
1. Fix a basis C for X of size κ = w (X) and suppose B is any basis for X.

Every open set is the union of at most κmany elements of B: For
U open and x ∈ U choose B ∈ B and Cx ∈ C such that x ∈ Cx ⊆ B ⊆ U
(noting that the union of the Cx is U). For each C ∈ C′ = {Cx : x ∈ C} ⊆
C choose some BC ∈ B such that C ⊆ BC ⊆ U (at least one such exists
by the choice of the Cx). Then {BD : D ∈ C′} has size ≤ κ and union U .

Apply to elements of C: For each C ∈ C, choose a BC ⊆ B of size ≤ κ
with C =

⋃
BC .

⋃
C∈C BC is a basis of size κ: It is a union of κ many sets of size κ

and hence has size κ. To see that it is a basis, suppose x ∈ U open ⊆ X.
First find C ∈ C with x ∈ C ⊆ U and then B ∈ BC with x ∈ B ⊆ C ⊆ U .

An alternative proof (by Arthur Pander): Fix a basis C of size κ
and B any basis.

Fix a B0 ∈ B.

For each (C,C ′) ∈ C2 such that there exists B ∈ B with C ⊆ B ⊆ C ′

choose a BC,C′ ∈ B such that C ⊆ BC,C′ ⊆ C ′. Otherwise set BC,C′ = B0.

Set B′ =
{
BC,C′ : (C,C ′) ∈ C2

}
⊆ B which is of size at most

∣∣C2∣∣ = |C|.
It is a basis, since if x ∈ U open, then find C ′ ∈ C with x ∈ C ′ ⊆ U , then
B ∈ B with x ∈ B ⊆ C ′ and finally C ∈ C with x ∈ C ⊆ B to see that
x ∈ BC,C′ ⊆ U .

2. Write A =
⋃
n Cn and B =

⋃
nDn where (Cn), (Dn) are without loss of

generality (take unions of initial segments) increasing sequences of closed
sets. Note that Cn ∩ B ⊆ A ∩ B = ∅ and similarly Dn ∩ A = ∅. Thus
for each n, we can find open Un, Vn such that Cn ⊆ Un ⊆ Un ⊆ X \ B
and Dn ⊆ Vn ⊆ Vn ⊆ X \ A. Again, by taking finite unions of initial
segments we may assume that the (Un) and (Vn) are increasing. Then let
U =

⋃
n(Un \ Vn) and V =

⋃
n(Vn \ Un). These are unions of open sets,

so open. Since A =
⋃
n Cn ⊆

⋃
n Un and A ∩ Vn = ∅ for each n, A ⊆ U

and similarly B ⊆ V . Finally if x ∈ U ∩ V then for some n,m we have
x ∈ Un \ Vn and x ∈ Vm \Um. Wlog n ≤ m so that x ∈ Un ⊆ Um ⊆ Um a
contradiction.

Alternative solution using Urysohn’s Lemma: Again, write A =⋃
n Cn and B =

⋃
nDn for (Cn), (Dn) increasing sequences of closed

sets and as above note that A ∩ Dn = ∅ = B ∩ Cn. Thus by Urysohn’s
Lemma, we can find continuous functions fn, gn : X → [0, 2−n] such that
fn (Cn) ⊆ {2−n}, fn

(
B
)
⊆ {0}, gn (Dn) ⊆ {2−n}, gn

(
A
)
⊆ {0}. By the

M -test, h =
∑
n fn −

∑
n gn is a continuous real-valued function on X.
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If x ∈ A then some fn(x) > 0 and all gn(x) = 0 so that h(x) > 0. If
x ∈ B then all fn(x) = 0 and some gn(x) > 0 so that h(x) < 0. Thus
h−1 ((−∞, 0)) and h−1 ((0,∞)) are the required open sets.

Remarks: The first proof is very similar to Lindelöf + regular implies
normal. A little bit of countability added to regularity gives normality.

3. Note that since C is closed, closed subsets of C are closed in X. We
will thus not specify whether we mean C-closed or X-closed as these are
equivalent. Similarly, Fσ-subsets of C are also Fσ-subsets of X and again,
we do not need to specify which topology we refer to.

A = f−1 ([0, r)) ⊆ f−1 ([0, r]) and the right hand side is closed and disjoint
from B = f−1 ((r, 1]). Thus A ∩ B = ∅ and similarly B ∩ A = ∅ showing
that they are separated. Also [0, r) =

⋃
n[0, r − 2−n] is an Fσ and hence

A = f−1 ([0, r)) = f−1 (
⋃
n[0, r − 2−n]) =

⋃
n f
−1 ([0, r − 2−n]) is an Fσ

and similarly for B.

4. Well order Q ∩ (0, 1) as {q0, q1, q2, . . .}. q0 and q1 are special cases (some
of the Us are empty) which work by modifying the proof below in the
obvious way.

Assume Uqi have been defined satsifying the condition for i < 2 ≤ n. Let
i0, i1 < n be such that qi0 is the maximal element of {qi : i < n, qi < qn}
and qi1 is the minimal element of {qi : i < n, qn < qi}. WriteA = f−1 ([0, qn))
and B = f−1 ((qn, 1]). Then A′ = Uqi0 ∪A and B′ = B ∪X \ Uqi1 are Fσ
sets. We claim that these are separated: first note that finite unions and
closures commute. Next

� A ∩B = ∅ = A ∩B by the previous part;

� A ⊆ f−1 ([0, qn]) ⊆ f−1 ([0, qi1)) ⊆ Uqi1 is disjoint from X \ Uqi1 =

X \ Uqi1 ;

� similarly B ⊆ f−1 ([qn, 1]) ⊆ f−1 ((qi0 , 1]) is disjoint from Ui0 ;

� Uqi0 ⊆ Uqi1 is disjoint from X \ Uqi1 = X \ Uqi1 (by inductive hy-
pothesis).

Hence A′ and B′ are separated and we can thus (by the first part) find an
open Uqn with A′ ⊆ Uqn ⊆ Uqn ⊆ X \B′ as required.

As in Urysohn’s Lemma, the function defined by F (x) = inf {q ∈ Q ∩ (0, 1) : x ∈ Uq} =
inf
{
q ∈ Q ∩ (0, 1) : x ∈ Uq

}
is continuous.

Finally, for all q ∈ Q ∩ (0, 1) and x ∈ C we have f(x) < q =⇒ x ∈
Uq =⇒ F (x) ≤ q and f(x) > q =⇒ x 6∈ Uq =⇒ F (x) ≥ q and hence
that F extends f .

5. If C,D are disjoint closed then 1D : C ∪D → [0, 1] is a continuous [0, 1]-
valued function on the closed set C∪D. By Tietze’s Theorem this extends
to some continuous [0, 1]-valued function F , which is a Urysohn function
for C,D.
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6. Note that all closed and bounded intervals (in R) are obviously homeo-
morphic.

A, B are C-closed, so X-closed. Thus by Urysohn’s Lemma there is a
continuous function g : X → [−1/3, 1/3] such that g (A) ⊆ {−1/3} and
g (B) ⊆ {1/3}. Now for x ∈ A we have f(x)−g(x) ≥ −1−(−1/3) = −2/3,
for x ∈ B we have f(x) − g(x) ≤ 1 − 1/3 = 2/3 and if x ∈ X \ (A ∪ B)
then −1/3 < f(x) < 1/3 so that −2/3 = −1/3 − 1/3 < f(x) − g(x) <
1/3− (−1/3) = 2/3.

Rescaling the above argument we obtain that if a ∈ R+ and f : C → [−a, a]
is continuous then there is g : X → [−a/3, a/3] such that (f − g) (X) ⊆
[−2a/3, 2a/3].

Starting with f0 = f , obtain g0 as described. Inductively let fn+1 =
fn − gn = f −

∑
k≤n gk : C → [−(2/3)n, (2/3)n] and let gn+1 : X →

[−(2/3)n/3, (2/3)n/3] be continuous with (fn+1 − gn+1) (X) ⊆ [−(2/3)n+1, (2/3)n+1]
(possible by the note).

Then let F =
∑
n gn : X → [−1, 1]. By the M -test, this is well defined

and continuous and f − F = 0 on C.

7. A continuous function [0, 1]-valued on X is determined by its values on
a dense subset: If Y is Hausdorff then ∆Y = {(y, y) : y ∈ Y } is closed in
Y 2 (if y 6= y′ then the disjoint open sets U 3 y, V 3 y′ witness this via
(y, y′) ∈ U×V ⊆ Y 2 \∆Y ) and so {x ∈ X : f(x) = g(x)} = (f∆g)−1(∆Y )
is closed. Thus f |D = g|D for a subset D of X, then f |D = g|D as required.

If X has a countable dense subset D, then f 7→ f |D is an injection from
C(X, [0, 1]) into C(D, [0, 1]) so that there are at most

∣∣[0, 1]D
∣∣ = (2N)N =

2N×N = 2N many continuous [0, 1]-valued functions on X.

On the other hand, by Tietze’s Theorem there are at least as many con-
tinuous [0, 1]-valued functions on X as there are on any closed subset of
X (because each continuous [0, 1]-valued function on a closed subset ex-
tends to some continuous function on X). If C is a discrete subspace of
size 2N of X then every function on C is continuous so there are at least∣∣[0, 1]C

∣∣ = (2N)(2N) = 2N×2
N

= 22
N

many continuous [0, 1]-valued functions
on X.

Since 22
N
> 2N (Cantor’s Theorem), a normal space with countable dense

subset cannot have a continuum-sized closed discrete subspace.

8. The antidiagonal of the Sorgenfrey Plane is a closed discrete subspace of
size continuum. But Q×Q is a countable dense subset of the Sorgenfrey
Plane. (Draw a picture for both.) Thus the Sorgenfrey Plane cannot be
normal.

Normality of the Sorgenfrey is easiest shown using halving operators: we
define H(x, [x, x + ε)) = [x, x + ε/2) (or in fact [x, x + ε)) and extend in
the obvious way: if x ∈ U open, then choose ε > 0 such that [x, x+ε) ⊆ U
and define H(x, U) = H(x, [x, x+ ε)). It is easy to see that this works.
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It cannot be metrizable as then the Sorgenfrey Plane would be metrizable
as well so the Sorgenfrey Plane would be normal.

Since the Sorgenfrey Line is normal, it cannot be second countable (by
Urysohn’s Metrization Theorem).

Remarks: The Sorgenfrey Line is first countable ({[a, a+ 2−n) : n ∈ N}
is a countable neighbourhood basis at a).

Note that the Sorgenfrey Line is Lindelöf: just like showing compact-
ness of [0, 1] in the usual topology, we can show that [0, 1] is Lindelöf
in the Sorgenfrey topology: if U is an open cover of [0, 1] then let α =
sup {x ∈ [0, 1] : [0, x] is covered by a countable subcover} and for n ∈ N
choose countable subcovers Vn covering [0, α− 2−n] (possible by Approx-
imation Property) as well as U ∈ U with α ∈ [α, α + ε) ∈ U for some
ε > 0. Then

⋃
n Vn ∪{U} is a countable open cover of [0, α+ ε/2] showing

that α = 1 and that [0, 1] has a countable subcover. Clearly [n, n + 1] is
homeomorphic to [0, 1] (in the Lindelöf topology) and a countable union
of Lindelöf spaces is Lindelöf giving that R =

⋃
n∈Z[n, n+ 1] is Lindelöf.

Hence (regularity + Lindelöf implies paracompact) the Sorgenfrey Line is
paracompact.

You can also show that the Sorgenfrey Line is perfectly normal, but this
is a little harder.
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