
1. Fix x ∈ X and find open U 3 x that meets only finitely many A ∈ A. As
U is open U ∩A 6= ∅ ⇐⇒ U ∩A 6= ∅ giving the result.

2. Fix an open cover U . For each x ∈ X find Ux and open Vx with x ∈ Vx ⊆
Vx ⊆ Ux. Then {Vx : x ∈ X} is an open cover and hence has a locally
finite refinement A covering X. For each A ∈ A choose UA ∈ U such that
A ⊆ UA and for each U ∈ U let

FU =
⋃
{A ∈ A : UA = U} =

⋃{
A : A ∈ A, UA = U

}
.

by local finiteness of A. Note that for open V ⊆ X, V ∩ A 6= ∅ ⇐⇒
V ∩ A 6= ∅. Hence, if V 3 x witnesses local finiteness of A at x then it
witnesses local finiteness of

{
A : A ∈ A

}
at x and thus meets only finitely

many FU . (This last step seems difficult for students, so here are two
(?) more detailed explanations: each A ∈ A is only used in one FU .
So if V only meets A1, . . . , An and no other A ∈ A, then V only meets
FUA1

, . . . , FUAn
: if V meets FU then V meets some A ∈ A with UA = U .)

It remains to argue that {FU : U ∈ U} is an open cover of X refining U .
Clearly FU ⊆ U (since UA = U implies A ⊆ U). For covering, fix y ∈ X.
Then y ∈ A for some A ∈ A and A ⊆ FUA

.

3. Suppose U =
⋃

n Un is an open cover of X such that each Un is locally
finite. Write Un =

⋃
k<n

⋃
Uk (the bit of X covered by the families

U1, . . . ,Un−1) and let

A =
⋃
n

{U \ Un : U ∈ Un} .

(so from the elements of Un, throw away what has been covered previ-
ously). We claim that A is the required locally finite refinement of U
covering X. Clearly A refines Un and hence U .

Next, it covers X since for each x ∈ X we can find the minimal n such
that x ∈

⋃
Un and U ∈ Un such that x ∈ U . Then x ∈ U \ Un (by

minimality of n). If V1, . . . , Vn witness that U1, . . . ,Un are locally finite at
x then W = V1 ∩ . . .∩ Vn ∩Un+1 will only meet finitely many elements of
A: if k > n then U \ Uk, U ∈ Uk, does not meet W (because of the Un+1)
and each Vi ensures that W meets only finitely many U \ Uk, U ∈ Uk for
k ≤ n.

4. We have done everything except for (i) implies (ii) which is trivial and
(iv) implies (i). For this we use the notation of the hint.

Observe that each D ∈ D is contained in some W ∈ W and hence can
only meet those VC where W meets C. As W witnesses local finiteness of
C there are only finitely many such. So for each D ∈ D there is a finite
CD ⊆ C such that D ∩ VC = ∅ unless C ∈ CD.

Now let x ∈ X and let A witness local finiteness of D at x. Then DA =
{D ∈ D : A ∩D 6= ∅} is finite and A ⊆ DA as D is a cover. Thus A can
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only meet VC for C ∈
⋃

D∈DA
CD and this is a finite union of finite sets.

Hence {VC : C ∈ C} is locally finite.

Observe that for each C ∈ C, C ⊆ VC and choose UC ∈ U such that
C ⊆ UC so that C ⊆ VC ∩ UC . Then {VC ∩ U : C ∈ C} is a locally finite
refinement of U covering X, as required.

5. Examining the proof of (b), we see that if all elements of A are open then⋃{
A ∈ A : A ⊆ U

}
is open as required.

6. Let U be an open cover, and use a previous part to obtain a locally finite
open collection V = {VU : U ∈ U} such that ∀U ∈ U VU ⊆ U . Let D be a
countable dense set and for d ∈ D choose Vd ∈ V such that d ∈ Vd. Now
note that by local finiteness of V,⋃

d∈D

UVd
⊇
⋃
d∈D

Vd =
⋃
d∈D

Vd ⊇ D = X

so that {UVd
: d ∈ D} is the required countable subcover.

Alternative solution (by Christopher Turner) without using reg-
ularity: We show that in a separable space every locally finite family of
(non-empty) open sets is countable: suppose V is a locally finite family of
non-empty open sets and that D is a countable dense subset. Because V
is locally finite, for d ∈ D we have open W 3 d that meets only finitely
many elements of V. Hence each d ∈ D is only contained in finitely many
elements of V. Write Vd = {V ∈ V : d ∈ V }.
Because D is dense and each V ∈ V is non-empty open, it contains some
d ∈ D. Thus V =

⋃
d∈D Vd which is a countable union of finite sets so

countable.

Now, if U is an open cover then choose a locally finite open refinement V
still covering X. By the above V is countable and if we choose for each
V ∈ V a UV ∈ U such that V ⊆ UV then {UV : V ∈ V} is a countable
subset of U covering X: if x ∈ X then x ∈ V for some V ∈ V (V covers)
and so x ∈ V ⊆ UV .

7. Suppose that I =
⋂
U 6= ∅.As X \ I ∈ U leads to I = ∅ we must have

I ∈ U . If x, y ∈ I are distinct then one of {x} , X \ {x} ∈ U . If {x} ∈ U
then y 6∈ I. If X \ {x} ∈ U then x 6∈ I. So I is a singleton {x} and hence
U = Px.

For the converse, simply observe that
⋂
Px = {x}.

If U is free then for each x there must be A 3 x with X \A ∈ U . But then
X \ {x} ⊇ X \ A, so X \ {x} ∈ U . Finally, taking finite intersections of
X \ {x} we obtain X \ F ∈ U for any finite set F .

8. Assume that U is an ultrafilter with countable basis {Bn : n ∈ ω}. By
taking finite intersections of the first n elements (for each n) we may
assume that Bn is decreasing. If Bn is eventually constant equal to B
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(say), then
⋂
U = B, contradiction. So by passing to a subsequence Bn

is wlog strictly decreasing. We then note that ∅ =
⋂
U =

⋂
n Bn. Setting

A =
⋃

k B2k \ B2k+1 and B = X \ A =
⋃

k B2k+1 \ B2k+2 we have that
Bj 6⊆ A and Bj 6⊆ B for every j, so (by the fact that the Bn form a filter
basis for U), neither A nor X \A belong to U a contradiction.

9. For each n, consider the family {[k/2n, (k + 1)/2n] : k = 0, . . . , 2n − 1}.
This covers [0, 1] and hence at least one element must belong to U . Picking
one such interval for each n gives a countable family of closed intervals
whose intersection is non-empty (by compactness of [0, 1]) and at most a
singleton (as the length go to 0). Hence this intersection is a singleton
{x} ∈ U , giving that U = Px.

3


