Exercise sheet 4. All lectures.

Part A.

Question 4.1. Let f : X — Y be a regular map between varieties. Suppose that X is quasi-projective.
Let 0 : Y — X be a regular map such that f oo = Idy (such a map is called a section of f). Show that
o(Y) is closed in X.

Solution. Note that we have by construction
oY)={zx e X|(oo f)(zx) =z}

Let dx : X = X x X (resp. Ax C X xX) be the diagonal map (resp. the diagonal) of X. Let I'yoy € X x X
be the graph of o o f (see Prop.-Def. 12.6). By the above, we have

O'(Y) = 5;1(AX N Fgof)
and this set is closed because Ax and I'yof are closed (because X is separated).

Part B.

Question 4.2. Suppose in this exercise that char(k) = 0. Find the singularities of the following curves C
in k2. For each singular point P € C compute the dimension of mp/m2 as a k-vector space. Here mp is

the maximal ideal of O¢ p.
(1) Z(a® + y° — ay)
(2) Z(y* + 2 + y* — 2?)
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You may assume that the polynomials 2% + 4% — zy and y? 4+ 2* + y* — 23 are irreducible.

Solution. (1) Note that dim(C) = 1 by Krull’s theorem and by Theorem 8.7. Thus we need to find the
points of C' where the gradient of 2% + y% — 2y vanishes. The gradient of 2% + 5 — 2y is (62° — y, 6y° — ).

Hence we need to solve the equations 25 4 ¢ — 2y = 62° — y = 6y° — 2 = 0. We have
(2/6)(62° —y) — (y/6)(6y° — 2) + 2y° — 2y = 2° +y° — 2y
and thus these equations are equivalent to
2(y® —x) =62° —y =6y° — 2 =0.

Now if y = 0 then 2 = 0. If y # 0 then y® = x = 2/6 so y = 0, which is a contradiction. So we must have
x =y =0. So (0,0) is the only singular point of C'.

For P = (0,0) the dimension of mp/m2 as a k-vector space cannot be 1, since otherwise the ring O¢ p
would be regular (apply Proposition 13.3). Since mp is generated as a k[x, y]-module by the elements z and

y, we see that mp/m% has dimension at most 2. Hence mp/m% has dimension 2.
(2) The reasoning is similar. Solve y? + x* + y* — 23 = 42% — 322 = 2y + 4y = 0. Combining, we obtain
4(y? + 2t + oyt — 1) + (1/4 — x)(da® — 32%) — y(2y + 4y°) = (—3/4)2* + 25> = 0.

Now if # # 0 then x = 3/4 since 42°—32? = 0 and so y? = 27/128. But then y(2y+4y3) = 6503409/67108864
which is a contradiction. So we have x = 0 and also y = 0. We conclude again that the origin is the only
singular point of C. By the same reasoning as above, we see that mp/m% has dimension 2.



Question 4.3. Let C be the plane curve considered in (1) of question 4.2. Consider the blow-up B of C
at each of its singular points in turn. How many irreducible components does the exceptional divisor of B

have? Is B nonsingular?

Solution. Consider the curve Z(z17o — 2% — 2§) C k2 of (1) of question 4.2. Use the terminology of

Propositions 14.1 and 14.2, letting n = 2 and X = Z(xy25 — 2% —25) = Y (note that the point to blow-up is
the origin by the solution of question 4.2 (1) so we do not have to translate X). We first compute ¢~!(X).
Let 7 : k™ x P*(k) — k™ be the natural projection. By definition

¢71(X) = 7r71(X) NZ =7Z(x1y2 — T2y1,T12T2 — z? - xg)
Let Uy == {[1,Y3] | Y5 € k} C PL(k). In k? x Uy, we have

¢ HX) N (K x Uh) = Z(arys — w9, 2122 — 2§ — 3) = Z(x1ys — 2, 27 ys — 2§ — 2y3)
= Z(zrys — wo, 21 (Y2 — 21 — 2193)) = L(w1y2 — w2, 21) UZ(21y2 — 22,92 — 1 — 2195))
= {0} x Uy UZ(z1y2 — 22,y2 — 2] — 25y53)
Now Z(x1y2 — T2,y2 — 2] — x3y3) does not contain {0} x U; (since setting 1 = x5 = 0 implies that
y2 = 0) so we have BI(X,0) N (k? x Uy) = Z(z1y2 — T2,y2 — =] — 3y3) by question ?? (2). Finally, note
that Z(z1ya — 22,y2 — 21 — 23y3) N ({0} x Uy) contains only the point {0} x {[1,0]}. In other words, the
intersection of the exceptional divisor of BI(X,0) with {0} x U; is the point {0} x {[1,0]}.

Let now Uy := {[Y31,1]|Y; € k} C PY(k). We compute as before
o~ HX) N (k? x Uy) = Z(xy — xoy1, 1129 — 25 — 25) = Z(21 — 22y1, 1175 — 25y% — 25)
= Z(x1 — way1, w2) UZ(21 — 22y, y1 — 2397 — a3) = {0} x U2 UZ(w1 — 2ay1, 91 — w3y} — 73)
We conclude as before that
BI(X,0) N (k* x Us) = Z(z1 — zay1,y1 — z3y5 — 3)

We compute Z(x1 — xay1, y1 — r3y® — x3) N ({0} x Uz) = {0} x {[0,1]}. So the intersection of the exceptional
divisor of BI(X,0) with {0} x Us is the point {0} x [0, 1].

Putting everything together, we see that the exceptional divisor of BI(X, 0) consists of the points {0} x {[1, 0]}
and {0} x {[0,1]}. In particular, the exceptional divisor of BI(X,0) has two irreducible components.

We now check nonsingularity. We only have to check the nonsingularity of BI(X,0) at {0} x {[1,0]} and
{0} x {[0, 1]} since BI(X, 0)\{{0} x {[1,0]}uU{0} x {[0, 1]} } is isomorphic to X\{0} and X\ {0} is nonsingular
by the solution of question 4.2 (1).

We first check nonsingularity at {0} x {[1,0]}. Let Q1 := z1y2 — 22 and Q2 := y2 — 2] — z3y3. We have

3=Q1 5= 3%2@1 _ 0 -1 0
%Qz 3%2@2 a%gQ2 —do}  —dadyl 1223y

and evaluating at 0 we get the matrix
0 -1 0
0 0 1

which has rank 2. Using Lemma 13.5 we see that B1(X, 0) is nonsingular at {0} x {[1,0]}.
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We now check nonsingularity at {0} x {[0,1]}. Let Q1 := 21 — z2y; and Q2 := y; — 23y} — x3. We have

%Ql 3%2621 3%}2@1 (1 0 0
T g 20s ) "\ 0 —asio st 1 - ety

and evaluating at 0 we get the matrix
100
0 0 1

which again has rank 2. Again using Lemma 13.5 we see that BI(X,0) is nonsingular at {0} x {[0, 1]}.
So all in all BI(X,0) is nonsingular and its exceptional divisor has two irreducible components (which are
points).

Question 4.4. Let V C k? be the algebraic set defined by the equation xyz2 = 0. Show that BI(V,0) has

two disjoint irreducible components and that each of these components is isomorphic to k.

Solution. Use the terminology of questions Proposition 14.1 and 14.2, letting n = 2 and X = Z(z122) =Y
(note that the point to blow-up is the origin so we do not have to translate X). We first compute ¢~ !(X).
Let 7 : k™ x PY(k) — k™ be the natural projection. By definition

¢~ X) =71 X) N Z = Z(z1y2 — woyr, 2122
Let Uy == {[1,Y2] | Y5 € k} C PL(k). In k? x Uy, we have

¢71(X) N (kQ X Ul) = Z(Ilyg — T, I1I2) = Z(Ilyz — .IQ,ZEl) U Z(Ilyg — IQ,CCQ)
= {0} X U1 U Z(Z‘lyg,l‘g) = {0} X U1 U Z($1,Z‘2) U Z(yg,xg) = {0} X U1 U Z(yg,l‘g)

Now note that by definition BI(X,0) is the closure of ¢~!(X\0). In particular, BI(X,0) is the union of the
closures of ¢~1(Z(x1)\0) and ¢~1(Z(z1)\0), ie the blow-ups of Z(z1) and of Z(z5), respectively. Now note
that ¢~ (Z(x1)\0) N (k% x Uy) = 0 (see the solution to Q2 (3)). Noting also that Z(ya, z2) is irreducible, we
see that BI(X,0) N (k? x Uy)) = Z(y2, 22).

A completely similar reasoning with U, in place of U; shows that BI(X,0) N (k? x Us) = Z(y1,x1). Hence
BI(X,0) C Z(y2,22) UZ(y1,21) C k? x P1(k), where we view the polynomials x1, 2, 1,92 as homogenous
polynomials in the y-variables. On the other hand we have Z(ys2, z2) N Z(y1, z1) = Z(x1, 22, y1,y2) = § and
Z(ya, x2) ~ Z(y1, 1) ~ k. Since BI(X,0) has two irreducible components of dimension 1 by the above, we
thus have BI(X,0) = Z(y2, x2) U Z(y1, x1)-

Question 4.5. Let C' C k? be defined by the equation P(z1,75) = 0, where P(x1,z2) is an irreducible
polynomial. Suppose that C goes through the origin 0 of k% and is non singular there. Show that the natural
morphism BI(C,0) — C is an isomorphism. [Hint: construct an inverse map directly, without looking at

coordinate charts]
Solution. Use the terminology of questions Proposition 14.1 and 14.2, letting n = 2 and
X = Z(P(Ihl‘g)) =Y

(note that the point to blow up is the origin so we do not have to translate X). We first compute ¢~!(X).
Let 7 : k™ x P}(k) — k™ be the natural projection. By definition

¢ HX) =1 HX)NZ = L(z1y2 — 291, P(21,22)).
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By assumption, we have either have P,,(0,0) # 0 or P,,(0,0) # 0. We suppose that P, (0,0) # 0, the
reasoning being similar if P,,(0,0) # 0. Also, note that by assumption, we have P(0,0) = 0. This implies
that we can write

P(l’l,xg) = A(xQ) + le(xlva)

where Q(0,0) # 0 and A(0) = 0. In particular, xo|A(x2). Write B(x2) = A(x2)/x2. We define a map
o: X — k" x PL(k) by the formulae

o(X1, Xo) = (X1, X2) x [B(X2), —Q(X1,X2)] (*)

lf Q(Xl,XQ) 7é 0 and
(X1, X2) == (X1, Xo) x [ X1, Xp] (*x)

otherwise. We have
B(X2) Xy — (—Q(X1,X2))X1 =0

so that whenever (X7, X5) # (0,0) and (X7, X3) € X, the formulae (*) and (xx) give the same point in
k™ x PL(k). Also, by construction, o(X) C ¢~ 1(X) and ¢ o o = Idx. Now by Question 4.1, the set o(X) is
closed. The set o(X) is thus closed and irreducible and it is isomorphic to X as a closed subvariety of ¢ ~1(X)
(since ¢|,(x) provides an inverse to 0 : X — ¢(X)). Finally, 0(X) is not contained in {0} x P*(k). Hence
it is contained in BI(X,0) (see Proposition 14.2) and it thus coincides with it since B1(X,0) is birational to
X and thus has the same dimension as X. The map o thus provides an isomorphism between Bl(X,0) and
X.

Part C.

Question 4.6. (1) Let f : X — Y be a dominant morphism of varieties. Suppose that Y is irreducible.
Show that dim(X) > dim(Y").

(2) Let f : X — Y be a dominant morphism of irreducible varieties. Suppose that the field extension
k(X)|k(Y) is algebraic. Show that there are affine open subvarieties U C X and W C Y such that
f(U) =W and such that the map of rings Ox (U) — Oy (V) is injective and finite.

(3) Let f: X — Y be a dominant morphism of irreducible quasi-projective varieties. Show that there is
a y € Y such that we have dim(f~1({y})) > dim(X) — dim(Y). [Hint. Reduce to the situation where Y
18 affine and apply Noether’s normalisation lemma to show that you may assume wlog that Y = k™ for
some n. Now use the existence of transcendence bases and (2) to show that there is an open subvariety
U C X and an open subvariety W of k3m(X)=dim(Y) s pn gyeh that flu factors as a finite and surjective
morphism U — W, followed by the projection to k™. Now deduce the result from (1) and a computation of
the dimension of the fibres of the projection k3™(X)=dim(Y) s g n )

(4) Deduce that in the situation of (3), the set of y € Y such that we have dim(f~*({y})) > dim(X)—dim(Y")
is dense in Y.

Solution. (1) Let {X;} be the irreducible components of X. Then f(X;) is irreducible for all 7 and hence the

closure f(X;) is also irreducible for all ¢ (by question 2.5 (1)). Hence we must have U; f(X;) = Y, otherwise f

is not dominant. Now if f(X;) # Y for all i then Y is not irreducible, which is impossible. So there is an index

ip such that f(X;,) =Y. In that case we have a field extension x(X;,)|<(Y) and thus dim(X;,) > dim(Y")
by Proposition 9.2. In now follows from the definition of dimension that dim(X) > dim(Y").
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(2) We first prove the following statement of commutative algebra. Let ¢ : A — B be a homomorphism of
finitely generated integral k-algebras. Suppose that Spm(¢)(Spm(B)) is dense in Spm(A) and suppose that
the induced map Frac(¢) : Frac(4) — Frac(B) is an algebraic extension of fields. Then there is an element
f € A such that the induced map A[f~!] — B[¢(f) ] is injective and finite.

To prove this assertion, note that by question 1.5 we already know that under the given assumptions, ¢
must be injective. Note also that since we have a commutative diagram

Frac(A) M Frac(B)

|, ]

A———B

all whose maps are injective, the induced map A[f~1] — B[¢(f)~!] is injective for any choice of f € A\{0}
(remember that A and B are integral domains). Thus we only have to show that there is f € A\{0} such
that the induced map A[f~!] — B[¢(f)™!] is finite. Now let by,...,b; be generators of B as a k-algebra.
By assumption, each b;/1 € Frac(B) satisfies a monic polynomial equation with coefficients in Frac(A). Let
f € A be the product of the denominators of all the coefficients of all these equations. Note that B[¢(f)™}]
is generated as a k-algebra by 1/¢(f) and by the elements b;/1 (use Lemma 5.3 in CA). In particular,
Blo(f)~!] is generated by the b;/1 as a A[f~!]-algebra. On the other hand, by construction, the elements
b;/1 all satisfy integral equations over A[f~!]. Hence A[f~!] — B[#(f)~!] is a finite map of rings (see
section 8 in CA).

Note that the fact that A[f~1] — B[¢(f)~!] is injective and finite implies that the induced map

Spm(B[¢(f)~']) — Spm(A[f 1)
is surjective (use Th. 8.8 and Cor. 8.10 in CA).

Returning to the problem at hand, note that we may wlog assume that X and Y are affine (take an affine
open Y’ in Y and an affine open X’ in f~1(Y”) and replace X by X’ (resp. Y by Y’). Applying the result
of commutative algebra that we just proved to A = Ox(X) and B = Oy (Y) we obtain the desired result.

(3) Note that Th. 9.1 (Noether’s normalisation lemma), Prop. 8.12, Th. 8.8 and Cor. 8.10 in CA imply
that for some n > 0 there is a surjective morphism h : Y — k4™() such that the fibre h=1(v) of h over ©
is finite for all ¥ € k™. Since the fibres of the composed morphism h o f are finite disjoint unions of fibres
of f, we may thus replace f by h o f and suppose that Y = k™ for some n > 0.

Now consider the field extension x(X)|k(Y). Choose a transcendence basis by,...,b5 € k(X) of k(X)
over x(Y). Write x(Y) = (k") = k(x1,...,2,). The set x1,...,2n,b1,...,bs is then by construction

a transcendence basis for x(X) over k. Since we know that dim(k™) = n (see Theorem 8.4), we de-
duce from Proposition 9.2 that § = dim(X) — dim(Y’). Now the subfield «(Y)(b1,...,b5) of k(X) is
isomorphic as a k-algebra to k(z1,...,Zn,¥1,--.,¥s), which is the function field of £"*%. The inclusion
E(x1,...,2n) < k(z1,...,%n,y1,...,Ys) is induced by the natural projection morphism 7 : k"+° — k" (un-

roll the definitions). Hence we have a rational dominant map a : X — k" such that the rational dominant
map associated with the morphism f : X — Y is the composition of a with the rational dominant map
associated with 7 (apply Proposition 9.4 and question 3.4). Applying (2) we obtain open affine subvarietes
U C X and W C k™19 and a surjective morphism g : U — W, which represents a. Let now now f’ = mog.
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Note that by question 3.4 again, we have ' = f|y. Let y € #(W) = f/(U) = f(U). We compute

dim(f~!(y)) > dim(f ' (y) NU) = dim((f") " (y))
= dim(¢ (7 (y) N W)) = dim(z*(y) N W) = dim(7 " (y)) = 6 = dim(X) — dim(Y)

Here we used question 2.7 for the first inequality and we used (1) for the inequality
dim(g~" (7~ (y) N W) > dim(z "} (y) N W)
(remember that g is surjective). To justify the equality
dim(r~ (y) N W) = dim(r~(y)) = 8
note that 7=1(y) ~ k°. We thus have dim(7~!(y) N W) = dim(7~!(y)) by Proposition 9.2 and we have

dim(7~*(y)) = 6 by Theorem 8.4.

(4) Let U C Y be an open subvariety. Applying (3) to the morphism f~1(U) — U, we see that there is a
point y € U such that dim(f~1(y)) > dim(f~*(U)) — dim(U) = dim(X) — dim(Y). Since U was arbitrary,
this shows what we want.

Question 4.7. (1) Show that all the morphisms from P2(k) to P1(k) are constant. [Hint: Use question 4.6

and the projective dimension theorem.]

(2) Using (1) or using another method, show that the morphisms from P"(k) to P!(k) are constant.

Solution. (1) Let f : P?(k) — P!(k) is a morphism. Suppose for contradiction that f is not constant.
By Corollary 12.10, the image f(P2?(k)) is closed, and it is also irreducible, since P?(k) is irreducible.
Hence f(P?(k)) = P'(k) (because dim(P'(k)) = 1). Now let yi,y2 € P(k) be such that y; # yo
and dim(f~!(y1)),dim(f"'(y1)) > dim(P?*(k)) — dim(P*(k)) = 1. This exists by question 4.6. Since
dim(P?(k)) = 2 we then actually have dim(f~!(y;)) = dim(f~*(y1)) = 1. Let C; (resp. Cs) be an ir-
reducible component of dim(f~*(y1)) (resp. dim(f~*(y2))) such that dim(C;) = dim(Cs) = 1. We have
dim(C7) 4+ dim(Cs) — 2 = 0 and so by Proposition 11.2 we have C; N Cy # (. This is a contradiction.

(2) Let n > 2. First note that P?(k) is isomorphic to the closed subvariety Z(z3,z4,...,z,) of P*(k). To
see this note that the image of the morphism ¢ : P2(k) — P"(k) given by the formula
[Xo,Xl, XQ] — [Xo, X1,X5,0... ((n — 2)—times) ce 70]
is Z(x3,24,...,2,). This morphism is an isomorphism onto Z(z3, 4, ..., T,) because the morphism
P (k)\Z(xg, 21, z2) — P?(k)
given by the formula
[Xo, X1, Xa, ..., Xp] = [Xo, X1, Xo]
gives an inverse to ¢ when restricted to Z(zs, x4, ..., Ty).

Let now f : P*(k) — P'(k) be a morphism. Suppose for contradiction that f is not constant. Let
01,72 € P"(k) be two points such that f(71) # f(¥2). Let M be an invertible (n 4+ 1) x (n + 1)-matrix such
that M([1,0,0,...,0]) = v; and M([0,1,0,0,...,0]) = 3. Let ¢ps : P*(k) — P™(k) be the automorphism
defined by M (see question 2.8). The morphism f o ¢y ot : P?2(k) — P1(k) is then not constant, which is a
contradiction by (1).
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