B4.3 Distribution Theory

Sheet 2 - MT23

Differentiation, homogeneous distributions and example of distribution defined by principal value integral

Only work on the questions from Section B should be handed in.

Section A

1. Let $f, g \in \mathrm{C}^{1}(\mathbb{R})$ and define

$$
u(x)= \begin{cases}f(x) & \text { if } x<0 \\ g(x) & \text { if } x \geq 0\end{cases}
$$

Explain why

$$
\left\langle T_{u}, \phi\right\rangle=\int_{\mathbb{R}} u(x) \phi(x) \mathrm{d} x, \quad \phi \in \mathscr{D}^{\prime}(\mathbb{R})
$$

is a distribution on \mathbb{R} and calculate the distributional derivative T_{u}^{\prime}. What can you say about T_{v} corresponding to the function

$$
v(x)= \begin{cases}f(x) & \text { if } x<0 \\ a & \text { if } x=0 \\ g(x) & \text { if } x>0\end{cases}
$$

where $a \in \mathbb{C}$ is a constant that is different from both $f(0)$ and $g(0)$?

Solution: Note that u is piecewise C^{1} (meaning that exists an at most finite set of points $F \subset \mathbb{R}$, such that u is C^{1} on $\mathbb{R} \backslash F$ and the one-sided limits $u\left(x_{0}+\right), u\left(x_{0}-\right)$, $u^{\prime}\left(x_{0}+\right), u^{\prime}\left(x_{0}-\right)$ exist in \mathbb{C} for each $\left.x_{0} \in F\right)$. In our case we of course have that $F=\{0\}$ and that $u(0+)=g(0), u(0-)=f(0), u^{\prime}(0+)=g^{\prime}(0), u^{\prime}(0-)=f^{\prime}(0)$. In particular, u is therefore locally integrable and so T_{u} defines a distribution on \mathbb{R}. By definition of distributional derivative we find using integration by parts (that we may use on each of the intervals $(-\infty, 0)$ and $(0, \infty)$ because u is piecewise $\left.\mathrm{C}^{1}\right)$:

$$
\begin{aligned}
\left\langle T_{u}^{\prime}, \phi\right\rangle & =-\left\langle T_{u}, \phi^{\prime}\right\rangle=-\int_{\mathbb{R}} u(x) \phi^{\prime}(x) \mathrm{d} x \\
& =-\int_{-\infty}^{0} f(x) \phi^{\prime}(x) \mathrm{d} x-\int_{0}^{\infty} g(x) \phi^{\prime}(x) \mathrm{d} x \\
& =-[f(x) \phi(x)]_{x \rightarrow-\infty}^{x=0}+\int_{-\infty}^{0} f^{\prime}(x) \phi(x) \mathrm{d} x-[g(x) \phi(x)]_{x=0}^{x \rightarrow \infty}+\int_{0}^{\infty} g^{\prime}(x) \phi(x) \mathrm{d} x \\
& =-f(0) \phi(0)+g(0) \phi(0)+\int_{\mathbb{R}}\left(f^{\prime} \mathbf{1}_{(-\infty, 0)}+g^{\prime} \mathbf{1}_{(0, \infty)}\right) \phi \mathrm{d} x .
\end{aligned}
$$

Therefore $T_{u}^{\prime}=(g(0)-f(0)) \delta_{0}+T_{f^{\prime} \mathbf{1}_{(-\infty, 0)}+g^{\prime} \mathbf{1}_{(0, \infty)}}$.
Since $u(x)=v(x)$ for all $x \in \mathbb{R} \backslash\{0\}$ we have in particular that they agree almost everywhere, so the corresponding distributions are the same: $T_{u}=T_{v}$. Consequently also $T_{v}^{\prime}=T_{u}^{\prime}$.

Comment on notation. If you have seen the fundamental lemma of the calculus of variations (covered in lectures during Week 3) you will know that a locally integrable function w is uniquely determined as an $\mathrm{L}_{\text {loc }}^{1}$ function (so almost everywhere) by the corresponding distribution T_{w}, and that we therefore may directly identify w and T_{w} and simply write w also for the corresponding distribution. This is often convenient and we employ this convention in question 2.
2. (a) Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is piecewise continuous ${ }^{1}$ and $k \in \mathbb{R}$, then the function $u(x, t)=f(x-k t),(x, t) \in \mathbb{R}^{2}$, is locally integrable on \mathbb{R}^{2}. Conclude that it defines a distribution and show that it satisfies the one-dimensional wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=k^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

in the sense of distributions on \mathbb{R}^{2}.
(b) Prove that $u(x, y)=\log \left(x^{2}+y^{2}\right)$ is locally integrable on \mathbb{R}^{2}, and that we have

$$
\Delta u=4 \pi \delta_{0}
$$

in the sense of distributions on \mathbb{R}^{2}, where δ_{0} is the Dirac delta function on \mathbb{R}^{2} concentrated at the origin.

Solution: See Section 2.5 in Strichartz: A Guide to Distribution Theory and Fourier Transforms, World Scientific.

[^0]
Section B

3. Let $a>0$. For each $\phi \in \mathscr{D}(\mathbb{R})$ we let

$$
\left\langle T_{a}, \phi\right\rangle=\left(\int_{-\infty}^{-a}+\int_{a}^{\infty}\right) \frac{\phi(x)}{|x|} \mathrm{d} x+\int_{-a}^{a} \frac{\phi(x)-\phi(0)}{|x|} \mathrm{d} x .
$$

(a) Show that T_{a} hereby is well-defined and that it is a distribution on \mathbb{R}.
(b) Now assume that $\phi \in \mathscr{D}(\mathbb{R})$ satisfies $\phi(0)=0$. Show that then

$$
\left\langle T_{a}, \phi\right\rangle=\int_{-\infty}^{\infty} \frac{\phi(x)}{|x|} \mathrm{d} x .
$$

What distribution is $T_{a}-T_{b}$ for $0<b<a$?

Solution: (a) We first show that T_{a} is well-defined for all $\phi \in \mathscr{D}(\mathbb{R})$: Clearly, the first two integrals appearing in the definition are well-defined. For the integral over $[-a, a]$ we let

$$
\Phi(x)=\left\{\begin{array}{cl}
\frac{\phi(x)-\phi(0)}{|x|} & \text { if } x \neq 0 \\
\phi^{\prime}(0) & \text { if } x=0 .
\end{array}\right.
$$

Then Φ is piecewise continuous (and continuous from the right at 0), hence is (Riemann)integrable over $[-a, a]$. Thus the expression $\left\langle T_{a}, \phi\right\rangle$ is well-defined as a complex number. Linearity of $T_{a}: \mathscr{D}(\mathbb{R}) \rightarrow \mathbb{C}$ is now a consequence of linearity of the integral. To show that T_{a} is a distribution we must show that it is \mathscr{D} continuous and we do that by establishing the boundedness property. Fix a compact set K in \mathbb{R} and take $\ell>a$ such that $K \subset[-\ell, \ell]$. Then for $\phi \in \mathscr{D}(\mathbb{R})$ with support in K we estimate as follows:

$$
\begin{aligned}
&\left|\left(\int_{-\infty}^{-a}+\int_{a}^{\infty}\right) \frac{\phi(x)}{|x|} \mathrm{d} x\right| \leq 2 \int_{a}^{\ell} \frac{\mathrm{d} x}{x} \sup |\phi| \\
&=2 \log \frac{\ell}{a} \sup |\phi|, \\
& \left.\left|\int_{-a}^{a} \frac{\phi(x)-\phi(0)}{|x|} \mathrm{d} x\right| \stackrel{F}{=} \right\rvert\, \\
& \leq \int_{-a}^{a} \int_{0}^{1} \int_{0}^{1}\left|\phi^{\prime}(t x) \mathrm{d} t \frac{x}{|x|} \mathrm{d} x\right| \\
& \leq 2 a \sup \left|\phi^{\prime}\right| .
\end{aligned}
$$

Consequently we have shown that $\left|\left\langle T_{a}, \phi\right\rangle\right| \leq c\left(\sup |\phi|+\sup \left|\phi^{\prime}\right|\right)$, where $c=2 \max \left(a, \log \frac{\ell}{a}\right)$, and since K was an arbitrary compact set in \mathbb{R} this proves that T_{a} is a distribution on \mathbb{R}. Note also that the bound shows that T_{a} has order at most 1.
(b) Let $\phi \in \mathscr{D}(\mathbb{R})$ and assume $\phi(0)=0$. In this case we note that $\phi(x) /|x|$ is integrable on \mathbb{R} (because it is $\Phi(x)$ for $x \neq 0$ and it vanishes outside the support of ϕ), hence

$$
\left\langle T_{a}, \phi\right\rangle=\int_{\mathbb{R}} \frac{\phi(x)}{|x|} \mathrm{d} x .
$$

If $0<b<a$, then for $\phi \in \mathscr{D}(\mathbb{R})$ we calculate:

$$
\begin{aligned}
\left\langle T_{a}-T_{b}, \phi\right\rangle= & {\left[\left(\int_{-\infty}^{-a}+\int_{a}^{\infty}\right)-\left(\int_{-\infty}^{-b}+\int_{b}^{\infty}\right)\right] \frac{\phi(x)}{|x|} \mathrm{d} x } \\
& +\left[\int_{-a}^{a}-\int_{-b}^{b}\right] \frac{\phi(x)-\phi(0)}{|x|} \mathrm{d} x \\
= & -\left(\int_{b}^{a}+\int_{-a}^{-b}\right) \frac{\phi(x)}{|x|} \mathrm{d} x+\left(\int_{b}^{a}+\int_{-a}^{-b}\right) \frac{\phi(x)-\phi(0)}{|x|} \mathrm{d} x \\
= & -\left(\int_{b}^{a}+\int_{-a}^{-b}\right) \frac{\phi(0)}{|x|} \mathrm{d} x \\
= & -2 \phi(0) \log \frac{a}{b} .
\end{aligned}
$$

Consequently, $T_{a}-T_{b}=-2 \log \frac{a}{b} \delta_{0}$.
4. (Homogeneous distributions)
(a) Let $\alpha \in \mathbb{C}$ with $\operatorname{Re}(\alpha)>-n$ and denote by $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ the usual euclidean norm on \mathbb{R}^{n}. Define

$$
\left\langle T_{\alpha}, \phi\right\rangle=\int_{\mathbb{R}^{n}}|x|^{\alpha} \phi(x) \mathrm{d} x, \quad \phi \in \mathscr{D}\left(\mathbb{R}^{n}\right) .
$$

Show that T_{α} is a regular distribution on \mathbb{R}^{n}. (Hint: Use polar coordinates. If you prefer, then it is ok to only do the calculation for $n=1$ and $n=2$.)
(b) For each $r>0$ we define the r-dilation of a test function $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ by the rule

$$
\left(d_{r} \varphi\right)(x)=\varphi(r x), \quad x \in \mathbb{R}^{n}
$$

Extend the r-dilation to distributions $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
(c) A distribution $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is said to be homogeneous of degree $\beta \in \mathbb{C}$ (or briefly: β-homogeneous) provided

$$
d_{r} u=r^{\beta} u
$$

holds for all $r>0$. (Note: $r^{\beta} \equiv \mathrm{e}^{\beta \log r}$ for $r>0$.)
(i) Suppose $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is β-homogeneous. Prove that for each $j \in\{1, \ldots, n\}$ the distributions $x_{j} u$ and $\partial_{j} u$ are $(\beta+1)$-homogeneous and $(\beta-1)$-homogeneous, respectively.
(ii) Show that the distribution T_{α} defined in (a) is homogeneous of degree α.
(iii) Show that the Dirac delta function δ_{0} concentrated at the origin $0 \in \mathbb{R}^{n}$ is homogeneous of degree $-n$.
(d) Show that if $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is β-homogeneous, then

$$
\sum_{j=1}^{n} x_{j} \partial_{j} u=\beta u
$$

holds in the sense of distributions on \mathbb{R}^{n}. This PDE is known as Euler's relation for β-homogeneous distributions.

Solution: (a) The function $|x|^{\alpha}$ is continuous on $\mathbb{R}^{n} \backslash\{0\}$, and if we define $u_{\alpha}(x)=|x|^{\alpha}$ for $x \neq 0$ and $u_{\alpha}(0)=0$, then u_{α} is measurable. Since $\left|u_{\alpha}(x)\right|=|x|^{\operatorname{Re}(\alpha)}$ for $x \neq 0$ it is clear that u_{α} is locally integrable on $\mathbb{R}^{n} \backslash\{0\}$ regardless of what α is. Integrating the nonnegative function $\left|u_{\alpha}\right|$ over $B_{1}(0)$ we find using polar coordinates and that $\operatorname{Re}(\alpha)>$ $-n$:

$$
\begin{aligned}
\int_{B_{1}(0)}\left|u_{\alpha}(x)\right| \mathrm{d} x & =\int_{0}^{1} \int_{|x|=r}|x|^{\operatorname{Re}(\alpha)} \mathrm{d} S_{x} \mathrm{~d} r \\
& =\int_{0}^{1} r^{\alpha} \omega_{n} r^{n-1} \mathrm{~d} r \\
& =\frac{\omega_{n}}{n+\operatorname{Re}(\alpha)}<+\infty
\end{aligned}
$$

Thus $u_{\alpha} \in \mathrm{L}_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ and therefore T_{α} is a regular distribution.
(b) First we derive an adjoint identity. For $\phi, \psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ we have by the change of variables $y=r x$:

$$
\int_{\mathbb{R}^{n}} d_{r} \phi \psi \mathrm{~d} x=\int_{\mathbb{R}^{n}} \phi(y) \psi\left(\frac{y}{r}\right) \frac{1}{r^{n}} \mathrm{~d} y=\int_{\mathbb{R}^{n}} \phi \psi_{r} \mathrm{~d} x,
$$

where we wrote ψ_{r} for the L^{1}-dilation of ψ by factor $r>0$. Here we note that the operation of taking L^{1}-dilation by factor $r>0$, so $r^{-n} d_{r^{-1}}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right)$, is a linear and \mathscr{D} continuous map. Using the adjoint identity scheme we may then extend d_{r} to distributions $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ by the rule

$$
\left\langle d_{r} u, \phi\right\rangle=\left\langle u, \phi_{r}\right\rangle, \quad \phi \in \mathscr{D}\left(\mathbb{R}^{n}\right) .
$$

(c) (i) Let $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and $r>0$. Note first that $x_{j} \phi_{r}=r\left(x_{j} \phi\right)_{r}$, and so using that u is β-homogeneous we get

$$
\left\langle d_{r}\left(x_{j} u\right), \phi\right\rangle=\left\langle u, x_{j} \phi_{r}\right\rangle=r\left\langle d_{r} u, x_{j} \phi\right\rangle=r^{\beta+1}\langle u, \phi\rangle
$$

proving that $d_{r}\left(x_{j} u\right)=r^{\beta+1} u$ as required. Next, note that $\partial_{j} \phi_{r}=r^{-1}\left(\partial_{j} \phi\right)_{r}$, so again using β-homogeneity of u we find

$$
\left\langle d_{r}\left(\partial_{j} u\right), \phi\right\rangle=-\left\langle u, \partial_{j} \phi_{r}\right\rangle=-r^{-1}\left\langle d_{r} u, \partial_{j} \phi\right\rangle=r^{\beta-1}\langle u, \phi\rangle
$$

proving that $d_{r}\left(\partial_{j} u\right)=r^{\beta-1} u$, as required.
(ii) For $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and $r>0$ we calculate:

$$
\begin{aligned}
\left\langle d_{r} T_{\alpha}, \phi\right\rangle & =\left\langle T_{\alpha}, \phi_{r}\right\rangle=\int_{\mathbb{R}^{n}}|x|^{\alpha} \phi_{r}(x) \mathrm{d} x \\
& \stackrel{y=x / r}{=} \int_{\mathbb{R}^{n}}|r y|^{\alpha} \phi(y) \mathrm{d} y=r^{\alpha} \int_{\mathbb{R}^{n}}|y|^{\alpha} \phi(y) \mathrm{d} y \\
& =r^{\alpha}\left\langle T_{\alpha}, \phi\right\rangle
\end{aligned}
$$

and so $d_{r} T_{\alpha}=r^{\alpha} T_{\alpha}$, as required.
(iii) For $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and $r>0$ we calculate: $\left\langle d_{r} \delta_{0}, \phi\right\rangle=\left\langle\delta_{0}, \phi_{r}\right\rangle=\frac{1}{r^{n}} \phi\left(\frac{0}{r}\right)=\frac{1}{r^{n}} \phi(0)$, so $d_{r} \delta_{0}=r^{-n} \delta_{0}$, as required.
(d) If u had been a differentiable function we would obtain the Euler relation by differentiating the β-homogeneity condition. We do the same in the more general case considered here. Note that for $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ we have $\left\langle u, \phi_{r}\right\rangle=r^{\beta}\langle u, \phi\rangle$ for all $r>0$. Clearly

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} r}\right|_{r=1}\left\langle u, \phi_{r}\right\rangle=\beta\langle u, \phi\rangle
$$

and we would like to differentiate behind the distribution sign on the left-hand side. In order to do that we consider for $r \in(0,1)$ the difference-quotient:

$$
\frac{\left\langle d_{r} u, \phi\right\rangle-\langle u, \phi\rangle}{r-1}=\left\langle u, \frac{\phi_{r}-\phi}{r-1}\right\rangle .
$$

Note that for each $x \in \mathbb{R}^{n}$ and $t>0$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \phi_{t}(x)=\frac{1}{t} \psi_{t}(x), \quad \text { where } \psi(x)=-n \phi(x)-\nabla \phi(x) \cdot x,
$$

and hence, as $t \rightarrow 1$, that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \phi_{t}(x) \rightarrow \psi(x) \quad \text { uniformly in } x \in \mathbb{R}^{n} .
$$

Therefore we get by FTC:

$$
\Delta_{r}(x) \equiv \frac{\phi_{r}(x)-\phi(x)}{r-1}=\frac{1}{r-1} \int_{1}^{r} \frac{1}{t} \psi_{t}(x) \mathrm{d} t \rightarrow \psi(x)
$$

uniformly in $x \in \mathbb{R}^{n}$ as $r \nearrow 1$. In order to exploit that u is a distribution we must improve this convergence to \mathscr{D} convergence. To that end note that $\Delta_{r} \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and taking $R>0$ so large that $\operatorname{supp}(\phi) \subset B_{R}(0)$ also $\operatorname{supp}\left(\Delta_{r}\right) \subset B_{R}(0)$ for all $r<1$. Fix a multi-index $\alpha \in \mathbb{N}_{0}^{n}$. Then

$$
\left(\partial^{\alpha} \Delta_{r}\right)(x)=\frac{1}{r-1} \int_{1}^{r} \frac{1}{t^{|\alpha|+1}}\left(\partial^{\alpha} \psi\right)_{r}(x) \mathrm{d} t \rightarrow\left(\partial^{\alpha} \psi\right)(x)
$$

uniformly in $x \in \mathbb{R}^{n}$ as $r \nearrow 1$. Consequently, $\Delta_{r} \rightarrow \psi$ in $\mathscr{D}\left(\mathbb{R}^{n}\right)$ as $r \nearrow 1$ and so by \mathscr{D} continuity of $u,\langle u, \psi\rangle=\beta\langle u, \phi\rangle$. Recalling the definition of ψ, using the definitions and the arbitrariness of the test function ϕ we are done.
5. Show that δ_{a}, the Dirac delta function concentrated at $a \in \mathbb{R}$, satisfies the equation

$$
\begin{equation*}
(x-a) u=0 . \tag{1}
\end{equation*}
$$

Find the general solution $u \in \mathscr{D}^{\prime}(\mathbb{R})$ to (1).
(Hint: See Corollary 1.11 in the Lecture Notes.)
Solution: δ_{a} is a solution because we for $\phi \in \mathscr{D}(\mathbb{R})$ have $\left\langle(x-a) \delta_{a}, \phi\right\rangle=\left\langle\delta_{a},(x-a) \phi\right\rangle=$ 0 . It follows that $c \delta_{a}$ is a solution for every $c \in \mathbb{C}$. To see that this is the general solution we assume that u is a solution. In order to show that u has the above form we construct suitable test functions. Fix $\eta \in \mathscr{D}(\mathbb{R})$ with $\eta(a)=1$. Then for any $\phi \in \mathscr{D}(\mathbb{R})$ we get by FTC that $\phi(x)-\phi(a) \eta(x)=\psi(x)(x-a)$, where

$$
\psi(x)=\int_{0}^{1}\left(\phi^{\prime}(a+t(x-a))-\phi(0) \eta^{\prime}(a+t(x-a))\right) \mathrm{d} t, x \in \mathbb{R} .
$$

It is not difficult to see that $\psi \in \mathrm{C}^{\infty}(\mathbb{R})$. Take $R>0$ so large that $(-R, R)$ contains the supports of both ϕ and η. Then also ψ is supported in $(-R, R)$ and so $\psi \in \mathscr{D}(\mathbb{R})$. Now note that $\phi=\phi(a) \eta+(x-a) \psi$, so $\langle u, \phi\rangle=\langle u, \phi(a) \eta+(x-a) \psi\rangle=\phi(a)\langle u, \eta\rangle+$ $\langle(x-a) u, \psi\rangle=\left\langle c \delta_{a}, \phi\right\rangle$, where $c=\langle u, \eta\rangle$ is a constant, as required.
6. (Distribution defined by principal value integral)

Define for each $\phi \in \mathscr{D}(\mathbb{R})$,

$$
\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle=\lim _{a \searrow 0}\left(\int_{-\infty}^{-a}+\int_{a}^{\infty}\right) \frac{\phi(x)}{x} \mathrm{~d} x .
$$

(a) Show that hereby $\operatorname{pv}\left(\frac{1}{x}\right) \in \mathscr{D}^{\prime}(\mathbb{R})$ and that it is homogeneous of order -1 (see Problem 4). Check that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \log |x|=\operatorname{pv}\left(\frac{1}{x}\right) .
$$

(b) What is the order of $\mathrm{pv}\left(\frac{1}{x}\right)$?
(c) Show that $u=\operatorname{pv}\left(\frac{1}{x}\right)$ solves the equation

$$
\begin{equation*}
x u=1 \tag{2}
\end{equation*}
$$

in the sense of $\mathscr{D}^{\prime}(\mathbb{R})$. What is the general solution $u \in \mathscr{D}^{\prime}(\mathbb{R})$ to (2)?

Solution: (a) Let $\phi \in \mathscr{D}(\mathbb{R})$ and take $A>0$ so large that $\operatorname{supp}(\phi) \subset(-A, A)$. For each $a \in(0, A)$ we have because the function $x \mapsto \phi(0) / x$ is odd that

$$
\left(\int_{-\infty}^{-a}+\int_{a}^{\infty}\right) \frac{\phi(x)}{x} \mathrm{~d} x=\left(\int_{-A}^{-a}+\int_{a}^{A}\right) \frac{\phi(x)-\phi(0)}{x} \mathrm{~d} x .
$$

Here the function

$$
\Phi(x)=\left\{\begin{array}{cl}
\frac{\phi(x)-\phi(0)}{x} & \text { if } 0<|x| \leq A, \\
\phi^{\prime}(0) & \text { if } x=0,
\end{array}\right.
$$

is continuous, so the improper integral defining $\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle$ is well-defined. It is then clear that $\operatorname{pv}\left(\frac{1}{x}\right): \mathscr{D}(\mathbb{R}) \rightarrow \mathbb{C}$ is well-defined and linear. We also record that for $\phi \in \mathscr{D}(\mathbb{R})$ with support in $(-A, A)$ we have

$$
\left|\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle\right| \leq 2 A \max \left|\phi^{\prime}\right|
$$

so that $\operatorname{pv}\left(\frac{1}{x}\right)$ in particular has the boundedness property and hence is a distribution.

For $r>0$ and $\phi \in \mathscr{D}(\mathbb{R})$ we calculate:

$$
\begin{aligned}
\left\langle d_{r} \operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle & =\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \frac{1}{r} d_{\frac{1}{r}} \phi\right\rangle \\
& =\lim _{a \searrow 0}\left(\int_{-\infty}^{-a}+\int_{a}^{\infty}\right) \frac{\phi\left(r^{-1} x\right)}{r x} \mathrm{~d} x \\
& =\lim _{a \searrow 0}\left(\int_{-\infty}^{-a / r}+\int_{a / r}^{\infty}\right) \frac{\phi(y)}{r y} \mathrm{~d} y \\
& =r^{-1}\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle .
\end{aligned}
$$

This shows that the distribution $\operatorname{pv}\left(\frac{1}{x}\right)$ is homogeneous of degree -1 , as required.
Finally we note that $\log |\cdot| \in \mathrm{L}_{\mathrm{loc}}^{1}(\mathbb{R})$ so that we may consider it as a distribution. For $\phi \in \mathscr{D}(\mathbb{R})$ we calculate:

$$
\begin{aligned}
\left\langle\frac{\mathrm{d}}{\mathrm{~d} x} \log \right| x|, \phi\rangle & =\langle\log | x\left|,-\phi^{\prime}\right\rangle \\
& =-\int_{-\infty}^{\infty} \log |x| \phi^{\prime}(x) \mathrm{d} x \\
& =-\lim _{\varepsilon \searrow 0}\left(\int_{-1 / \varepsilon}^{-\varepsilon}+\int_{\varepsilon}^{1 / \varepsilon}\right) \log |x| \phi^{\prime}(x) \mathrm{d} x \\
& \stackrel{\text { parts }}{=} \lim _{\varepsilon \searrow 0}\left(\int_{-1 / \varepsilon}^{-\varepsilon}+\int_{\varepsilon}^{1 / \varepsilon}\right) \frac{\phi(x)-\phi(0)}{x} \mathrm{~d} x \\
& =\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle,
\end{aligned}
$$

as required.
(b) It follows from (a) that the order is at most 1 . To see that it is 1 we assume for a contradiction that it is 0 . Then we find a constant $c \geq 0$ such that

$$
\left|\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle\right| \leq c \max |\phi|
$$

holds for all $\phi \in \mathscr{D}(\mathbb{R})$ supported in $[-1,1]$. For the standard mollifier $\left(\rho_{\varepsilon}\right)_{\varepsilon>0}$ on \mathbb{R} put for each $j \in \mathbb{N} \backslash\{1,2\}$,

$$
\phi_{j}=\rho_{1 / j} * \mathbf{1}_{(1 / j, 1 / 2)} .
$$

Then $\phi_{j} \in \mathscr{D}(\mathbb{R})$ has support $\left[0, \frac{1}{2}+\frac{1}{j}\right]$ and $\max \left|\phi_{j}\right|=1$, so $\left|\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi_{j}\right\rangle\right| \leq c$ holds for all large $j \in \mathbb{N}$. But ϕ_{j} is also nonnegative and equals 1 on $\left[\frac{2}{j}, \frac{1}{2}-\frac{1}{j}\right]$, so we can estimate

$$
\left|\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \phi_{j}\right\rangle\right| \geq \int_{\frac{2}{j}}^{\frac{1}{2}-\frac{1}{j}} \frac{\mathrm{~d} x}{x}=\log \left(\frac{1}{4} j-\frac{1}{2}\right)
$$

and this is clearly impossible for large $j \in \mathbb{N}$. The order is therefore 1 .
(c) For $\phi \in \mathscr{D}(\mathbb{R})$ we calculate,

$$
\begin{aligned}
\left\langle x \operatorname{pv}\left(\frac{1}{x}\right), \phi\right\rangle & =\left\langle\operatorname{pv}\left(\frac{1}{x}\right), x \phi\right\rangle \\
& =\lim _{a \searrow 0}\left(\int_{-\infty}^{-a}+\int_{a}^{\infty}\right) \frac{x \phi(x)}{x} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \phi(x) \mathrm{d} x,
\end{aligned}
$$

hence $x \operatorname{pv}\left(\frac{1}{x}\right)=1$, as required. Because the equation (1) is linear we get the general solution by use of question 5 : $u=\operatorname{pv}\left(\frac{1}{x}\right)+c \delta_{0}$, where $c \in \mathbb{C}$ is arbitrary.

Section C

7. (A fundamental solution for the differential operator $\mathrm{d}^{m+1} / \mathrm{d} x^{m+1}$)

Denote $x_{+}=\max \{0, x\}$ for $x \in \mathbb{R}$ and fix $m \in \mathbb{N}_{0}$. Show that if

$$
E_{m}(x)=\frac{x_{+}^{m}}{m!}
$$

where for $m=0$ we interpret this as the Heaviside function, then

$$
\frac{\mathrm{d}^{m+1}}{\mathrm{~d} x^{m+1}} E_{m}=\delta_{0} \quad \text { in } \mathscr{D}^{\prime}(\mathbb{R})
$$

Solution: It is clear that E_{m} is a piecewise continuous function and therefore that it in particular represents a regular distribution. Note that $E_{0}^{\prime}=\delta_{0}$ and that by Question 1 (since E_{1} is piecewise C^{1}), $E_{1}^{\prime}=E_{0}$ so $E_{1}^{\prime \prime}=\delta_{0}$. Now assume that $E_{m}^{(m+1)}=\delta_{0}$ for some $m \in \mathbb{N}_{0}$. Note that $E_{m+1}=\frac{x_{+}}{m+1} E_{m}=\frac{x}{m+1} E_{m}$, so that by Leibniz' rule

$$
\begin{aligned}
E_{m+1}^{(m+2)} & =\frac{\mathrm{d}^{m+2}}{\mathrm{~d} x^{m+2}}\left(\frac{x}{m+1} E_{m}\right) \\
& =\frac{1}{m+1} \sum_{j=0}^{m+2}\binom{m+2}{j} x^{(j)} E_{m}^{(m+2-j)} \\
& =\frac{1}{m+1}\left(x E_{m}^{(m+2)}+(m+2) E_{m}^{(m+1)}\right) \\
& =\frac{1}{m+1}\left(x \delta_{0}^{\prime}+(m+2) \delta_{0}\right)
\end{aligned}
$$

Because $x \delta_{0}^{\prime}=-\delta_{0}$ it follows that $E_{m+1}^{(m+2)}=\delta_{0}$, and so we may conclude by induction on m.
8. (Continuation of Question 4 about homogeneous distributions) Let $\beta \in \mathbb{C}$ and assume that $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\sum_{j=1}^{n} x_{j} \partial_{j} u=\beta u
$$

in the sense of distributions on \mathbb{R}^{n}. Prove that u is homogeneous of degree β.
Solution: Euler's relation can be rewritten as $x \cdot \nabla u=\beta u$, that is,

$$
\langle u,(n+\beta) \psi+x \cdot \nabla \psi\rangle=0
$$

holds for all $\psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$. In order to show that $d_{r} u=r^{\beta} u$ holds for all $r>0$ we show that, for each $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$, the function $h(r)=\left\langle u, r^{-\beta} \phi_{r}\right\rangle, r>0$, is constant. Note that

$$
\partial_{r}\left(r^{-\beta} \phi_{r}(x)\right)=-r^{-\beta-1}\left((\beta+n) \phi_{r}(x)+x \cdot \nabla \phi_{r}(x)\right),
$$

and therefore applying Euler's relation above with $\psi=\phi_{r}$ we are done provided we can show that h is differentiable and that its derivative can be calculated by differentiation behind the u-sign. Fix $r>0$ and consider for $s>0$ distinct from r the differencequotient

$$
\frac{h(s)-h(r)}{s-r}=\left\langle u, \frac{s^{-\beta} \phi_{s}-r^{-\beta} \phi_{r}}{s-r}\right\rangle=\left\langle u, \Delta_{s}\right\rangle,
$$

say. It is not difficult to see that $\Delta_{s}(x) \rightarrow \partial_{r}\left(r^{-\beta} \phi_{r}(x)\right)$ uniformly in $x \in \mathbb{R}^{n}$ as $s \rightarrow r$, but in order pass to the limit under the u-sign we must use that u is a distribution and show that the above convergence of Δ_{s} takes place in $\mathscr{D}\left(\mathbb{R}^{n}\right)$. We thus require control of the supports and uniform convergence of all partial derivatives. Take $R>0$ such that $B_{R}(0)$ contains the support of ϕ and note that $B_{r R}(0)$ then contains the support of ϕ_{r}. Therefore $K=\overline{B_{(r+1) R}(0)}$ is a compact set containing the supports of all the Δ_{s} when $s \in(0, r) \cup(r, r+1)$. Next, for a multi-index $\alpha \in \mathbb{N}_{0}^{n}$ we have

$$
\begin{aligned}
\partial^{\alpha} \Delta_{s}(x) & =\frac{s^{-\beta-|\alpha|}\left(\partial^{\alpha} \phi\right)_{s}(x)-r^{-\beta-|\alpha|}\left(\partial^{\alpha} \phi\right)_{r}(x)}{s-r} \\
& \rightarrow \partial_{r}\left(r^{-\beta-|\alpha|}\left(\partial^{\alpha} \phi\right)_{r}(x)\right)=\partial^{\alpha} \partial_{r}\left(r^{-\beta} \phi_{r}(x)\right)
\end{aligned}
$$

uniformly in $x \in \mathbb{R}^{n}$ as $s \rightarrow r$. Consequently, the difference-quotients Δ_{s} converge in $\mathscr{D}\left(\mathbb{R}^{n}\right)$ as required and so we conclude the proof using that u is \mathscr{D} continuous.

[^0]: ${ }^{1}$ It means that there is a finite subset F of \mathbb{R} such that f is continuous at each point of $\mathbb{R} \backslash F$ and that if $x_{0} \in F$, then both the one-sided limits $f\left(x_{0}+\right)$ and $f\left(x_{0}-\right)$ of f at x_{0} exist in \mathbb{R}.

