B4.3 Distribution Theory
Sheet 2 — MT23
Differentiation, homogeneous distributions and example of

distribution defined by principal value integral

Only work on the questions from Section B should be handed in.

Section A

1. Let f, g € C(R) and define

u(r) =

{f(x) ifx <0

g(x) ifxz>0.
Explain why
(T, 6) = /R w(@)p(e)dz, ¢ € P (R),

is a distribution on R and calculate the distributional derivative 7). What can you say

about T, corresponding to the function

flz) ifz<0
v(iz) =< a ifx=0
g(z) ifzx>0,

where a € C is a constant that is different from both f(0) and ¢(0)?

Solution: Note that u is piecewise C! (meaning that exists an at most finite set of
points F' C R, such that u is C! on R\ F and the one-sided limits u(zo+), u(zo—),
u (zo+), v (xo—) exist in C for each 2y € F'). In our case we of course have that F' = {0}
and that w(0+) = ¢(0), u(0—) = f(0), «'(0+) = ¢'(0), v/(0—) = f'(0). In particular,
u is therefore locally integrable and so T, defines a distribution on R. By definition of
distributional derivative we find using integration by parts (that we may use on each of

the intervals (—oo, 0) and (0, 00) because u is piecewise C!):

(T ¢) = —(Tu, ¢'>=—/u<x> (x)d

¢'(z) dz
_ / F()d(x) dz — / 9(2)¢/(z) da
- [ L ) + [ potnan- E <x>¢<x>]:+ [ @t as
— —£(0)6(0) + 9(0)6(0) + /R (F'Lioety + Lo )6l
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Therefore T;, = (9(0) — f(0))d0 + T, 0491000y

Since u(z) = v(z) for all z € R\ {0} we have in particular that they agree almost
everywhere, so the corresponding distributions are the same: T, = T,. Consequently
also T = T.

Comment on notation. If you have seen the fundamental lemma of the calculus of

variations (covered in lectures during Week 3) you will know that a locally integrable

1

loe function (so almost everywhere) by the

function w is uniquely determined as an L
corresponding distribution 7,,, and that we therefore may directly identify w and T,
and simply write w also for the corresponding distribution. This is often convenient and

we employ this convention in question 2.

2. (a) Prove that if f: R — R is piecewise continuous' and k& € R, then the function
u(z,t) = f(x—kt), (z,t) € R?, is locally integrable on R%. Conclude that it defines

a distribution and show that it satisfies the one-dimensional wave equation:

Pu 0%

oz " ox?
in the sense of distributions on R2.
(b) Prove that u(z,y) = log(z? + y?) is locally integrable on R?, and that we have

Au = 47dy

in the sense of distributions on R?, where J, is the Dirac delta function on R?

concentrated at the origin.

Solution: See Section 2.5 in Strichartz: A Guide to Distribution Theory and Fourier
Transforms, World Scientific.

Tt means that there is a finite subset F of R such that f is continuous at each point of R\ F and that
if xg € F, then both the one-sided limits f(xo+) and f(xo—) of f at xg exist in R.
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Section B

3. Let a > 0. For each ¢ € Z(R) we let

o= ([ )2y [ED=00,
oo Ja ) 2] S
(a) Show that T, hereby is well-defined and that it is a distribution on R.
(b) Now assume that ¢ € Z(R) satisfies ¢(0) = 0. Show that then
> o(x)
Top= [ s
oo |7]

What distribution is T, — T}, for 0 < b < a?

Solution: (a) We first show that 7, is well-defined for all ¢ € Z(R): Clearly, the first

two integrals appearing in the definition are well-defined. For the integral over [—a, al

¢($)‘;|¢(0) if 75 0,
¢0) ifz=0.

we let
®(z) =

Then & is piecewise continuous (and continuous from the right at 0), hence is (Riemann-
)integrable over [—a, a]. Thus the expression (T, ¢) is well-defined as a complex number.
Linearity of T,: Z(R) — C is now a consequence of linearity of the integral. To show
that T, is a distribution we must show that it is & continuous and we do that by
establishing the boundedness property. Fix a compact set K in R and take ¢ > a such
that K C [/, (]. Then for ¢ € Z(R) with support in K we estimate as follows:

—a [e%s) ¢(l,) de
’(/oﬁ/a )de‘ < 2 [ oo
— 2log Lsuplgl,

a

[t 2 | fewangos

/_Z/Oqus’(tx)\ dt d

< 2asupl¢].

IA

Consequently we have shown that !(Ta, o) ‘ < ¢(sup |¢|+sup |¢'[), where ¢ = 2 max(a, log f),
and since K was an arbitrary compact set in R this proves that T, is a distribution on
R. Note also that the bound shows that T, has order at most 1.
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(b) Let ¢ € Z(R) and assume ¢(0) = 0. In this case we note that ¢(x)/|z| is integrable
on R (because it is ®(z) for  # 0 and it vanishes outside the support of ¢), hence

@ dx.

R |x|

(Ta, 0) =

If 0 < b < a, then for ¢ € Z(R) we calculate:

(1.~ T - [(/ +/) (/ /ﬂ 1 ¢

Consequently, T, — Ty, = —21log ¢ do.
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4. (Homogeneous distributions)

(a) Let @ € C with Re(a) > —n and denote by |z| = /22 + ... + 22 the usual

euclidean norm on R". Define
(To,¢) = | |z|*¢(z)dz, ¢ € Z(R").
Rn
Show that Ty, is a regular distribution on R™. (Hint: Use polar coordinates. If you

prefer, then it is ok to only do the calculation forn =1 and n = 2.)

(b) For each r > 0 we define the r-dilation of a test function ¢ € Z(R") by the rule

(drp)(z) = p(rz), = e€R™
Extend the r-dilation to distributions u € 2'(R").

(c) A distribution u € 2’'(R") is said to be homogeneous of degree 5 € C (or briefly:

p-homogeneous) provided
B

d,u = r°u
holds for all r > 0. (Note: r® = 18" forr > 0.)
(i) Suppose u € Z'(R™) is f-homogeneous. Prove that for each j € {1, ..., n} the

distributions z;u and 0ju are (f + 1)-homogeneous and (5 — 1)-homogeneous,
respectively.

(ii) Show that the distribution 7, defined in (a) is homogeneous of degree .

(iii) Show that the Dirac delta function ¢, concentrated at the origin 0 € R™ is

homogeneous of degree —n.

(d) Show that if u € 2'(R") is f-homogeneous, then

Z z;0;u = Pu
j=1

holds in the sense of distributions on R™. This PDE is known as Euler’s relation

for S-homogeneous distributions.

Solution: (a) The function |z|* is continuous on R™\ {0}, and if we define u,(x) = |z|*
for # # 0 and u,(0) = 0, then u, is measurable. Since |uy(z)| = |z|®®) for x # 0 it is
clear that u, is locally integrable on R™ \ {0} regardless of what « is. Integrating the

nonnegative function |u,| over B;(0) we find using polar coordinates and that Re(a) >

—n:
1
/ |uo(z)|dz = / / |z[Re@) S, dr
B1(0) 0 Jlz|=r

1

= / rw, "t dr
0
wn
= < foo
n + Re(a)
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Thus u, € LL .(R") and therefore T, is a regular distribution.

(b) First we derive an adjoint identity. For ¢, 1 € Z(R") we have by the change of

variables y = rx:

/Rndr@ﬂ dzr = Rn¢(y)¢ <Q> Tindy -/ i, e,

r

where we wrote v, for the L!-dilation of ¢ by factor r > 0. Here we note that the
operation of taking L'-dilation by factor r > 0, so r"d,-1: 2(R") — Z(R"), is a linear
and Z continuous map. Using the adjoint identity scheme we may then extend d, to
distributions v € 2'(R") by the rule

<dru, ¢> = <U, ¢r>? (b € '@(Rn)

(c) (i) Let ¢ € Z(R™) and r > 0. Note first that z;¢, = r(2;¢) , and so using that  is

B-homogeneous we get

<d7“ ($ju)v ¢> = <uv xj¢r> = T<dru’ qub) = <Ua ¢>

proving that d,(z;u) = r®*'u as required. Next, note that 9;¢, = r~=*(8;¢) , so again

using [-homogeneity of u we find

<d7‘ (aju)> ¢> = _<u7 8j¢r> = _T71<dru> a]¢> = T/B71<U, ¢>

proving that d,(9;u) = r®~u, as required.

(ii) For ¢ € Z(R") and r > 0 we calculate:
@T0d) = (Ttn) = [ Jalon(o)ds
Rn

v/ / ryl®o(y) dy = r [ |y[*o(y) dy
R R
= Ta<Ta7 ¢>

and so d,T, = r*T,, as required.

(iii) For ¢ € 2(R") and r > 0 we calculate: (d,do,®) = (6, dr) = =0 (2) = 26(0), so

d,.00 = r~"dg, as required.

(d) If u had been a differentiable function we would obtain the Euler relation by dif-
ferentiating the [S-homogeneity condition. We do the same in the more general case
considered here. Note that for ¢ € Z(R") we have (u,¢,) = r°(u,¢) for all r > 0.
Clearly

d
G| (o) = B0

Mathematical Institute, University of Oxford Page 6 of 12

Jan Kristensen: kristens@maths.ox.ac.uk



B4.3 Distribution Theory: Sheet 2 — MT23

and we would like to differentiate behind the distribution sign on the left-hand side. In

order to do that we consider for r € (0,1) the difference-quotient:

808} _(, o=

Note that for each z € R™ and ¢t > 0,
d 1
Coa) = Junle),  where Y(x) = —né(e) — Vo(e) -
and hence, as t — 1, that
d . :
a@(:ﬂ) — t(z) uniformly in z € R".

Therefore we get by FTC:

A (z) = ¢7~(3;)_—1¢(x) - - i - /;%%(x) dt — ()

uniformly in x € R™ as r 1. In order to exploit that u is a distribution we must
improve this convergence to 2 convergence. To that end note that A, € Z(R") and
taking R > 0 so large that supp(¢) C Br(0) also supp(A,) C Bg(0) for all » < 1. Fix

a multi-index o € Njj. Then

1

(02 () = /1 Ttalm (%) (x)dt — (0°¢) ()

uniformly in € R” as r 1. Consequently, A, — ¢ in Z(R") as r /1 and so by 2
continuity of u, (u,v) = f{u, ). Recalling the definition of 1, using the definitions and

the arbitrariness of the test function ¢ we are done.

5. Show that ¢,, the Dirac delta function concentrated at a € R, satisfies the equation
(x —a)u = 0. (1)
Find the general solution u € Z'(R) to (1).
(Hint: See Corollary 1.11 in the Lecture Notes.)

Solution: ¢, is a solution because we for ¢ € Z(R) have ((x—a)da, ¢) = (0a, (z—a)p) =
0. It follows that cd, is a solution for every ¢ € C. To see that this is the general solution
we assume that w is a solution. In order to show that u has the above form we construct
suitable test functions. Fix n € Z(R) with n(a) = 1. Then for any ¢ € Z(R) we get by
FTC that ¢(x) — ¢(a)n(x) = ¥(z)(xz — a), where

b(z) = / (¢/(a+ t(z — a)) — (0 (a + t(z — a))) dt, z € R.
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It is not difficult to see that ¢ € C*°(R). Take R > 0 so large that (—R, R) contains
the supports of both ¢ and 7. Then also v is supported in (=R, R) and so ¢ € Z(R).

Now note that ¢ = Gb(a)?? + ((L‘ - a)¢7 S0 <ua ¢> = <u7 ¢(a)n + ([E - a’)¢> = ¢(a)<u77l> +

((x — a)u, ) = (cdy, @), where ¢ = (u,n) is a constant, as required.

6. (Distribution defined by principal value integral)
Define for each ¢ € Z(R),

(o) =t ([ o+ [)%7

(a) Show that hereby pv(1) € 2'(R) and that it is homogeneous of order —1 (see
Problem 4). Check that

d 1
alog |z| = pv(;).
(b) What is the order of pv()?

(¢) Show that u = pv(2) solves the equation
Tu =1 (2)

in the sense of Z'(R). What is the general solution v € Z'(R) to (2)?

Solution: (a) Let ¢ € Z(R) and take A > 0 so large that supp(¢) C (—A, A). For
each a € (0, A) we have because the function = +— ¢(0)/x is odd that

([ ([

Here the function

o@)=00) 0 < |zl < A
@(x):{ 00 < o < A,

¢'(0) if x =0,
is continuous, so the improper integral defining <pV( ) qb> is well-defined. It is then clear

that pv(;). P(R) — C is well-defined and linear. We also record that for ¢ € Z(R)
with support in (—A, A) we have

'<pv(§),¢>‘ < 2Amax |¢]

so that pv(%) in particular has the boundedness property and hence is a distribution.
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For r > 0 and ¢ € Z(R) we calculate:

(awv(3)0) = (w(3).2aso)

([ L)
= <pv( )¢>.

This shows that the distribution pv(%) is homogeneous of degree —1, as required.

Finally we note that log| - | € Li..(R) so that we may consider it as a distribution. For
¢ € 2(R) we calculate:

d
(qrloelelo) = Qoglel,~o)
= = toglel(e) s

- —g\n%(/ / )log|x|¢ v) dz
() e
= (w()0).

(b) It follows from (a) that the order is at most 1. To see that it is 1 we assume for a

as required.

contradiction that it is 0. Then we find a constant ¢ > 0 such that

(pe(3).0)| < cmaxla

holds for all ¢ € Z(R) supported in [—1,1]. For the standard mollifier ( 8) on R put
for each j € N\ {1, 2},

@5 = p1si* Lasiagz)-
Then ¢; € Z(R) has support [0, 5 + l] and max |¢;| =1, so [(pv(2), ¢;)| < ¢ holds for

T

all large j € N. But ¢; is also nonnegative and equals 1 on [—, 3= %] so we can estimate

1 75 dx 1. 1
’<PV(;),¢3‘>‘ ZA ?Zlog(zlj—?

and this is clearly impossible for large j € N. The order is therefore 1.
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(¢) For ¢ € 2(R) we calculate,
(Ge) = (mG)omo)
- ([ ) e

— [ olo)an

hence xpv(i) = 1, as required. Because the equation (1) is linear we get the general

solution by use of question 5: u = pv(%) + ¢dg, where ¢ € C is arbitrary.

Mathematical Institute, University of Oxford Page 10 of 12

Jan Kristensen: kristens@maths.ox.ac.uk



B4.3 Distribution Theory: Sheet 2 — MT23

Section C

7. (A fundamental solution for the differential operator d™*!/dz™*1)

Denote 2, = max{0,z} for x € R and fix m € Ny. Show that if

xm
where for m = 0 we interpret this as the Heaviside function, then
dm+1

= 50 in @/(R)

dgm+1 m

Solution: It is clear that FE,, is a piecewise continuous function and therefore that it

in particular represents a regular distribution. Note that Ej = dy and that by Question

1 (since E; is piecewise C1), E| = Ey so E! = &,. Now assume that Ew'™ = &y for
some m € Ny. Note that E,, , = nf_LEm = 55 Em, so that by Leibniz’ rule
dm+2 T
EID = Ep,
ml dzm*t2\m+1
m—+2
_ (mf2>xm Fm+2-i)
m+1 = J
1
m+1
1
= 1(9553 + (m+2)d).
Because xd) = —d it follows that Ef(nnrf) = ¢y, and so we may conclude by induction

on m.

8. (Continuation of Question 4 about homogeneous distributions) Let § € C and assume
that u € 2'(R") satisfies

Z zj0;u = Pu
j=1

in the sense of distributions on R”. Prove that u is homogeneous of degree (5.
Solution: Euler’s relation can be rewritten as x - Vu = pu, that is,

(u,(n+ B +z- Vi) =0

holds for all ¢ € Z2(R"). In order to show that d,u = ru holds for all r > 0 we show
that, for each ¢ € Z(R"), the function h(r) = <u,7‘*5gbr>, r > 0, is constant. Note that

0 (ron(a) ) == (5 + o) + - Voulo) ).
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and therefore applying Euler’s relation above with 1) = ¢, we are done provided we can
show that h is differentiable and that its derivative can be calculated by differentiation

behind the u-sign. Fix » > 0 and consider for s > 0 distinct from r the difference-

%ﬁ;ﬂﬁz<%f%f””@>:mA¢

S—T S—r

quotient

say. It is not difficult to see that Ay(z) = 0,(r ¢, (x)) uniformly in z € R™ as s — r,
but in order pass to the limit under the u-sign we must use that « is a distribution and
show that the above convergence of Ay takes place in Z(R™). We thus require control of
the supports and uniform convergence of all partial derivatives. Take R > 0 such that
Bgr(0) contains the support of ¢ and note that B,g(0) then contains the support of ¢,.
Therefore K = m is a compact set containing the supports of all the A, when
s € (0,7)U (r,r + 1). Next, for a multi-index o € Nj we have

o = A RO,

= 0, (r N (8%9), (2)) = %0, (r 6, (x)

uniformly in x € R" as s — r. Consequently, the difference-quotients Ay converge in

Z(R") as required and so we conclude the proof using that u is Z continuous.
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