Infinite Groups

Cornelia Druţu

University of Oxford

Part C course MT 2023, Oxford

Inspirational quotation about Mathematics

William Thurston: "As one reads mathematics, one needs to have an active mind, asking questions, forming mental connections between the current topic and other ideas from other contexts, so as to develop a sense of the structure, not just familiarity with a particular tour through the structure."

Burnside Theorem and applications

Theorem (Burnside's Theorem)

If $A \subset End(V)$ is a subalgebra which acts absolutely irreducibly on a finite-dimensional vector space V, then A = End(V). In particular, if $G \leqslant End(V)$ is a subsemigroup acting irreducibly, then G spans End(V) as a vector space, i.e. $\mathbb{K}[G] = End(V)$.

Theorem

Suppose that $G \leq \operatorname{GL}_n(\mathbb{K})$ is irreducible and that

$$|\{\operatorname{tr}(g)\mid g\in G\}|=q<\infty.$$

Then $|G| \leq q^{n^2}$.

Second application to Burnside. Nilpotent and unipotent.

Corollary

Suppose that $G \leq \operatorname{GL}_n(\mathbb{K})$ is completely reducible and that $g^k = 1, \ \forall g \in G$. Then $|G| \leq k^{n^3}$.

Proof. See Ex. Sheet 4.

- $h \in End(V)$ is nilpotent if $h^k = 0$ for some k > 0
- \Leftrightarrow in some basis, h can be written as an upper triangular matrix with zeroes on the diagonal.
- \Leftrightarrow the only eigenvalue of h is 0.
- $g \in End(V)$ is unipotent if g = id + h, where h is nilpotent
- \Leftrightarrow the only eigenvalue of g is 1.
- $g \in End(V)$ is quasi-unipotent if g^k is unipotent for some k > 0
- \Leftrightarrow all the eigenvalues of g are roots of unity.

A subgroup G < GL(V) is unipotent (respectively quasi-unipotent) if every element of G is unipotent (respectively, quasi-unipotent), G is unipotent (respectively, quasi-unipotent).

Kolchin's theorem

Theorem (Kolchin's theorem)

Suppose that $\mathbb{K} = \overline{\mathbb{K}}$ and G < GL(V) is a unipotent subgroup. Then, for an appropriate choice of basis, G is isomorphic to a subgroup of the group of invertible upper-triangular matrices $\mathcal{T}_n(\mathbb{K})$. In particular G is nilpotent.

Proof. The conclusion is equivalent to the statement that G preserves a full flag

$$0 \subset V_1 \subset \ldots \subset V_{n-1} \subset V$$
,

where $i = \dim(V_i)$ for each i.

The proof is by induction on the dimension n of V.

Clear for n = 1.

We assume that n > 1 and that the statement is true for dimensions < n.

Proof of Kolchin's theorem continued

Suppose first that the action of G on V is reducible: G preserves a proper subspace $V' \subset V$.

We obtain two induced actions of G on V' (by restriction) and on V'' = V/V' (by projection).

Both actions preserve full flags in V', V'' (induction assumption), and the combination of these flags yields a full G-invariant flag in V.

Assume now that the action of G on V is irreducible.

For $g \in G$ arbitrary the endomorphism g' = g - I is nilpotent, hence it has zero trace.

Therefore, for every $x \in G$, we have

$$tr(g'x) = tr(gx - x) = tr(I) - tr(I) = 0.$$

By Burnside's theorem, G spans $End(V) \Rightarrow$ for each $x \in End(V)$ and each $g \in G$, tr(g'x) = 0.

 $au: End(V) \times End(V) \to \mathbb{K}$ is nondegenerate $\Rightarrow g' = 0$ for all $g \in G$, i.e. $G = \{1\}$.

Infinite Groups

Variation of Kolchin's theorem

Theorem (Variation of Kolchin's theorem)

Suppose $\mathbb{K}=\bar{\mathbb{K}}$, G< GL(V) quasiunipotent and, moreover, there exists an upper bound α on the orders of eigenvalues of elements $g\in G$. Then G contains a finite index subgroup isomorphic to a subgroup of the group $\mathcal{U}_n(\mathbb{K})$ of upper triangular matrices with 1 on the diagonal. The index depends only on V and on α . In particular G is virtually nilpotent.

Proof. By induction on the dimension of V.

As before, it suffices to consider the case when G acts irreducibly on V. The orders of the eigenvalues of elements of G are uniformly bounded \Rightarrow the set of traces of elements of G is a certain finite set $C \subset \mathbb{K}$ of cardinality $q = q(\alpha)$.

Our first application to Burnside $\Rightarrow G$ is finite, of cardinality at most q^{n^2} , where $n = \dim V$.

Solvable linear groups

Theorem (Lie-Kolchin-Mal'cev Theorem)

Let $G \leq GL(V)$ be solvable linear, with $n = \dim V$ (G solvable linear of degree n). Then G has a triangularizable normal subgroup K of finite index at most $\mu(n)$, a number that depends only on n.

Definition

Let ${\mathcal X}$ and ${\mathcal Y}$ be two classes of groups.

A group G is \mathcal{X} -by- \mathcal{Y} if there exists a short exact sequence

$$\{1\} \longrightarrow \textit{N} \stackrel{\textit{i}}{\longrightarrow} \textit{G} \stackrel{\pi}{\longrightarrow} \textit{Q} \longrightarrow \{1\}\,,$$

such that $N \in \mathcal{X}$ and $Q \in \mathcal{Y}$.

Solvable linear groups versus nilpotent and polycyclic

Corollary

Let G be a solvable linear group of degree n.

- (i) G is virtually unipotent-by-abelian;
- (ii) (the Zassenhaus Theorem) the derived length of G is at most $\beta(n) := n + \log_2 \mu(n)$.

This can be combined with the following general result.

Theorem

Every nilpotent subgroup of $GL(n,\mathbb{Z})$ is finitely generated.

The two previous results imply the following.

Corollary

Every finitely generated solvable group linear over \mathbb{Z} is polycyclic.

Solvable groups linear over $\mathbb Z$

Proof. Such a group G has a finite index subgroup that is unipotent-by-abelian, hence a finite index normal subgroup N that is polycyclic.

The quotient G/N is solvable and finite, hence noetherian, hence polycyclic. Hence G is polycyclic.

The converse is also true.

Theorem (Auslander's Theorem)

Every polycyclic group is linear over \mathbb{Z} .

Corollary

Every polycyclic group is virtually (finitely generated nilpotent)-by-(f.g. abelian).

Another comparison between solvable and polycyclic

We have thus obtained the following way of distinguishing polycyclic groups among solvable groups.

Theorem

Given a f.g. solvable group G, the following are equivalent:

- G is polycyclic;
- G is linear over \mathbb{Z} .