- 1. Fix $x \in X$ and find open $U \ni x$ that meets only finitely many $A \in \mathcal{A}$. As U is open $U \cap \overline{A} \neq \emptyset \iff U \cap A \neq \emptyset$ giving the result.
- 2. Fix an open cover U. For each $x \in X$ find U_x and open V_x with $x \in V_x \subseteq Y$ $\overline{V_x} \subseteq U_x$. Then $\{V_x : x \in X\}$ is an open cover and hence has a locally finite refinement A covering X. For each $A \in \mathcal{A}$ choose $U_A \in \mathcal{U}$ such that $A \subseteq U_A$ and for each $U \in \mathcal{U}$ let

$$
F_U = \overline{\bigcup\{A \in \mathcal{A} \colon U_A = U\}} = \bigcup\{\overline{A} \colon A \in \mathcal{A}, U_A = U\}.
$$

by local finiteness of A. Note that for open $V \subseteq X$, $V \cap \overline{A} \neq \emptyset \iff$ $V \cap A \neq \emptyset$. Hence, if $V \ni x$ witnesses local finiteness of A at x then it witnesses local finiteness of $\{\overline{A}: A \in \mathcal{A}\}\$ at x and thus meets only finitely many F_U . (This last step seems difficult for students, so here are two (?) more detailed explanations: each $A \in \mathcal{A}$ is only used in one F_U . So if V only meets A_1, \ldots, A_n and no other $A \in \mathcal{A}$, then V only meets $F_{U_{A_1}}, \ldots, F_{U_{A_n}}$: if V meets F_U then V meets some $A \in \mathcal{A}$ with $U_A = U$.) It remains to argue that $\{F_U : U \in \mathcal{U}\}\$ is an open cover of X refining \mathcal{U} . Clearly $F_U \subseteq U$ (since $U_A = U$ implies $\overline{A} \subseteq U$). For covering, fix $y \in X$. Then $y \in A$ for some $A \in \mathcal{A}$ and $A \subseteq F_{U_A}$.

3. Suppose $\mathcal{U} = \bigcup_n \mathcal{U}_n$ is an open cover of X such that each \mathcal{U}_n is locally finite. Write $U_n = \bigcup_{k < n} \bigcup \mathcal{U}_k$ (the bit of X covered by the families $\mathcal{U}_1, \ldots, \mathcal{U}_{n-1}$ and let

$$
\mathcal{A}=\bigcup_n \{U\setminus U_n\colon U\in\mathcal{U}_n\}\,.
$$

(so from the elements of \mathcal{U}_n , throw away what has been covered previously). We claim that A is the required locally finite refinement of U covering X. Clearly A refines \mathcal{U}_n and hence \mathcal{U} .

Next, it covers X since for each $x \in X$ we can find the minimal n such that $x \in \bigcup \mathcal{U}_n$ and $U \in \mathcal{U}_n$ such that $x \in U$. Then $x \in U \setminus U_n$ (by minimality of n). If V_1, \ldots, V_n witness that $\mathcal{U}_1, \ldots, \mathcal{U}_n$ are locally finite at x then $W = V_1 \cap ... \cap V_n \cap U_{n+1}$ will only meet finitely many elements of A: if $k > n$ then $U \setminus U_k, U \in \mathcal{U}_k$, does not meet W (because of the U_{n+1}) and each V_i ensures that W meets only finitely many $U \setminus U_k, U \in \mathcal{U}_k$ for $k \leq n$.

4. We have done everything except for (i) implies (ii) which is trivial and (iv) implies (i). For this we use the notation of the hint.

Observe that each $D \in \mathcal{D}$ is contained in some $W \in \mathcal{W}$ and hence can only meet those V_C where W meets C. As W witnesses local finiteness of C there are only finitely many such. So for each $D \in \mathcal{D}$ there is a finite $\mathcal{C}_D \subseteq \mathcal{C}$ such that $D \cap V_C = \emptyset$ unless $C \in \mathcal{C}_D$.

Now let $x \in X$ and let A witness local finiteness of \mathcal{D} at x. Then \mathcal{D}_A = ${D \in \mathcal{D}: A \cap D \neq \emptyset}$ is finite and $A \subseteq \mathcal{D}_A$ as \mathcal{D} is a cover. Thus A can

only meet V_C for $C \in \bigcup_{D \in \mathcal{D}_A} C_D$ and this is a finite union of finite sets. Hence $\{V_C: C \in \mathcal{C}\}\$ is locally finite.

Observe that for each $C \in \mathcal{C}$, $C \subseteq V_C$ and choose $U_C \in \mathcal{U}$ such that $C \subseteq U_C$ so that $C \subseteq V_C \cap U_C$. Then $\{V_C \cap U : C \in \mathcal{C}\}\$ is a locally finite refinement of U covering X , as required.

- 5. Examining the proof of (b), we see that if all elements of A are open then $\bigcup \{A \in \mathcal{A} : \overline{A} \subseteq U\}$ is open as required.
- 6. Let U be an open cover, and use a previous part to obtain a locally finite open collection $\mathcal{V} = \{V_U : U \in \mathcal{U}\}\$ such that $\forall U \in \mathcal{U}\ \overline{V_U} \subseteq U$. Let D be a countable dense set and for $d \in D$ choose $V_d \in \mathcal{V}$ such that $d \in V_d$. Now note that by local finiteness of \mathcal{V} ,

$$
\bigcup_{d \in D} U_{V_d} \supseteq \bigcup_{d \in D} \overline{V_d} = \overline{\bigcup_{d \in D} V_d} \supseteq \overline{D} = X
$$

so that $\{U_{V_d}: d \in D\}$ is the required countable subcover.

Alternative solution (by Christopher Turner) without using regularity: We show that in a separable space every locally finite family of (non-empty) open sets is countable: suppose V is a locally finite family of non-empty open sets and that D is a countable dense subset. Because V is locally finite, for $d \in D$ we have open $W \ni d$ that meets only finitely many elements of V. Hence each $d \in D$ is only contained in finitely many elements of V. Write $V_d = \{V \in V : d \in V\}.$

Because D is dense and each $V \in \mathcal{V}$ is non-empty open, it contains some $d \in D$. Thus $V = \bigcup_{d \in D} V_d$ which is a countable union of finite sets so countable.

Now, if U is an open cover then choose a locally finite open refinement V still covering X. By the above V is countable and if we choose for each $V \in V$ a $U_V \in U$ such that $V \subseteq U_V$ then $\{U_V : V \in V\}$ is a countable subset of U covering X: if $x \in X$ then $x \in V$ for some $V \in V$ (V covers) and so $x\in V\subseteq U_V.$

7. Suppose that $I = \bigcap \mathcal{U} \neq \emptyset$. As $X \setminus I \in \mathcal{U}$ leads to $I = \emptyset$ we must have $I \in \mathcal{U}$. If $x, y \in I$ are distinct then one of $\{x\}$, $X \setminus \{x\} \in \mathcal{U}$. If $\{x\} \in \mathcal{U}$ then $y \notin I$. If $X \setminus \{x\} \in \mathcal{U}$ then $x \notin I$. So I is a singleton $\{x\}$ and hence $U = \mathcal{P}_x$.

For the converse, simply observe that $\bigcap \mathcal{P}_x = \{x\}.$

If U is free then for each x there must be $A \ni x$ with $X \setminus A \in U$. But then $X \setminus \{x\} \supseteq X \setminus A$, so $X \setminus \{x\} \in \mathcal{U}$. Finally, taking finite intersections of $X \setminus \{x\}$ we obtain $X \setminus F \in \mathcal{U}$ for any finite set F.

8. Assume that U is an ultrafilter with countable basis $\{B_n : n \in \omega\}$. By taking finite intersections of the first n elements (for each n) we may assume that B_n is decreasing. If B_n is eventually constant equal to B

(say), then $\bigcap \mathcal{U} = B$, contradiction. So by passing to a subsequence B_n is wlog strictly decreasing. We then note that $\emptyset = \bigcap \mathcal{U} = \bigcap_n B_n$. Setting $A = \bigcup_k B_{2k} \setminus B_{2k+1}$ and $B = X \setminus A = \bigcup_k B_{2k+1} \setminus B_{2k+2}$ we have that $B_j \nsubseteq A$ and $B_j \nsubseteq B$ for every j, so (by the fact that the B_n form a filter basis for \mathcal{U} , neither A nor $X \setminus A$ belong to \mathcal{U} a contradiction.

9. For each *n*, consider the family $\{ [k/2^n, (k+1)/2^n] : k = 0, ..., 2^n - 1 \}.$ This covers $[0, 1]$ and hence at least one element must belong to $\mathcal U$. Picking one such interval for each n gives a countable family of closed intervals whose intersection is non-empty (by compactness of $[0, 1]$) and at most a singleton (as the length go to 0). Hence this intersection is a singleton ${x} \in \mathcal{U}$, giving that $\mathcal{U} = \mathcal{P}_x$.