ means 'ℤ-module', but a ℤ-module is the same thing as an abelian group.

And A⊗B (also denoted A⊗ℤB) is the ab group whose elements are formal sums ∑i ai⊗bi with
ai∈A and bi∈B,
modulo the equivalence relation generated by (a+a')⊗b ~ a⊗b + a'⊗b and by a⊗(b+b') ~ a⊗b +
a⊗b'.
Alternatively, A⊗B is the quotient of ⨁AB by the subgroup generated by (a+a')⊗b - a⊗b + a'⊗b,
or the quotient of ⨁BA by the subgroup generated by a⊗(b+b') ~ a⊗b + a⊗b'.

In order to formulate the UCT, one needs Ext and Tor which, just like Hom and ⊗, are bifunctors.
They take two abelian groups as input, and produce a new abelian group.

Definition of Tor and Ext:
For any abelian group A, using that evey subgroup of a free abelian group is free, one can find a
short exact sequence
0 —→ ℤ⊕J —f→ ℤ⊕I —→ A —→ 0.
(The chain complex ... 0 → 0 → ℤ⊕J → ℤ⊕I is called a free resolution of A.)

One then defines
Ext(A,B) := coker (f*: ∏I B → ∏J B)
and
Tor(A,B) := ker (f∗: ⨁J B → ⨁I B).
where we've applied the functors Hom(-,B) and -⊗B to the map f : ℤ⊕J → ℤ⊕I, respectively.

Facts (I won't prove this):
Ext(A,B) is a contravariant functor of the variable A, and covariant of the variable B (just like
Hom is).
Tor(A,B) is a covariant functor of each variable, and satisfies Tor(A,B) = Tor(B,A) (just like – ⊗ –
).

Example:
Ext(ℤ/2,B) = B / { 2b : b∈B}
Tor(ℤ/2,B) = { b∈B : 2b=0 }

(can be seen by taking the free resolution of ℤ/2 given by ℤ —2→ ℤ.)

Note that
Hom(A,B) = ker (f*: ∏I B → ∏J B) because that's ker(Hom(ℤ⊕I,B) → Hom(ℤ⊕J,B))
and
A ⊗ B = coker (f∗: ⨁J B → ⨁I B) because that's coker(ℤ⊕J⊗B → ℤ⊕I⊗B).

The second is harder to check:



Proof:
The map coker(ℤ⊕J⊗B → ℤ⊕I⊗B) —→ A⊗B is visibly surjective.
Because for a typical element ∑i ai⊗bi ∈ A⊗B, one can lift each ai to ℤ⊕I.

We need to see that if ∑i xi⊗bi ∈ ℤ⊕I⊗B ↦ 0∈ A⊗B, then it comes from ℤ⊕J⊗B.
The expression ∑i xi⊗bi represents an element of ⨁B(ℤ⊕I).
Since its image in ⨁BA represents zero in A⊗B, it can be written as ∑k ak⊗(b'k+b''k) - ak⊗b'k -
ak⊗b''k ∈ ⨁BA.
Lift each ak∈A to some x'k∈ℤ⊕I and consider the corresponding sum ∑k x'k⊗(b'k+b''k) - x'k⊗b'k -
x'k⊗b''k ∈ ⨁B(ℤ⊕I).
That new element of ⨁B(ℤ⊕I) differs from our original ∑i xi⊗bi by something in ⨁Bker(ℤ⊕I → A) =
⨁B(ℤ⊕J).
We have written ∑i xi⊗bi ∈ ⨁B(ℤ⊕I) as a sum of something in ⨁B(ℤ⊕J) and something that
represents 0 in ℤ⊕I⊗B.
⇒ we have written our ∑i xi⊗bi ∈ ℤ⊕I⊗B as something in ℤ⊕J⊗B. QED

Theorem(universal coefficient theorem):
There exist natural, split short exact sequences

0 —→ Hn(X,ℤ) ⊗ R —→ Hn(X,R)—→ Tor(Hn-1(X,ℤ), R) —→ 0

0 —→ Ext(Hn-1(X,ℤ), R) —→ Hn(X,R)—→ Hom(Hn(X,ℤ), R) —→ 0

Proof:
The proof relies on the following observation:
The short exact sequence

0 → Zn(X) —→ Cn(X) —∂→ Bn-1(X) → 0 (∗)
can be interpreted as a short exact sequence of chain complexes

0 → Z•(X) → C•(X) → B•-1(X) → 0
where the the 1st and 3rd terms are viewed as chain complexes with zero differential.

(Look at associated LES? In the associated LES of homology groups,
the connecting homomorphism B•-1(X) → Z•-1(X) is just the usual inclusion.

↓ ↓ ↓
0 → Zn(X) → Cn(X) → Bn-1(X)→ 0

↓ ↓ ↓
0 → Zn-1(X) → Cn-1(X)→ Bn-2(X) → 0

↓ ↓ ↓ )

Applying the functors – ⊗ R and Hom( – , R) to get
two new short exact sequences of chain complexes

0 –→ Z•(X) ⊗ R –→ C•(X,R) –→ B•-1(X) ⊗ R –→ 0
and



0 –→ Hom(B•-1(X),R) –→ C*(X,R) –→ Hom(Z•(X),R) –→ 0.

(Note: These two functors do not, in general send SES to SES. But (∗) is a split SES, because
Bn-1(X) is a free abelian group. Recall, every subgroup of a free abelian group is free.)

We get corresponding LES in (co)homology:
... –→ Bn(X) ⊗ R –→ Zn(X) ⊗ R –→ Hn(X,R) –→ Bn-1(X) ⊗ R –→ Zn-1(X) ⊗ R –→ ...

and
... –→ Hom(Zn-1(X),R) –→ Hom(Bn-1(X),R) –→ H*(X,R) –→ Hom(Zn(X),R) –→

Hom(Bn(X),R) –→ ...

( Like above, the maps Bn(X) ⊗ R → Zn(X) ⊗ R and Hom(Zn-1(X),R) → Hom(Bn-1(X),R) are
induced by the inclusion Bn(X) ⊗ R ↪ Zn(X). )

We rewrite this as short exact sequences:
0 –→ coker(Bn(X) ⊗ R → Zn(X) ⊗ R) –→ Hn(X,R) –→ ker(Bn-1(X) ⊗ R → Zn-1(X) ⊗ R) –→ 0

and
0 –→ coker(Hom(Zn-1(X),R) → Hom(Bn-1(X),R)) –→ H*(X,R) –→ ker(Hom(Zn(X),R) →

Hom(Bn(X),R)) –→ 0

which we then recognise as

0 —→ Hn(X,ℤ) ⊗ R —→ Hn(X,R) —→ Tor(Hn-1(X,ℤ), R) —→ 0
and

0 —→ Ext(Hn-1(X,ℤ), R) —→ H*(X,R) —→ Hom(Hn(X,ℤ), R) —→ 0

in view of the fact that (... → 0 → Bn(X) → Zn(X)) is a free resolution of Hn(X).
Here, we've used that if ... → 0 → ℤ⊕J —f→ ℤ⊕I is a free resolution of A, then
A⊗R = coker (f∗: ⨁J R → ⨁I R)
Tor(A,R) = ker (f∗: ⨁J R → ⨁I R)
Ext(A,R) = coker (f*: ∏I R → ∏J R)
Hom(A,R) = ker (f*: ∏I R → ∏J R)

Proof that these SES are split:
Recall that 0 → Zn(X) —→ Cn(X) —∂→ Bn-1(X) → 0 is split.
Pick a splitting, which gives us a retraction Zn(X) ←p– Cn(X) of the natural inclusion.
The operation – ᐤ p induces a splitting Hom(Cn(X),R) ← Hom(Zn(X),R) of the natural map.

Applying this to some f∈ ker(Hom(Zn(X),R) → Hom(Bn(X),R)) = Hom(Hn(X,ℤ), R)
we get a map fᐤp : Cn(X) → R that vanishes on Bn(X).
That's the same as a map Cn(X) → R that vanishes when precomposed with ∂:Cn+1(X) →
Cn+1(X),
i.e. an element of Cn(X,R) in the kernel of δ:Cn(X,R) → Cn+1(X,R), i.e.,
an element of Zn(X,R).



We may then compose with the quotient map Zn(X,R) → Hn(X,R) to get a map
H*(X,R) ← ker(Hom(Zn(X),R) → Hom(Bn(X),R)) = Hom(Hn(X,ℤ), R).

This construction provides a splitting of the natural map H*(X,R) —→ Hom(Hn(X,ℤ), R).

The splitting is not natural because the retraction Zn(X) ←p– Cn(X) is not natural.
It cannot be picked simultaneously for all spaces X in such a way that∀ X→Y, the diagram
Zn(X) ←– Cn(X)
↓ ↓

Zn(Y) ←– Cn(Y)
commutes.

(See Hatcher p.264 for why the UCT homology short exact sequence is split.)
QED

0 —→ Hn(X,ℤ) ⊗ R —→ Hn(X,R) —→ Tor(Hn-1(X,ℤ), R) —→ 0

Work out examples of UCT:
– (co)homology of ℝP2.

H∗(ℝP2, ℤ) = [ℤ, ℤ/2, 0, 0, 0, ...]
H∗(ℝP2, ℤ/2) = [ℤ/2, ℤ/2, ℤ/2, 0, 0, ...]
H*(ℝP2, ℤ) = [ℤ, 0, ℤ/2, 0, 0, ...]
H*(ℝP2, ℤ/2) = [ℤ/2, ℤ/2, ℤ/2, 0, 0, ...]

– (co)homology of Klein Bottle. (exercise)

Corollary(excision for H*):
If E⊂ A⊂ X and the closure of E is contained in the interior of A, then the natural map H*(X,A)
→ H*(X\E,A\E) is an isomorphism.

Proof:
The universal coefficient theorem for H*(X,A) and for H*(X\E,A\E) are short exact sequences

0 —→ Ext(Hn-1(X,A; ℤ), R) —→ H*(X,A; R) —→ Hom(Hn(X,A; ℤ), R) —→ 0
and

0 —→ Ext(Hn-1(X\E,A\E; ℤ), R) —→ H*(X\E,A\E; R) —→ Hom(Hn(X\E,A\E; ℤ), R) —→ 0.

By the naturality of the UCT, the inclusion C•(X\E,A\E) → C•(X,A) induces comparison maps that
fit into a commutative diagram.

0 —→ Ext(Hn-1(X,A; ℤ), R) —→ H*(X,A; R) —→ Hom(Hn(X,A; ℤ), R) —→ 0
↓ ↓ ↓

0 —→ Ext(Hn-1(X\E,A\E; ℤ),R) —→ H*(X\E,A\E; R) —→ Hom(Hn(X\E,A\E; ℤ), R) —→ 0
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The 1st and 3rd vertical arrows induce isomorphisms by the excision theorem for homology
(using that Ext( - , R) and Hom( - , R) are functors). So we're done by the 5 lemma. QED


