－Definition of singular homology with coefficients in an abelian group R ．
$\Delta^{n}:=\left\{\left(x_{0}, \ldots, x_{n}\right) \in\right.$ Rat $\left._{+}^{n}: \sum x_{i}=1\right\}$
$C_{n}(X ; R)=\oplus_{\sigma: \Delta_{n} \rightarrow x} R$
C．$(X), \partial_{n}: C_{n}(X) \rightarrow C_{n}(X)$ ．
$\partial_{n}(\sigma)=\left.\sum(-1)^{i} \sigma\right|_{[0, \ldots, \hat{1}, \ldots]}$ where $\left.\sigma\right|_{[0, \ldots, \ldots, \ldots]}\left(x_{0}, \ldots, x_{n-1}\right):=\sigma\left(x_{0}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-1}\right)$
Equivalently $\left.\sigma\right|_{[0, \ldots, \ldots, \ldots n]}:=\sigma^{\circ} d_{i}$ where $d_{i}\left(x_{0}, \ldots, x_{n-1}\right):=\left(x_{0}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-1}\right)$ ．
$\partial_{n} \partial_{n-1}=0$
$Z_{n}(X)=\operatorname{ker}\left(\partial_{n}\right), B_{n}(X)=\operatorname{im}\left(\partial_{n+1}\right), H_{n}=Z_{n} / B_{n}$ ．
－Definition of singular cohomology．
$C^{n}(X ; R)=\operatorname{Hom}_{\Xi}\left(C_{n}(X ; \zeta), R\right)$
$\mathrm{C}^{n}(\mathrm{X} ; \mathrm{R})=\prod_{\sigma: \Delta_{n} \rightarrow \mathrm{X}} \mathrm{R}$
$\delta^{n}: C^{n}(X) \rightarrow C^{n}(X)$
$\delta^{n} \phi(\sigma)=\Sigma(-1)^{i} \phi\left(\left.\sigma\right|_{[0, \ldots, \ldots, \ldots n]}\right)$
－$H_{0}(X)=\mathbb{Z}^{\# \text { of connected components }}$
$\mathrm{H}_{1}(\mathrm{X})=\pi_{1}(\mathrm{X})_{\mathrm{ab}}$［statement without proof（it＇s one of the exercises）］
$H .\left(\sqcup X_{i}\right)=\oplus H_{.}\left(X_{i}\right), H^{*}\left(\sqcup X_{i}\right)=\Pi H^{*}\left(X_{i}\right)$ ．
－General definition of（co）chain complex．
（co）chain maps．
－a chain homotopy between f．，g．：C．\rightarrow D．is $h .: C . \rightarrow D_{.+1}$ satisfying $h \partial+\partial h=g-f$.
chain homotopic maps induce the same map on H_{*}（ or H^{*} ）．
Homotopic maps $f, g: X \rightarrow Y$ induce chain homotopic maps $f_{*}, g_{*}: C .(X) \rightarrow C .(Y)$ and chain homotopic maps $f^{*}, g^{*}: C^{*}(Y) \rightarrow C^{*}(X)$ ．
homotopic maps $f, g: X \rightarrow Y$ induce same map on H^{*} and H^{*} ．
X homotopy equivalent to $Y \Rightarrow H_{*}(X) \cong H_{*}(Y)$ and $H^{*}(X) \cong H^{*}(Y)$ ．
－Δ－complex，defined as a bunch of sets I_{n} and maps $d^{i}: I_{n} \rightarrow I_{n-1}$ satisfying $d^{i} d^{i}=d^{i-1} d^{j}$ if $j<i$ ．
Geometric realisation X of a Δ－complex：$\sqcup_{n \in \mathbb{N}} I_{n} \times \Delta^{n} /\left(d^{i} \alpha, x\right) \sim\left(\alpha, d_{i} x\right)$ ．
simplicial homology and cohomology：
C．${ }^{\text {simpl }}(X, R):=\oplus_{\alpha \in I_{n}} R$ ，with differential $\partial_{n}(\alpha):=\sum(-1)^{i} d^{i} \alpha$ ．
－short／long exact sequences．
The LES in homology associated to a SES of chain complexes．
Relative homology and cohomology，for a pair $A \subset X$ ．
C．$(X, A)=C .(X) / C .(A), C^{n}(X, A ; R)=\operatorname{Hom}_{\mathbb{Z}}\left(C_{n}(X, A ; Z), R\right)$
$H .(X, A)=\operatorname{ker}(\partial) / \operatorname{im}(\partial) . H^{*}(X, A)=\operatorname{ker}(\delta) / \operatorname{im}(\delta)$
The SES of chain complexes $0 \rightarrow C .(A) \rightarrow C .(X) \rightarrow C .(X, A) \rightarrow 0$
The long exact sequences in H_{*} and H^{*} associated to a pair $A \subset X$ ．
Reduced（co）homology，defined as $\mathrm{H}_{*}(\mathrm{X},\{\mathrm{pt}\})$ and $\mathrm{H}^{*}(\mathrm{X},\{\mathrm{pt}\})$ ．
－Statement of excision：$H .(X, A)=H .(X I E, A \backslash E)$ if $E \subset A \subset X$ and the closure of E is contained in the interior of A ．

Week 5, MT 2023:
Given a space X, and an open cover $U=\left\{U_{i}\right\}$ of X, write $C_{n}{ }^{U}(X ; R)=\oplus_{\sigma: \Delta^{\wedge} n \rightarrow x} R$ where the sum is indexed over those singular simplices whose image lands in one of the U_{i}.

Theorem(small simplices theorem): The inclusion $C .{ }^{U}(X ; R) \rightarrow C .(X ; R)$ induces an isomorphism at the level of homology.
[postpone the proof until later] We first show some consequences:
Consequence \#1:
Theorem(excision): If $E \subset A \subset X$ and the closure of E is contained in the interior of A, then the natural map $H .(X I E, A \backslash E) \rightarrow H .(X, A)$ is an isomorphism.

Proof: consider the open cover $U=$ \{interior of A, complement of closure of E\}.
A singular simplex $\sigma: \Delta^{n} \rightarrow X$ whose image lands in one of the two elements of U is either disjoint from E, or entirely contained in A. Therefore C. ${ }^{U}(\mathrm{X}, \mathrm{A})=\mathrm{C} .{ }^{U}(\mathrm{XIE}, \mathrm{AIE})$.
We get two SES connected by inclusion maps:
$0 \rightarrow \mathrm{C} .(\mathrm{A}) \rightarrow \mathrm{C} .(\mathrm{X}) \rightarrow \mathrm{C} .(\mathrm{X}, \mathrm{A}) \rightarrow 0$

Passing to homology, we get two LES, and comparison maps
H. ${ }^{U}(A) \rightarrow H .{ }^{U}(A)$
$H .{ }^{U}(X) \rightarrow H^{U}{ }^{U}(X)$
$H^{U}(X, A) \rightarrow H .(X, A)$.
By an application of the 5-lemma [state the 5-lemma], since (1) and (2) are isomoprhisms, we get that the third map is also an isomorphism
Therefore $\mathrm{H} .(\mathrm{XIE}, \mathrm{A} \backslash \mathrm{E})=\mathrm{H}^{\cdot}{ }^{U}(\mathrm{XIIE}, \mathrm{A} \backslash \mathrm{E})=\mathrm{H}^{\prime}{ }^{U}(\mathrm{X}, \mathrm{A})=\mathrm{H} .(\mathrm{X}, \mathrm{A}) . \quad$ QED
State and prove the 5-lemma.
Consequence \#2:
Corollary:
If $A \subset X$ is an NDR pair (explain what NDR means), then $H .(X, A)=$ reduced $H .(X / A)$.

Proof:
Let V be the neighbourhood of A from the definition of NDR.
Compare the LES associated to $A \subset X$ and the LES associated to $A \subset X$.
By using the fact that $A \hookrightarrow V$ induces an isomorphism in H., we see that we can once again apply the 5-lemma, to get $\mathrm{H} .(\mathrm{X}, \mathrm{A}) \cong \mathrm{H} .(X, V)$. Therefore
$H .(X, A) \cong H .(X, V) \cong$ excision $H .(X \backslash A, V / A) \cong$ excision $H .(X / A, V / A) \cong H .(X / A, p t)$.
(The last isomorphism is again by the same argument as above, this time comparing the LES of $\mathrm{V} / \mathrm{A} \subset \mathrm{X} / \mathrm{A}$ to the LES of pt $\subset \mathrm{X} / \mathrm{A}$)
QED

Consequence \#3:
Theorem(Mayer-Vietoris): Whenever $A \cup B=X$ and A, B are open (or whenever we have a situation which is homotopy equivalent to the above e.g. the two closed hemispheres of a sphere), then we have a LES
$\ldots \rightarrow H .(A \cap B) \rightarrow H .(A) \oplus H .(B) \rightarrow H .(X) \rightarrow H_{\cdot-1}(A \cap B) \rightarrow \ldots$

Proof:

Letting $U=\{A, B\}$, we have a SES of chain complexes
$0 \rightarrow C .(A \cap B) \rightarrow C .(A) \oplus C .(B) \rightarrow C .{ }^{U}(X) \rightarrow 0$
where the maps are the ones you expect, except for a pesky little minus sign.
Therefore, we get a a LES
$\ldots \rightarrow H .(A \cap B) \rightarrow H .(A) \oplus H .(B) \rightarrow H^{U}(X) \rightarrow H_{.-1}(A \cap B) \rightarrow \ldots$
But H. ${ }^{U}(X)=H .(X)$.
QED

Do some examples of Mayer-Vietoris:

- wedge of two (well-pointed) connected spaces: $\mathrm{H} .(\mathrm{XVY})=\mathrm{H} .(\mathrm{X}) \oplus \mathrm{H} .(\mathrm{Y})$ in positive degrees.
- sphere covered by two hemispheres.
- genus 2 Riemann surfaces cut along a separating curve.
(uses that $T^{2} \backslash D^{2}$ is homotopy equivalent to $S^{1} \vee S^{1}$; explain why that's the case.
Compute the map $S^{1} \hookrightarrow T^{2} \backslash D^{2}$ at the level of homology by means of $\left.H_{1}=\left(\pi_{1}\right)_{a b}\right)$.

Proof of small simplices theorem:

Recall the statement: $\mathrm{C} .{ }^{U}(\mathrm{X}) \rightarrow \mathrm{C} .(\mathrm{X})$ induces an isomorphism at the level of homology.
Strategy of proof:

- Define S:C. $(\mathrm{X}) \rightarrow \mathrm{C} .(\mathrm{X})$, where S stands for "subdivide".
[Draw some examples of what S does on some 1-chains: it replaces each singular 1-simplex by two singular 1-simplices going in opposite direction, one of which has a coefficient (-1). Then draw some examples of what S does on some 2-chains: it replaces each singular 2-simplex by six singular 2-simplices, again with various signs.]
- Prove that S is chain homotopic to the identity map $\mathrm{C} .(\mathrm{X}) \rightarrow \mathrm{C} .(\mathrm{X})$.
- Prove that $\forall c \in C .(X) \exists N \in \mathbb{N}$ such that $S^{N}(c) \in C .{ }^{U}(X)$.

Assuming the above, let us prove the surjectivity of $\mathrm{H} .{ }^{U}(\mathrm{X}) \rightarrow \mathrm{H} .(\mathrm{X})$:
Pick $[c] \in \mathrm{H} .(\mathrm{X})$.
Then $\forall N,\left[S^{N}(c)\right]=[c]$ by virtue of S (hence $\left.S^{N}\right)$ being chain homotopic to the identity. But $\left[S^{N}(c)\right] \in H .{ }^{U}(X)$ for N large enough.
...and injectivity of $\mathrm{H}^{U}{ }^{U}(\mathrm{X}) \rightarrow \mathrm{H} .(\mathrm{X}):$
Pick $[c] \in H^{U}(X)$ and assume that its image in $H .(X)$ is zero.
We want to show that $c \in \operatorname{im}\left(\partial: C_{++1}{ }^{U}(X) \rightarrow C .{ }^{U}(X)\right)$.
Pick $C \in C .(X)$ such that $\partial C=c$, and $N \in \mathbb{N}$ large enough so that $S^{N} C \in C .{ }^{U}(X)$.
Let h be the chain homotopy between 1 and S^{N}, so that h $\partial \mathrm{C}+\partial \mathrm{hC}=\mathrm{C}-\mathrm{S}^{\mathrm{N}} \mathrm{C}$.

That is:

$$
h c+\partial h C=C-S^{N} C .
$$

Applying ∂ to the above:
$\partial \mathrm{hc}=\mathrm{c}-\partial \mathrm{S}^{\mathrm{N}} \mathrm{C}$.
Thus $\mathrm{c}=\partial\left(\mathrm{hc}-\mathrm{S}^{\mathrm{N}} \mathrm{C}\right)$ as desired, provided that h maps $\mathrm{C} .{ }^{U}(\mathrm{X}) \rightarrow \mathrm{C}_{.+1}{ }^{U}(\mathrm{X})$.
So, when we construct h, we'll have to be careful that it doesn't increase the size of the simplices. But this will be obvious from the construction.

Next task:

Define S : C. $(\mathrm{X}) \rightarrow \mathrm{C} .(\mathrm{X})$ and $\mathrm{h}: \mathrm{C} .(\mathrm{X}) \rightarrow \mathrm{C}_{\cdot+1}(\mathrm{X})$, and check that $\mathrm{h} \partial+\partial \mathrm{h}=\mathrm{id}-\mathrm{S}$.

We will construct S and h in a way which is natural in X, meaning that if $f: X \rightarrow Y$ is any map, we will construct S and h in such a way that the following diagrams commutes:

$$
\begin{array}{cc}
\text { C. }(\mathrm{X}) & -\mathrm{S} \rightarrow \mathrm{C} .(\mathrm{X}) \\
\downarrow \mathrm{f}_{*} & \downarrow \mathrm{f}_{*} \tag{*}\\
\mathrm{C} .(\mathrm{Y}) & \mathrm{C} .(\mathrm{Y})
\end{array}
$$

and

$$
\text { C. }(X)-h \rightarrow C_{\cdot+1}(X)
$$

$$
\downarrow \mathfrak{f}_{*} \quad \downarrow \mathfrak{f}_{*} \quad(* *)
$$

$$
\text { C. }(Y)-h \rightarrow C_{.+1}(Y) \quad \text { In formulas: } \quad S\left(f_{*}(\sigma)\right)=f_{*}(S(\sigma)) \text {. and } h\left(f_{*}(\sigma)\right)=f_{*}(h(\sigma)) \text {. }
$$

If we know S and h on the singular simplex $I \in C_{n}\left(\Delta^{n}\right)$ given by the identity map
$\mathrm{I}:=\mathrm{id}_{\Delta^{\wedge} n}: \Delta^{\mathrm{n}} \rightarrow \Delta^{\mathrm{n}}$, then we can use $(*)$ and $(* *)$ to deduce what they do on an arbitrary singular simplex $\sigma: \Delta^{n} \rightarrow$ X. Indeed, we must have $S(\sigma)=S\left(\sigma_{*}(1)\right)=\sigma_{*}(S(1))$ and $h(\sigma)=h\left(\sigma_{*}(1)\right)=\sigma_{*}(h(1))$. So it's enough to define $\mathbf{S}(\mathbf{I})$ and $\mathrm{h}(\mathrm{I})$.

By a similar argument to above, in order to check the relation $\mathrm{h} \partial+\partial \mathrm{h}=\mathrm{id}-\mathrm{S}$, it's enough to check it when applied to $\mathrm{I}:=\mathrm{id}_{\Delta^{n} n}: \Delta^{\mathrm{n}} \rightarrow \Delta^{\mathrm{n}}$. Indeed:

$$
\begin{aligned}
\mathrm{h} \partial \sigma+\partial \mathrm{h} \sigma & =\mathrm{h} \partial \sigma_{*}(1)+\partial \mathrm{h} \sigma_{*}(1) \\
& =\sigma_{*}(\mathrm{~h} \partial(\mathrm{I})+\partial \mathrm{h}(1)) \\
& =\sigma_{*}(1-\mathrm{SI}) \\
& =\sigma_{*}(1)-\mathrm{S} \sigma_{*}(1) \\
& =\sigma-\mathrm{So}
\end{aligned}
$$

So it's enough to check $h \partial_{\mathrm{I}}+\partial \mathrm{hı}=\mathrm{I}-\mathrm{S}$.
Let Cone: C. $\left(\Delta^{n}\right) \rightarrow$ C. $_{+1}\left(\Delta^{n}\right)$ be the operation which sends a singular k-simplex $\sigma: \Delta^{k} \rightarrow \Delta^{n}$ to the singular $(k+1)$-simplex Cone $(\sigma): \Delta^{k+1} \rightarrow \Delta^{n}$ defined by

$$
\text { Cone }(\sigma)\left(x_{0}, \ldots, x_{k+1}\right):=x_{0} \cdot b+\left(1-x_{0}\right) \cdot \sigma\left(x_{1} /\left(1-x_{0}\right), \ldots, x_{k+1} /\left(1-x_{0}\right)\right),
$$

where $b:=1 /(n+1) \cdot(1, \ldots, 1)=$ barycenter of Δ^{n}.
[draw an example of $\sigma: \Delta^{k} \rightarrow \Delta^{n}$, and then draw Cone(σ) : $\Delta^{k+1} \rightarrow \Delta^{n}$]
Lemma: the above operation satisfies ∂° Cone $=$ id - Cone ${ }^{\circ} \partial$.
[Draw a picture to show why this looks plausible, and tell the students that the proof is left as an exercise.]

Inductive definition of S :

- For $n=0$, we define $S: C_{0}(X) \rightarrow C_{0}(X)$ to be the identity map.
- For $n \geq 1$, we define $S(1)$ for $\mathrm{I}:=\operatorname{id}_{\Delta^{\wedge} n}: \Delta^{n} \rightarrow \Delta^{n}$ by the formula $S(ı):=$ Cone(S($\left.\partial 1\right)$).

The RHS makes reference to $S: C_{n-1}(X) \rightarrow C_{n-1}(X)$, which is assumed to be already defined by induction.
[draw some examples in dimensions 0, 1, and 2 to unpack the above inductive definition.]

Inductive definition of h :

- For $\mathrm{n}=0$, we define $\mathrm{h}: \mathrm{C}_{0}(\mathrm{X}) \rightarrow \mathrm{C}_{1}(\mathrm{X})$ to be the zero map.
- For $n \geq 1$, we define $h(ı)$ for $ı:=\operatorname{id}_{\Delta^{\wedge} n}: \Delta^{n} \rightarrow \Delta^{n}$ by the formula $h(ו):=$ Cone $(ו-h(\partial ı)$).

The RHS makes reference to $h: C_{n-1}(X) \rightarrow C_{n}(X)$, which is assumed to be already defined by induction.

Finally, we check that the equation $\mathrm{h} \partial \sigma+\partial \mathrm{h} \sigma=\sigma-\mathrm{S} \sigma$ holds true.
We may assume by induction that the above equation holds true for all chains σ of degree $<n$ (it's easy to check for σ of degree 0).
As explained above, to prove the above equation for all chains of degree n, it's enough to argue that it holds true for $\mathrm{I}=\mathrm{id}_{\Delta^{\wedge} \mathrm{n}}$. And here we go:

```
\(\partial h ı={ }^{\text {def of } h} \quad \partial(\) Cone \((1-h \partial ı))\)
    \(=\) Lemma \(\quad\) I \(-\mathrm{h} \partial_{1}-\operatorname{Cone}\left(\partial_{ı}-\partial \mathrm{h} \partial_{1}\right)\)
    \(=\) induction \(\quad 1-\mathrm{h} \partial \mathrm{I}-\mathrm{Cone}\left(\mathrm{S} \partial \mathrm{I}+\mathrm{h} \partial \partial_{\mathrm{I}}\right)\)
    \(=\) def of S I-hдı-Sı
```


Final task:

Prove that $\forall c \in C .(X) \exists N \in \mathbb{N}$ such that $S^{N}(c) \in C .{ }^{U}(X)$.
It's enough to show this when c consists of a single singular n-simplex $\sigma: \Delta^{n} \rightarrow X$.
Pulling back the open cover U along the map $\sigma: \Delta^{n} \rightarrow X$ to an open cover U^{\prime} of Δ^{n}, it's enough to show that $\exists N \in \mathbb{N}$ such that $S^{N}(1) \in C . U^{\prime \prime}\left(\Delta^{n}\right)$.
[draw iterated barycentric subdivisions of an interval, and of a triangle.
Explain that our task is to show that the simplices become smaller and smaller.]

So, if we can prove the following lemma, we're good:

Lemma:

If $\sigma \subset \mathbb{R}^{n}$ is a straight－line simplex（the convex hull of $n+1$ points in R_{R}^{n} ）with diameter D ，then each of the $(n+1)$ ！straight－line simplices which occur in the barycenric subdivision on σ has diameter $\leq n /(n+1) \cdot D$ ．

Proof：
We first note that if $\sigma=\operatorname{conv}\left\{v_{0}, \ldots, v_{n}\right\}$ is a straight－line simplex in \mathbb{R}^{n} ，and $w \in \mathbb{R}^{n}$ is any point， then $\max _{\mathrm{v} \in \sigma} \operatorname{dist}(\mathrm{v}, \mathrm{w})=\max _{\mathrm{i}} \operatorname{dist}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{w}\right)$ ．I．e．the maximal distance to a point in σ is achieved at some vertex of σ ：

$$
\operatorname{dist}(v, w)=\left\|\sum x_{i} v_{i}-w\right\|=\left\|\sum x_{i}\left(v_{i}-w\right)\right\| \leq \sum x_{i}\left\|v_{i}-w\right\| \leq \max _{i}\left\|v_{i}-w\right\| \quad \text { because } \sum x_{i}=1 .
$$

The diameter of a simplex is therefore given by $\operatorname{diam}(\sigma)=\max _{\mathrm{i}, \mathrm{j}}\left\|\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{j}}\right\|$ ．
Let $\sigma=\operatorname{conv}\left\{\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}\right\}$ be a straight－line simplex with diameter D ，and let $\mathrm{T}=\operatorname{conv}\left\{\mathrm{w}_{0}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}$ be a simplex which occurs in the barycenric subdivision on σ ．We need to show：
$\forall i, j\left\|w_{i}-w_{j}\right\| \leq n /(n+1) \cdot D$ ．
If neither w_{i} nor w_{j} is the barycenter of σ ，then w_{i} and w_{j} are contained in some face of σ ，and we＇re done by induction（with a better constant）．

So we may asume that $w_{j}=b:=1 /(n+1) \cdot\left(v_{0}+\ldots+v_{n}\right)$ ．
We need to show：$\forall i\left\|w_{i}-b\right\| \leq n /(n+1) \cdot D$ ．
we＇ve seen \exists a vertex v_{k} of σ such that $\left\|w_{i}-b\right\| \leq\left\|v_{k}-b\right\|$ ．
So it＇s enough to show：$\forall k\left\|v_{k}-b\right\| \leq n /(n+1) \cdot D$ ．
The straight line through v_{k} and b intersects σ into a segment of length L ，and the ratio of lengths is always $\left\|v_{k}-b\right\| / L=n /(n+1)$ ，independently of σ ．

Therefore $\left\|v_{k}-b\right\|=n /(n+1) \cdot L \leq n /(n+1) \cdot D . \quad$ QED（lemma）
This finishes the proof of the small simplices theorem．QED

ニニニニニニニニニ
Tuesday week 6，MT 2023

Universal coefficient theorem．

Basic questions that the UCT tries to answer：
－Is $H_{*}(X, R)$ determined by $H_{*}(X, Z)$ ？
－Is $\mathrm{H}^{*}(\mathrm{X}, \mathrm{R})$ determined by $\mathrm{H}_{*}(\mathrm{X}$, 乙）？（And，if yes，how？）
input $=H_{*}(X$, ，$)$
Certainly，$C_{*}(X, R)$ and $C^{*}(X, R)$ are determined by $C_{*}(X, Z)$ ，via the formulas
$C_{*}(X, R)=C_{*}(X, Z) \otimes R \quad$ and $\quad C *(X, R)=\operatorname{Hom}_{\mathbb{Z}}\left(C_{*}(X, Z), R\right)$
Recall Hom ${ }_{\mathbb{Z}}$ just means homomorphisms of abelian groups.
The subscript ${ }_{\mathbb{Z}}$ means '飞-module', but a 飞-module is the same thing as an abelian group.
And $\mathbf{A} \otimes \mathbf{B}$ (also denoted $A \otimes_{Z} B$) is the ab group whose elements are formal sums $\sum_{i} a_{i} \otimes b_{i}$ with $a_{i} \in A$ and $b_{i} \in B$,
modulo the equivalence relation generated by $\left(a+a^{\prime}\right) \otimes b \sim a \otimes b+a{ }^{\prime} \otimes b$ and by $a \otimes\left(b+b^{\prime}\right) \sim a \otimes b+$ $\mathrm{a} \otimes \mathrm{b}^{\prime}$.
Alternatively, $A \otimes B$ is the quotient of $\oplus_{A} B$ by the subgroup generated by $\left(a+a^{\prime}\right) \otimes b-a \otimes b+a^{\prime} \otimes b$, or the quotient of $\oplus_{B} A$ by the subgroup generated by $a \otimes\left(b+b^{\prime}\right) \sim a \otimes b+a \otimes b^{\prime}$.

In order to formulate the UCT, one needs Ext and Tor which, just like Hom and \otimes, are bifunctors. They take two abelian groups as input, and produce a new abelian group.

Definition of Tor and Ext:
For any abelian group A, using that evey subgroup of a free abelian group is free, one can find a short exact sequence
$0 \longrightarrow$ Z $^{\oplus}-\mathrm{f} \rightarrow$ Z® $^{\ominus} \longrightarrow \mathrm{A} \longrightarrow 0$.
(The chain complex ... $0 \rightarrow 0 \rightarrow \mathbb{Z}^{\oplus \hookrightarrow} \rightarrow \mathbb{Z}^{\bullet 0}$ is called a free resolution of A.)

One then defines
$\operatorname{Ext}(\mathbf{A}, \mathrm{B}):=\operatorname{coker}\left(\mathrm{f}^{\star}: \Pi_{1} \mathrm{~B} \rightarrow \Pi_{\mathrm{J}} \mathrm{B}\right)$
and
$\operatorname{Tor}(\mathbf{A}, \mathbf{B}):=\operatorname{ker}\left(\mathrm{f}_{\mathrm{*}}: \oplus_{\mathrm{J}} \mathrm{B} \rightarrow \oplus_{\mathrm{l}} \mathrm{B}\right)$.
where we've applied the functors $\operatorname{Hom}(-, B)$ and $-\otimes B$ to the map $f: \mathscr{Z}^{\oplus\lrcorner} \rightarrow \breve{Z}^{\oplus 1}$, respectively.
Facts (I won't prove this):
$\operatorname{Ext}(A, B)$ is a contravariant functor of the variable A, and covariant of the variable B (just like Hom is).
$\operatorname{Tor}(A, B)$ is a covariant functor of each variable, and satisfies $\operatorname{Tor}(A, B)=\operatorname{Tor}(B, A)$ (just like $-\otimes-$).

Example:

$$
\begin{aligned}
& \operatorname{Ext}(\boxtimes / 2, B)=B /\{2 b: b \in B\} \\
& \operatorname{Tor}(\mathbb{Z} / 2, B)=\{b \in B: 2 b=0\}
\end{aligned}
$$

(can be seen by taking the free resolution of $\llbracket / 2$ given by $\boxtimes-2 \rightarrow \pi$.)
Note that
$\operatorname{Hom}(A, B)=\operatorname{ker}\left(f^{*}: \Pi_{1} B \rightarrow \Pi_{J} B\right)$ because that's $\operatorname{ker}\left(\operatorname{Hom}\left(\mathbb{Z}^{\oplus 1}, B\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}^{\oplus \jmath}, B\right)\right)$ and
$\mathbf{A} \otimes \mathbf{B}=\operatorname{coker}\left(f_{*}: \oplus_{J} B \rightarrow \oplus_{1} B\right)$ because that's coker($\mathbb{Z}^{\oplus\lrcorner} \otimes B \rightarrow \overbrace{}^{\oplus \oplus} \otimes B)$.
The second is harder to check:

Proof:

The map coker $\left(\mathbb{Z}^{\oplus} \otimes B \rightarrow \mathbb{Z}^{\oplus} \otimes B\right) \longrightarrow A \otimes B$ is visibly surjective.
Because for a typical element $\sum_{i} a_{i} \otimes b_{i} \in A \otimes B$, one can lift each a_{i} to \mathbb{Z}^{\oplus}.
We need to see that if $\sum_{i} x_{i} \otimes b_{i} \in \mathscr{Z}^{\oplus} \otimes B \mapsto \quad 0 \in A \otimes B$, then it comes from $\mathbb{Z}^{\oplus}{ }_{\otimes} B$.
The expression $\sum_{i} x_{i} \otimes b_{i}$ represents an element of $\oplus_{B}\left(\mathbb{Z}^{\ominus \rho}\right)$.
Since its image in $\oplus_{B} A$ represents zero in $A \otimes B$, it can be written as $\sum_{k} a_{k} \otimes\left(b_{k}{ }_{k}+b^{\prime \prime}\right)-a_{k} \otimes b_{k}^{\prime}-$ $\mathrm{a}_{\mathrm{k}}{ }^{\otimes} \mathrm{b}_{\mathrm{k}} \in \oplus_{\mathrm{B}} \mathrm{A}$.
Lift each $a_{k} \in A$ to some $x_{k}^{\prime} \in \mathbb{Z}^{\otimes 1}$ and consider the corresponding sum $\sum_{k} x_{k}^{\prime} \otimes\left(b_{k}^{\prime}+b_{k}{ }_{k}\right)-x_{k}^{\prime} \otimes b_{k}^{\prime}{ }^{\prime}$ $\mathrm{x}_{\mathrm{k}}{ }^{\otimes} \mathrm{b}^{\prime \prime}{ }_{\mathrm{k}} \in \oplus_{\mathrm{B}}\left(\right.$ ² $\left.^{\oplus}\right)$.
That new element of $\oplus_{B}\left(\mathbb{Z}^{\oplus 1}\right)$ differs from our original $\sum_{i} x_{i} \otimes b_{i}$ by something in $\oplus_{B} \operatorname{ker}\left(\mathbb{Z}^{\oplus 1} \rightarrow A\right)=$ $\oplus_{\mathrm{B}}\left(\widetilde{Z}^{\bullet \bullet}\right)$.
We have written $\sum_{i} x_{i} \mathrm{~b}_{\mathrm{i}} \in \oplus_{\mathrm{B}}\left(\mathbb{Z}^{\oplus \cdot}\right)$ as a sum of something in $\oplus_{\mathrm{B}}\left(\mathbb{Z}^{\bullet\lrcorner}\right)$ and something that represents 0 in $乙^{\bullet \bullet} \otimes B$.
\Rightarrow we have written our $\sum_{i} x_{i} \otimes b_{i} \in \mathbb{Z}^{\otimes \otimes} \otimes B$ as something in $\mathbb{z}^{\ominus \otimes} \otimes B$. QED

Theorem(universal coefficient theorem):

There exist natural, split short exact sequences
$0 \longrightarrow H_{n}(X, Z) \otimes R \longrightarrow H_{n}(X, R) \longrightarrow \operatorname{Tor}\left(H_{n-1}(X, Z), R\right) \longrightarrow 0$
$0 \longrightarrow \operatorname{Ext}\left(H_{n-1}(X, Z), R\right) \longrightarrow H^{n}(X, R) \longrightarrow \operatorname{Hom}\left(H_{n}(X, Z), R\right) \longrightarrow 0$

Proof:

The proof relies on the following observation:
The short exact sequence

$$
\begin{equation*}
0 \rightarrow Z_{n}(X) \longrightarrow C_{n}(X) \longrightarrow B_{n-1}(X) \rightarrow 0 \tag{*}
\end{equation*}
$$

can be interpreted as a short exact sequence of chain complexes

$$
0 \rightarrow \mathrm{Z.}(\mathrm{X}) \rightarrow \mathrm{C} .(\mathrm{X}) \rightarrow \mathrm{B}_{.-1}(\mathrm{X}) \rightarrow \mathbf{0}
$$

where the the $1^{\text {st }}$ and $3^{\text {rd }}$ terms are viewed as chain complexes with zero differential.
(Look at associated LES? In the associated LES of homology groups, the connecting homomorphism $\mathrm{B}_{-1}(\mathrm{X}) \rightarrow \mathrm{Z}_{\cdot-1}(\mathrm{X})$ is just the usual inclusion.

Applying the functors $-\otimes \mathrm{R}$ and $\operatorname{Hom}(-, \mathrm{R})$ to get two new short exact sequences of chain complexes

$$
0 \longrightarrow \mathrm{Z} .(\mathrm{X}) \otimes \mathrm{R} \longrightarrow \mathrm{C} .(\mathrm{X}, \mathrm{R}) \longrightarrow \mathrm{B}_{-1}(\mathrm{X}) \otimes \mathrm{R} \longrightarrow 0
$$

and

$$
0 \longrightarrow \operatorname{Hom}\left(\mathrm{~B}_{\bullet_{-1}}(\mathrm{X}), \mathrm{R}\right) \longrightarrow \mathrm{C}^{\star}(\mathrm{X}, \mathrm{R}) \longrightarrow \operatorname{Hom}(\mathrm{Z} .(\mathrm{X}), \mathrm{R}) \longrightarrow 0 .
$$

(Note: These two functors do not, in general send SES to SES. But (*) is a split SES, because $B_{n-1}(X)$ is a free abelian group. Recall, every subgroup of a free abelian group is free.)

We get corresponding LES in (co)homology:

$$
\ldots \longrightarrow B_{n}(X) \otimes R \longrightarrow Z_{n}(X) \otimes R \longrightarrow H_{n}(X, R) \longrightarrow B_{n-1}(X) \otimes R \longrightarrow Z_{n-1}(X) \otimes R \longrightarrow \ldots
$$

and

$$
\ldots \rightarrow \operatorname{Hom}\left(Z_{n-1}(X), R\right) \longrightarrow \operatorname{Hom}\left(B_{n-1}(X), R\right) \longrightarrow H^{\star}(X, R) \longrightarrow \operatorname{Hom}\left(Z_{n}(X), R\right) \longrightarrow
$$

$\operatorname{Hom}\left(B_{n}(X), R\right) \longrightarrow \ldots$
(Like above, the maps $B_{n}(X) \otimes R \rightarrow Z_{n}(X) \otimes R$ and $\operatorname{Hom}\left(Z_{n-1}(X), R\right) \rightarrow \operatorname{Hom}\left(B_{n-1}(X), R\right)$ are induced by the inclusion $B_{n}(X) \otimes R \hookrightarrow Z_{n}(X)$.)

We rewrite this as short exact sequences:

$$
0 \longrightarrow \operatorname{coker}\left(B_{n}(X) \otimes R \rightarrow Z_{n}(X) \otimes R\right) \longrightarrow H_{n}(X, R) \longrightarrow \operatorname{ker}\left(B_{n-1}(X) \otimes R \rightarrow Z_{n-1}(X) \otimes R\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow \operatorname{coker}\left(\operatorname{Hom}\left(Z_{n-1}(X), R\right) \rightarrow \operatorname{Hom}\left(B_{n-1}(X), R\right)\right) \longrightarrow H^{*}(X, R) \longrightarrow \operatorname{ker}\left(\operatorname{Hom}\left(Z_{n}(X), R\right) \rightarrow\right.
$$

$$
\left.\operatorname{Hom}\left(B_{n}(X), R\right)\right) \longrightarrow 0
$$

which we then recognise as

$$
0 \longrightarrow H_{n}(X, Z) \otimes R \longrightarrow H_{n}(X, R) \longrightarrow \operatorname{Tor}\left(H_{n-1}(X, Z), R\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow \operatorname{Ext}\left(\mathrm{H}_{n-1}(\mathrm{X}, \mathrm{Z}), \mathrm{R}\right) \longrightarrow \mathrm{H}^{*}(\mathrm{X}, \mathrm{R}) \longrightarrow \operatorname{Hom}\left(\mathrm{H}_{n}(\mathrm{X}, \text { 乙 }), \mathrm{R}\right) \longrightarrow 0
$$

in view of the fact that $\left(\ldots \rightarrow 0 \rightarrow B_{n}(X) \rightarrow Z_{n}(X)\right)$ is a free resolution of $H_{n}(X)$. Here, we've used that if $\ldots \rightarrow 0 \rightarrow Z^{\bullet .}-f \rightarrow Z^{\bullet \bullet}$ is a free resolution of A, then
$\mathbf{A} \otimes \mathbf{R}=\operatorname{coker}\left(\mathrm{f}_{\mathrm{*}}: \oplus_{\mathrm{J}} \mathrm{R} \rightarrow \oplus_{\mathrm{l}} \mathrm{R}\right.$)
$\operatorname{Tor}(\mathbf{A}, \mathbf{R})=\operatorname{ker}\left(\mathrm{f}_{*}: \oplus_{\mathrm{J}} \mathrm{R} \rightarrow \oplus_{\mathrm{I}} \mathrm{R}\right)$
$\operatorname{Ext}(\mathbf{A}, \mathbf{R})=\operatorname{coker}\left(f^{*}: \Pi_{1} R \rightarrow \Pi, R\right)$
$\operatorname{Hom}(\mathbf{A}, \mathbf{R})=\operatorname{ker}\left(f^{*}: \Pi_{1} R \rightarrow \Pi_{\jmath} R\right)$

Proof that these SES are split:
Recall that $0 \rightarrow Z_{n}(X) \longrightarrow C_{n}(X) \longrightarrow B_{n-1}(X) \rightarrow 0$ is split.
Pick a splitting, which gives us a retraction $Z_{n}(X) \leftarrow^{p}-C_{n}(X)$ of the natural inclusion.
The operation $-{ }^{\circ} p$ induces a splitting $\operatorname{Hom}\left(C_{n}(X), R\right) \leftarrow \operatorname{Hom}\left(Z_{n}(X), R\right)$ of the natural map.
Applying this to some $f \in \operatorname{ker}\left(\operatorname{Hom}\left(Z_{n}(X), R\right) \rightarrow \operatorname{Hom}\left(B_{n}(X), R\right)\right)=\operatorname{Hom}\left(H_{n}(X, Z), R\right)$ we get a map $f^{\circ} p: C_{n}(X) \rightarrow R$ that vanishes on $B_{n}(X)$.
That's the same as a map $C_{n}(X) \rightarrow R$ that vanishes when precomposed with $\partial: C_{n+1}(X) \rightarrow$ $\mathrm{C}_{n+1}(\mathrm{X})$,
i.e. an element of $C^{n}(X, R)$ in the kernel of $\delta: C^{n}(X, R) \rightarrow C^{n+1}(X, R)$, i.e., an element of $Z^{n}(X, R)$.

We may then compose with the quotient map $Z^{n}(X, R) \rightarrow H^{n}(X, R)$ to get a map $H^{*}(X, R) \leftarrow \operatorname{ker}\left(\operatorname{Hom}\left(Z_{n}(X), R\right) \rightarrow \operatorname{Hom}\left(B_{n}(X), R\right)\right)=\operatorname{Hom}\left(H_{n}(X, Z), R\right)$ ．

This construction provides a splitting of the natural map $H^{*}(X, R) \longrightarrow \operatorname{Hom}\left(H_{n}(X, Z), R\right)$ ．
The splitting is not natural because the retraction $Z_{n}(X) \leftarrow^{p}-C_{n}(X)$ is not natural． It cannot be picked simultaneously for all spaces X in such a way that $\forall X \rightarrow Y$ ，the diagram $\mathrm{Z}_{\mathrm{n}}(\mathrm{X}) \longleftarrow-\mathrm{C}_{\mathrm{n}}(\mathrm{X})$

commutes．
（See Hatcher p． 264 for why the UCT homology short exact sequence is split．）
QED

$$
0 \longrightarrow H_{n}(X, Z) \otimes R \longrightarrow H_{n}(X, R) \longrightarrow \operatorname{Tor}\left(H_{n-1}(X, Z), R\right) \longrightarrow 0
$$

Work out examples of UCT：
－（co）homology of R P^{2} ．
$\mathrm{H}_{*}\left(\right.$ R $\left.^{\circ} \mathrm{P}^{2}, ~ 飞\right)=[飞, ~ 飞 / 2,0,0,0, \ldots]$

$\mathrm{H}^{*}\left(\right.$ R $\left.^{2} \mathrm{P}^{2}, ~ 飞\right)=[飞, 0, ~ 飞 / 2,0,0, \ldots]$

－（co）homology of Klein Bottle．（exercise）
Corollary（excision for H^{*} ）：
If $E \subset A \subset X$ and the closure of E is contained in the interior of A ，then the natural map $H^{*}(X, A)$ $\rightarrow H^{*}(X I E, A \backslash E)$ is an isomorphism．

Proof：
The universal coefficient theorem for $\mathrm{H}^{*}(\mathrm{X}, \mathrm{A})$ and for $\mathrm{H}^{*}(\mathrm{XIE}, \mathrm{A} \mid E)$ are short exact sequences

$$
0 \longrightarrow \operatorname{Ext}\left(\mathrm{H}_{n-1}(\mathrm{X}, \mathrm{~A} ; \mathrm{Z}), \mathrm{R}\right) \longrightarrow \mathrm{H}^{*}(\mathrm{X}, \mathrm{~A} ; \mathrm{R}) \longrightarrow \operatorname{Hom}\left(\mathrm{H}_{n}(\mathrm{X}, \mathrm{~A} ; ~ 乙), \mathrm{R}\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow \operatorname{Ext}\left(\mathrm{H}_{n-1}(X \backslash E, A \backslash E ; ~ ъ), R\right) \longrightarrow H^{*}(X \backslash E, A \backslash E ; R) \longrightarrow \operatorname{Hom}\left(H_{n}(X \backslash E, A \backslash E ; ~ ъ), R\right) \longrightarrow 0 .
$$

By the naturality of the UCT，the inclusion $\mathrm{C} .(\mathrm{XIE}, \mathrm{A} \backslash \mathrm{E}) \rightarrow \mathrm{C} .(\mathrm{X}, \mathrm{A})$ induces comparison maps that fit into a commutative diagram．

The $1^{\text {st }}$ and $3^{\text {rd }}$ vertical arrows induce isomorphisms by the excision theorem for homology (using that $\operatorname{Ext}(-, R)$ and $\operatorname{Hom}(-, R)$ are functors). So we're done by the 5 lemma. QED

